JPH05293407A - Powder nozzle - Google Patents

Powder nozzle

Info

Publication number
JPH05293407A
JPH05293407A JP9999792A JP9999792A JPH05293407A JP H05293407 A JPH05293407 A JP H05293407A JP 9999792 A JP9999792 A JP 9999792A JP 9999792 A JP9999792 A JP 9999792A JP H05293407 A JPH05293407 A JP H05293407A
Authority
JP
Japan
Prior art keywords
powder
jet orifice
nozzle
swirl chamber
injection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9999792A
Other languages
Japanese (ja)
Inventor
Kimitoshi Mato
公利 間藤
Tadashi Takahashi
位 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9999792A priority Critical patent/JPH05293407A/en
Publication of JPH05293407A publication Critical patent/JPH05293407A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve the highly efficient dispersion of a powder difficult by a powder nozzle by providing a powder jet orifice injecting a powder along with an air stream, a revolving guide hole introducing a high speed air stream into a vortex chamber and an air jet orifice having a focus in front of the powder jet orifice. CONSTITUTION:A powder jet orifice A injecting a powder sucked under negative pressure by the ejector action of an air stream along with the air stream, the annular vortex chamber 24 formed at the position surrounding the powder jet orifice A and a plurality of the revolving guide ports 22 spirally extended to the vortex chamber 24 to introduce a high speed air stream into the vortex chamber 24 in order to form a high speed revolving stream in the vortex chamber 24 are provided. An annular air jet orifice B is opened to the vortex chamber 24 on the side facing to the powder jet orifice A so as to be turned toward the front part of the powder jet orifice A to inject a high speed tapered conical vortex stream having a focus in front of the powder jet orifice A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粉体噴射口から噴射した
粉体を、粉体噴射口前方に噴射形成した高速渦流によっ
て分散する粉体ノズルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder nozzle which disperses powder sprayed from a powder spray port by a high-speed swirl flow formed in front of the powder spray port.

【0002】[0002]

【従来の技術】レーザ光散乱方式の粒度分布測定装置で
は、粉体ノズルによって粉体を分散し、この分散した粉
体にレーザ光を照射し、分散された粉体におけるレーザ
光の散乱光の散乱角度から粒径を測定する構造となって
いる。そして粉体ノズルは、高速気流によって負圧吸引
した粉体を噴射口から噴射して粉体を分散させる構造と
なっている。
2. Description of the Related Art In a laser light scattering type particle size distribution measuring apparatus, a powder nozzle is used to disperse powder, and the dispersed powder is irradiated with laser light. The structure is such that the particle size is measured from the scattering angle. The powder nozzle has a structure in which the powder sucked under a negative pressure by a high-speed air stream is sprayed from a spray port to disperse the powder.

【0003】[0003]

【発明の解決しようとする課題】しかし、従来の粉体ノ
ズルでは、気流のエジェクター作用により負圧吸引され
た粉体が高速気流とともにノズルから噴射されることに
よって分散されるが、粉体のすべてが粉体本来の大きさ
の粒子に分散される訳ではなく、幾らかは複数の粒子が
凝集一体化された塊のまま残存し、粉体本来のもつ粒径
に十分に分散できない場合があり、これが粒度分布測定
上の精度を低下させる一因となっていた。
However, in the conventional powder nozzle, the powder sucked by the negative pressure by the ejector action of the airflow is dispersed by being jetted from the nozzle together with the high-speed airflow. Are not dispersed in particles of the original size of the powder, and some particles may remain as aggregates that are aggregated and integrated, and may not be sufficiently dispersed in the original particle size of the powder. This has been one of the causes for lowering the accuracy of particle size distribution measurement.

【0004】本発明は前記従来技術の問題点に鑑みなさ
れたもので、その目的は粉体本来の粒径に確実に分散す
ることのできる粉体ノズルを提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a powder nozzle which can surely disperse the powder into the original particle size.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1に係る粉体ノズルにおいては、気流のエジ
ェクター作用により負圧吸引された粉体が気流とともに
噴射される粉体噴射口と、前記粉体噴射口を取り組む位
置に形成された環状の渦流室と、渦巻状に渦流室に延び
て、渦流室内に高速旋回流を生成するべく渦流室に高速
気流を導入する複数の旋回導孔と、前記渦流室の前記粉
体噴射口に臨む側に粉体噴射口の前方に向けて開口さ
れ、粉体噴射口の前方に焦点をもつ先細り円錐形の高速
渦流を噴射形成する環状の気体噴射口と、を備えるよう
にしたものである。
In order to achieve the above object, in a powder nozzle according to a first aspect, a powder injection port through which negative pressure sucked powder due to an ejector action of an air flow is injected together with the air flow. And an annular swirl chamber formed at a position where the powder injection port is engaged, and a plurality of swirls extending into the swirl chamber and introducing a high-speed air flow into the swirl chamber to generate a high-speed swirl flow in the swirl chamber. A guide hole and an annular shape that is opened toward the front of the powder injection port on the side of the swirl chamber facing the powder injection port and that forms a tapered conical high-speed vortex with a focus in front of the powder injection port. And a gas injection port of.

【0006】また請求項2では、請求項1記載の粉体ノ
ズルにおいて、ノズルの前端部に、外側部に外気吸込孔
が形成された筒形状で、気体噴射口から噴射形成される
高速渦流の粉体分散作用を促進する拡散筒を装着するよ
うにしたものである。
According to a second aspect of the present invention, in the powder nozzle according to the first aspect, a high speed vortex flow formed by injection from a gas injection port is formed in a cylindrical shape in which an outside air suction hole is formed in an outer portion at a front end portion of the nozzle. A diffusion cylinder for promoting the powder dispersion action is attached.

【0007】[0007]

【作用】渦流室によって整流された高速旋回流が環状の
気体噴射口から均一な高速渦流となって液体噴射口の前
方に向かって先細り円錐形に噴射される。ノズル内にお
いて気流のエジェクタ作用により吸引されて一次分散さ
れた粉体は、粉体噴射口から噴射されるや否やノズルの
外部前方に形成された高速渦流と接触し、二次分散され
て、粉体を構成する粒子本来の大きさとなる。
The high-speed swirling flow rectified by the swirl chamber becomes a uniform high-speed swirl flow from the annular gas injection port and is ejected toward the front of the liquid injection port in a tapered conical shape. The powder that is sucked by the ejector action of the air flow in the nozzle and is primarily dispersed is contacted with the high-speed vortex formed outside the nozzle as soon as it is ejected from the powder ejection port, and is secondarily dispersed to It has the original size of the particles that make up the body.

【0008】[0008]

【実施例】次に、本発明の実施例を図面に基づいて説明
する。図1および図2は本発明の一実施例を示すもの
で、図1は本発明の一実施例である粉体ノズルの縦断面
図、図2は粉体ノズルの要部である中子の斜視図、図3
は粉体ノズルの要部正面図、図4は渦流室周辺の拡大断
面図である。
Embodiments of the present invention will now be described with reference to the drawings. 1 and 2 show an embodiment of the present invention. FIG. 1 is a vertical sectional view of a powder nozzle which is an embodiment of the present invention, and FIG. 2 is a core of a powder nozzle. Perspective view, FIG.
FIG. 4 is a front view of a main part of the powder nozzle, and FIG. 4 is an enlarged cross-sectional view around the swirl chamber.

【0009】これらの図において、符号10はノズルボ
デイで、ボデイ10の後端部には圧縮気体流入口12が
形成され、この流入口12は、オリフィス13を介し噴
射通路14(14a,14b),15(15a,15
b)に延びて前方に開口している。通路14aの側面に
は粉体供給口16が開口し、粉体供給口16にはホッパ
ー17内の粉体が振動されることにより供給され、オリ
フィス13から前方に噴射される気流の負圧によって供
給口16に供給された粉体が吸引されて分散されるよう
になっている。即ち供給口16から負圧吸引された粉体
は、通路14,15において一次分散されて、粉体噴射
口Aを形成する通路15の前端開口部から噴射される。
圧縮気体流入口12は、通路14,15と平行に延びる
通路18を経て、通路15周りに形成された円環状の供
給路19および旋回導孔22を経て粉体噴射口Aを取り
囲む渦流室24に延びている。
In these drawings, reference numeral 10 is a nozzle body, and a compressed gas inflow port 12 is formed at the rear end portion of the body 10, and the inflow port 12 is provided with an injection passage 14 (14a, 14b) through an orifice 13. 15 (15a, 15
It extends to b) and opens to the front. A powder supply port 16 is opened on the side surface of the passage 14a, and the powder in the hopper 17 is supplied to the powder supply port 16 by being vibrated, and by the negative pressure of the airflow jetted forward from the orifice 13. The powder supplied to the supply port 16 is sucked and dispersed. That is, the powder sucked under negative pressure from the supply port 16 is primarily dispersed in the passages 14 and 15 and is ejected from the front end opening of the passage 15 forming the powder ejection port A.
The compressed gas inflow port 12 passes through a passage 18 extending in parallel with the passages 14 and 15, a circular supply passage 19 and a swirl guide hole 22 formed around the passage 15, and the swirl chamber 24 surrounding the powder injection port A. Extends to.

【0010】渦流室24および気体噴射口Bは、図2,
3,4に示すように、前面に渦流室形成用の凹部21
が、外周に旋回導孔形成用の溝23が設けられた円盤状
の中子20に、噴板キャップ27を組付けることによっ
て構成されており、旋回導孔22から渦流室24に侵入
する空気流によって渦流室24に高速旋回流が生成され
る。また渦流室24には、粉体噴射口Aの前方に開口す
る環状の気体噴射口Bが形成されており、渦流室24内
の高速旋回流は、渦流室24内で整流された後、この気
体噴射口Bから前方に噴射される。これがため点Fを焦
点とする前方に先細り円錐形の高速渦流を噴射形成す
る。そして通路14,15において一次分散された粉体
は高速気流とともに粉体噴射口Aから噴射されるや否
や、気体噴射口Bから噴射された高速渦流と接触し二次
分散されて、粉体本来の粒子径となる。
The swirl chamber 24 and the gas injection port B are shown in FIG.
As shown in FIGS. 3 and 4, a concave portion 21 for forming a swirl chamber is formed on the front surface.
However, it is configured by assembling the injection plate cap 27 to the disk-shaped core 20 having the groove 23 for forming the swirl guide hole on the outer periphery, and the air entering the swirl chamber 24 from the swirl guide hole 22. A high-speed swirling flow is generated in the swirl chamber 24 by the flow. Further, the swirl chamber 24 is formed with an annular gas jet port B opening in front of the powder jet port A. The high-speed swirling flow in the swirl chamber 24 is rectified in the swirl chamber 24, and thereafter, It is jetted forward from the gas jet port B. Therefore, a tapered conical high-speed vortex is jetted and formed forward with the point F as the focal point. Then, as soon as the powder that has been primarily dispersed in the passages 14 and 15 is jetted from the powder jet port A together with the high-speed air stream, it comes into contact with the high-speed vortex jets that have been jetted from the gas jet port B and is secondarily dispersed. The particle size is

【0011】なお符号26aは中子20の後端部とノズ
ルボデイ10間に介在されたOリング、符号26bは中
子20と噴板キャップ27間に介在されたOリング、符
号26cは噴板キャップ27とノズル前端カバー11と
の間に介在されたOリング、符号26dはノズル前端カ
バー11とノズルボデイ10間に介在されたOリングで
ある。
Reference numeral 26a is an O-ring interposed between the rear end of the core 20 and the nozzle body 10, reference numeral 26b is an O-ring interposed between the core 20 and the spray plate cap 27, and reference numeral 26c is a spray plate cap. Reference numeral 26d denotes an O ring interposed between the nozzle front end cover 11 and the nozzle front end cover 11, and reference numeral 26d denotes an O ring interposed between the nozzle front end cover 11 and the nozzle body 10.

【0012】ノズルボディ10の前端部には円筒型の拡
散筒30が螺着されている。符号31は螺合部を示す。
拡散筒30の側面には複数個(実施例では周方向等分4
個)の空気孔32が開けられており、気体噴射口Bから
気体が噴射形成される際に、この空気孔32から外気が
取り込まれて筒30内における高速渦流の粉体分散用を
促進する働きがある。
A cylindrical diffusion tube 30 is screwed onto the front end of the nozzle body 10. Reference numeral 31 indicates a screwed portion.
A plurality of side surfaces of the diffusion cylinder 30 (in the embodiment, the circumferential direction is divided into four equal parts 4
Individual) air holes 32 are opened, and when the gas is formed by injection from the gas injection port B, outside air is taken in from the air holes 32 to promote the powder dispersion of the high-speed vortex inside the cylinder 30. It has a function.

【0013】そしてこの粉体ノズルの粉体噴射エリアC
では、粉体が粉体粒子本来の粒径にまで分散されてい
る。即ち、従来のノズルでは、粉体として窒化ホウ素を
用いた場合の平均粒径は図5に示されるように、11.
3ミクロンであったのに対し、この実施例では、図6に
示されるように平均粒径8.7ミクロンとなり、従来の
ノズルに比べてかなり平均粒径が小さくなっている。
The powder injection area C of this powder nozzle
In, the powder is dispersed to the original particle size of the powder particles. That is, in the conventional nozzle, the average particle size when boron nitride was used as the powder was 11.
In contrast to the average particle size of 3 μm in this example, the average particle size is 8.7 μm as shown in FIG. 6, which is considerably smaller than that of the conventional nozzle.

【0014】図7は本実施例の粉体ノズルを粒度分布測
定装置に適用した場合を示している。図7において、符
号40は発光部で、He−Neレーザ42から発せられ
たレーザ光はコリメタレンズ44によって平行光とされ
て、粉体ノズルによって粒子状に分散されている粒子中
に出射される。そして粉体粒子にレーザ光があたると光
はその粒径によって異なる周心円状の散乱パターンを生
成するが、この散乱パターンを焦光レンズ46を通して
32分割リング状ディテクタ48で電気信号に変換し、
高速データ収集部50によって処理する構成となってい
る。この測定装置では、粉体ノズルによる粉体の分散効
率が高いため、粒度分布測定装置の測定精度も高いとい
える。
FIG. 7 shows a case where the powder nozzle of this embodiment is applied to a particle size distribution measuring device. In FIG. 7, reference numeral 40 denotes a light emitting portion, and the laser light emitted from the He—Ne laser 42 is collimated by the collimator lens 44 and emitted into particles dispersed by the powder nozzle into particles. When the powder particles are irradiated with the laser light, the light produces a scattering pattern in the shape of a circumferential circle that varies depending on the particle size. ,
Processing is performed by the high-speed data collection unit 50. It can be said that the measuring accuracy of the particle size distribution measuring device is high in this measuring device because the powder is highly dispersed by the powder nozzle.

【0015】[0015]

【発明の効果】以上の説明から明らかなように、本発明
に係る粉体ノズルによれば、渦流室によって整流された
高速旋回流が環状の気体噴射口から均一な高速渦流とな
って粉体噴射口の前方に向かって先細り円錐形に噴射さ
れる。ノズル内において気流のエジェクタ作用により吸
引されて一次分散された粉体は、粉体噴射口から噴射さ
れるや否やノズルの外部前方に形成された高速渦流と接
触し、二次分散されて、粉体を構成する粒子本来の大き
さとなり、従来の粉体ノズルでは困難であった高効率の
分散化が達成できる。
As is apparent from the above description, according to the powder nozzle of the present invention, the high-speed swirling flow rectified by the swirl chamber becomes a uniform high-speed swirl flow from the annular gas injection port. It is injected in a tapered conical shape toward the front of the injection port. The powder that is sucked by the ejector action of the air flow in the nozzle and is primarily dispersed is contacted with the high-speed vortex formed outside the nozzle as soon as it is ejected from the powder ejection port, and is secondarily dispersed to The particles constituting the body have the original size, and it is possible to achieve highly efficient dispersion, which was difficult with conventional powder nozzles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である粉体ノズルの縦断面図FIG. 1 is a vertical sectional view of a powder nozzle which is an embodiment of the present invention.

【図2】同粉体ノズルの要部である旋回導孔および渦流
室形成用の中子
FIG. 2 is a core for forming a swirl guide hole and a swirl chamber, which are essential parts of the powder nozzle.

【図3】粉体ノズルの要部正面図FIG. 3 is a front view of the main part of the powder nozzle.

【図4】渦流室周辺の拡大断面図FIG. 4 is an enlarged cross-sectional view around the swirl chamber.

【図5】従来の粉体ノズルの粒径分布特性図FIG. 5: Particle size distribution characteristic diagram of a conventional powder nozzle

【図6】本実施例粉体ノズルの粒径分布特性図FIG. 6 is a particle size distribution characteristic diagram of the powder nozzle of this embodiment.

【図7】本実施例ノズルを適用した粒度分布測定装置の
全体構成図
FIG. 7 is an overall configuration diagram of a particle size distribution measuring device to which the nozzle of this embodiment is applied.

【符号の説明】[Explanation of symbols]

10 ノズルボディ 17 粉体供給用のホッパー 22 旋回導孔 24 渦流室 A 粉体噴射口 B 気体噴射口 10 Nozzle body 17 Powder supply hopper 22 Swirling guide hole 24 Vortex chamber A Powder injection port B Gas injection port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気流のエジェクター作用により負圧吸引
された粉体が気流とともに噴射される粉体噴射口と、前
記粉体噴射口を取り組む位置に形成された環状の渦流室
と、渦巻状に渦流室に延びて、渦流室内に高速旋回流を
生成するべく渦流室に高速気流を導入する複数の旋回導
孔と、前記渦流室の前記粉体噴射口に臨む側に粉体噴射
口の前方に向けて開口され、粉体噴射口の前方に焦点を
もつ先細り円錐形の高速渦流を噴射形成する環状の気体
噴射口と、を備えたことを特徴とする粉体ノズル。
1. A powder injection port through which powder that is negatively sucked by the ejector action of the air flow is injected together with the air flow, an annular swirl chamber formed at a position where the powder injection port is engaged, and a spiral shape. A plurality of swirl guide holes that extend into the swirl chamber and introduce a high-speed airflow into the swirl chamber so as to generate a high-speed swirl flow in the swirl chamber; and a front side of the powder jet port on the side of the swirl chamber facing the powder jet port. And a ring-shaped gas injection port for forming a tapered conical high-speed vortex flow having a focal point in front of the powder injection port, and a powder nozzle.
【請求項2】 前記ノズルの前端部には、外側部に外気
吸込孔が形成された筒形状で、気体噴射口から噴射形成
される高速渦流の粉体分散作用を促進する拡散筒が装着
されたことを特徴とする請求項1記載の粉体ノズル。
2. A diffusion cylinder having a cylindrical shape having an outside air suction hole formed on an outer side thereof and accelerating a powder dispersion action of a high-speed vortex formed from a gas injection port is attached to a front end portion of the nozzle. The powder nozzle according to claim 1, wherein
JP9999792A 1992-04-20 1992-04-20 Powder nozzle Pending JPH05293407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9999792A JPH05293407A (en) 1992-04-20 1992-04-20 Powder nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9999792A JPH05293407A (en) 1992-04-20 1992-04-20 Powder nozzle

Publications (1)

Publication Number Publication Date
JPH05293407A true JPH05293407A (en) 1993-11-09

Family

ID=14262261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9999792A Pending JPH05293407A (en) 1992-04-20 1992-04-20 Powder nozzle

Country Status (1)

Country Link
JP (1) JPH05293407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984001270A1 (en) * 1982-10-01 1984-04-12 Meiji Milk Prod Co Ltd Process for producing w/o/w oil-and-fat composition for food use
JP2003181330A (en) * 2001-12-13 2003-07-02 Fujimori Gijutsu Kenkyusho:Kk Nozzle for generating fine liquid particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984001270A1 (en) * 1982-10-01 1984-04-12 Meiji Milk Prod Co Ltd Process for producing w/o/w oil-and-fat composition for food use
JP2003181330A (en) * 2001-12-13 2003-07-02 Fujimori Gijutsu Kenkyusho:Kk Nozzle for generating fine liquid particles

Similar Documents

Publication Publication Date Title
JP2693402B2 (en) Nozzle device for paint spray gun
US5911851A (en) Atomizing nozzle and filter and spray generating device
US5088648A (en) Nozzle head for a paint spray gun
US20030075623A1 (en) Atomising nozzel and filter and spray generating device
US4408719A (en) Sonic liquid atomizer
US4116387A (en) Mist generator
US3790086A (en) Atomizing nozzle
US5232164A (en) Precisely adjustable atomizer
US4595143A (en) Air swirl nozzle
JP2003175344A (en) Nozzle and method for injecting fluid to inner peripheral surface of duct with the nozzle
US3401883A (en) Spray pistol
CA1064208A (en) Apparatus for removing dust having device for producing air curtain
JP2015524745A (en) Air-assisted full cone spray nozzle assembly
JP2001169997A (en) Atomizer for endoscope
JPH11342353A (en) Air spray gun coater
JPH05293407A (en) Powder nozzle
US4531677A (en) Atomizer
US2566788A (en) Air assisted fuel nozzle
CA1085148A (en) Yarn texturing set
JPH0694218A (en) Fuel injection valve
JPS62118995A (en) High-output beam cutter
JPH0742605Y2 (en) Blast nozzle
JPH0737728Y2 (en) Spray gun with internal mixing and atomization
JP2000246153A (en) Powder atomizing device
JPS59139958A (en) Atomizer jointly using pressurized gas and liquid