JP3980333B2 - Method for dividing ceramic cylindrical body - Google Patents

Method for dividing ceramic cylindrical body Download PDF

Info

Publication number
JP3980333B2
JP3980333B2 JP2001357034A JP2001357034A JP3980333B2 JP 3980333 B2 JP3980333 B2 JP 3980333B2 JP 2001357034 A JP2001357034 A JP 2001357034A JP 2001357034 A JP2001357034 A JP 2001357034A JP 3980333 B2 JP3980333 B2 JP 3980333B2
Authority
JP
Japan
Prior art keywords
cylindrical body
notch
divided
division
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001357034A
Other languages
Japanese (ja)
Other versions
JP2003160349A (en
Inventor
本 純 橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2001357034A priority Critical patent/JP3980333B2/en
Publication of JP2003160349A publication Critical patent/JP2003160349A/en
Application granted granted Critical
Publication of JP3980333B2 publication Critical patent/JP3980333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックス製の円筒体の分割方法に関する。
【0002】
【従来の技術】
例えば、シャフトのカップリング等に用いるスリーブ状のケーシングにはセラミックス製の円筒体が用いられている。かかるスリーブ状の円筒体は、軸線方向(縦方向)に2分割し、これらをシャフトに組み付けて両者を接合すると修理や保守が容易となる。
【0003】
しかしながら、円筒体を例えば鋸で軸線方向に切断すると、その鋸の刃厚分が除去されるため円筒体の製作時と切断した後の接合時とは、寸法、特に内径の寸法が異なってしまう。
【0004】
勿論、切断された寸法を勘案して円筒体を作ることは可能であるが、切断時の誤差が多く、正確なスリーブとして使用するには不適である。
【0005】
なお、特公昭58−55388号公報には、メカニカルシールの密封摺動環の製造に関する技術が開示されている。この技術は、円筒体の内側に熱膨張係数の大きな治具を挿入し、その治具を加熱膨張させて円筒体を分割する、あるいは円筒体の内側空間部を半径方向外方に加圧して円筒体を分割するものであり、どちらも、円筒体の内側全面に半径方向外方に荷重を負荷し、円周方向に引張応力を生じさせて分割するものである。前者では円筒体の内径に適する治具を必要とし、また後者では加圧のための圧力漏れを防止する必要がある。このため各部の精度が重要となり容易に円筒体を分割することはできない。
【0006】
また、特公昭39−16854号公報には、直径方向に伸びる密封面を有する2本のシールリングがそれぞれハウジングと軸とに密封面を対向して支持され、それらのシールリングはそれぞれ円弧状に分割されてその分割部を互いに接近させて設けられている密封装置についての技術が開示されている。
しかし、この技術に示された分割は円筒体の長さに依存し、長い円筒体を分割できるものではない。
【0007】
【発明が解決しようとする課題】
したがって、本発明の目的は、セラミックス製の円筒体を軸線方向に沿って容易に分割し、分割後に接合しても実質的に寸法に差異を生じることのないセラミックス製の円筒体の分割方法を提供することである。
【0008】
【知見】
本発明者は、種々の研究の結果、円筒体の軸線方向に切欠き部を形成し、そして直径方向に静荷重すなわち圧縮力を負荷すると、円筒体は切欠き部に沿って分割切断され、しかも接合面を加工しなければ、密着した状態で両者を接合できることを見出した。
【0009】
【課題を解決するための手段】
本発明のセラミックス製の円筒体の分割方法によれば、セラミックス製の円筒体を準備し、そのセラミックス製の円筒体の内表面の少なくとも2箇所に軸線方向に延びる切欠き部を形成し、次いでセラミックス製の円筒体の外表面に直径方向の圧縮荷重を負荷し、以ってセラミックス製の円筒体を切欠き部に沿って分割するようになっている。
【0010】
セラミックス製の円筒体の直径方向に圧縮荷重を負荷すると、円筒体の各断面には曲げ応力が生じ、中でも図1に示すように、鉛直直径方向の2点に圧縮荷重Wを負荷すると、円筒体1の荷重負荷方向の内表面Aとその直角方向の外表面Bの位置にそれぞれ最大引張応力が発生する。一方、セラミックスの引張強さは圧縮強さに比べて小さいという特徴がある。本発明の分割方法は、円筒体に誘起する引張応力とセラミックスの引張破壊時に発生する亀裂を有効に利用し、一度の圧縮工程で円筒体を縦断面で分割するものである。
【0011】
すなわち、円筒体の内表面または外表面の希望する分割位置に、例えばガラス切りやダイヤモンドホイールなどの工具で切欠き部を形成する。次に切欠き部に最大引張応力が誘起するように円筒体を配設して圧縮荷重を負荷すれば、円筒体の切欠き部に誘起する応力が引張強さに達したとき、円筒体の切欠き部から亀裂が発生する。
この切欠き部から発生する亀裂を円筒体の分割に利用し、縦断面において2点に圧縮荷重を負荷すると円筒体を2等分割することができ、また、切欠き部を設ける位置を選択することにより4等分割、あるいは1/4分割を行うことができる。
【0012】
また、本発明によれば、切欠き部の位置を適切に選択し、縦断面における3点に直径方向の圧縮荷重を負荷することで3等分割やあるいは任意の角度での分割(3点圧縮分割)を行うこともできる。上記縦断面における直径方向の圧縮荷重は、円筒体を所定の荷重点で接するV字形状の溝に挿入して付加するようにしてもよい。
【0013】
本発明の実施に際して、切欠き部は円筒体の軸線方向の全長に亘って設ける必要はなく、また、切欠き部の断面形状は、通常V字状であるが、これに限定されるものではない。この他、円筒体に予じめV字状のような形状の溝を成形しておいた切欠き部でもよい。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
図2において、セラミックス製の円筒体1を準備し、例えばガラス切りのような工具Tを用いて角度的に180度離れている円筒体1の内表面S1の位置A、Aに軸線方向に延びる直線状の切欠き部N11、N12を形成する。
【0015】
次いで、図3および図4に示すように切欠き部N11、N12を形成した外径D0、内径D1、長さLのセラミックス製の円筒体1を加圧装置、例えばプレスの下板2上に置き、図示しないラムで作動する上板3により全体的に均一な圧縮荷重Wを負荷する。
【0016】
図示のように切欠き部N11、N12の位置に圧縮荷重Wを徐々に増大させると、円筒体1内に圧縮荷重Wに比例した曲げモーメントが発生し、しかも円筒体1の内表面S1に設けた切欠き部N11、N12の所では最大引張応力が発生し、かつ切欠き部N11、N12があるために集中応力が重畳される。
【0017】
そのために、圧縮荷重Wがある値に達すると、切欠き部N11、N12に亀裂が発生し、その亀裂が半径方向外方に伝播し、図5に示すように円筒体1は半部1aと1bとに分割される。その際、円筒体1は弾性変形するため、半部1a、1bに分割されてもその円筒状の形状は保たれている。
【0018】
したがって、半部1a、1bは、接合することによって円筒体1と同じ寸法を再現できる。
【0019】
また、別の実施形態を図6に示す。図示のように円筒体1Aの外表面S0に入れた切欠き部N01、N02が引張応力の最大値となるようにするため、円筒体1Aを配置して圧縮荷重Wを負荷する。このとき切欠き部N01、N02に誘起する応力がセラミックスの引張強さに達すれば、切欠き部から亀裂が円筒体1Aの内表面S1に向かって伝播し、一度の圧縮工程により円筒体1Aの水平直径方向で円筒体1Aは2等分割される。
【0020】
円筒体の4等分割の場合は、図7に示すように円筒体1Bの外表面S0と内表面S1とにそれぞれ設けた切欠き部N01、N02およびN11、N12が引張応力の最大値となるようにするため円筒体1Bを配置して圧縮荷重Wを負荷する。このとき各切欠き部N01、N02、N11、N12に誘起する応力がセラミックスの引張強さに達すれば、切欠き部から亀裂が円筒体の外表面S0ならびに内表面S1に向かって伝播し、一度の圧縮工程により円筒体1Bは4等分割される。
【0021】
円筒体の1/4分割の場合は、図8に示すように円筒体1Cの外表面S0と内表面S1とに入れた切欠き部N01とN11とが引張応力の最大値となるようにするため円筒体1Cを配置して圧縮荷重Wを負荷する。このとき切欠き部N01とN11とに誘起する応力がセラミックスの引張強さに達すれば、各切欠き部から亀裂が伝播し、一度の圧縮工程により円筒体1Cは1/4分割される。
【0022】
以上、円筒体の鉛直直径方向の2点に圧縮荷重Wを負荷して円筒体を縦断面で分割した実施形態について説明した。この実施形態によると切欠き部を円筒体の外表面S0に設けた場合と内表面S1に設けた場合とでは内表面S1に設けた方が分割時の圧縮荷重を小さくすることができる。 したがって切欠き部を円筒体の内表面S1に設けた場合に注目し、図9〜11に示すように円筒体の3点に圧縮荷重W(W、W′)を負荷し、円筒体の縦断面での3等分割あるいは任意角度での分割について次に説明する。
【0023】
図9に示すように円筒体の3等分割の場合は、円筒体1Dを一度の圧縮工程で3等分割するため円筒体1Dの内表面S1に3箇所の切欠き部N11〜N13を設け、各切欠き部N11〜N13に最大引張応力が誘起するように円筒体1Dを配置し、圧縮荷重Wを静的に負荷する。このとき圧縮荷重Wがある値になると各切欠き部N11〜N13から亀裂が伝播し、円筒体1Dは一度の圧縮工程で3等分割される。
【0024】
また、円筒体の任意の角度での分割の場合は、円筒体1Eを任意の角度θにおける縦断面で分割するため、円筒体1Eの内表面S1に切欠き部N11と、それとなす角θの位置に切欠き部N12を設け、図10に示すように円筒体1Eの3点に圧縮荷重Wとwとを負荷する。このときの圧縮荷重Wとwとの値は角度αに依存するが、いまα<60°とすればW>wとなる。この状態で圧縮荷重Wを負荷すると切欠き部N11で最初に第1分割が起こる。次に圧縮荷重Wを除荷して、再度、図11に示すように切欠き部N12で分割するために円筒体1Eを配置し直し、引き続き第2分割のため圧縮荷重Wを負荷する。このようにするとある値の圧縮荷重Wで切欠き部N12から亀裂が伝播し、希望した任意の角度θで分割することができる。なお、この場合には2度の圧縮工程となる。
【0025】
【実験例1】
以下、上記実施形態に対する各実験例を説明する。
試験片としてはオールドセラミックスであるガラス《パイレックス(登録商標)ガラス》を選び、円筒体に切欠き部をその円筒体の内表面または外表面に設けて圧縮荷重を静的に負荷し、円筒体を縦断面で上記種々の分割方法により一度の圧縮工程で2分割した。
図4において、円筒体1の寸法は外径D0=60mm、内径D1=51mm、軸長L=30mmである。分割の位置を指定するために切欠き部を設ける工具は市販のダイヤモンドペンであり、そのときの切欠き部の幅は4μmで、その深さは281μmであった。以下、準備した円筒体1による分割の実験例をそれぞれ説明する。
【0026】
2等分割の実験例としては、円筒体1の切欠き部N11、N12を図3に示すように円筒体1の内表面S1に設けて圧縮荷重Wを円筒体1に負荷した。円筒体1は圧縮荷重W=20kgfでピシッという微弱音をほぼ同じ圧縮荷重で2度発して切欠き部N11、N12を通る縦断面で2等分割された。このときの分割面はいずれも平滑であった。
【0027】
また、図6に示すように、円筒体1Aの切欠き部N01、N02を円筒体1Aの外表面S0に設けて圧縮荷重Wを円筒体1Aに負荷した。円筒体1Aは圧縮荷重W=85kgfでピシッという微弱音を2度発して切欠き部N01、N02を通る縦断面で2等分割された。このときの分割面も平滑であった。
【0028】
分割時の圧縮荷重Wに注目してみると、切欠き部N01、N02を円筒体の外表面S0に設けた場合の方が、切欠き部N11、N12を円筒体の内表面S1に設けた場合のものよりも4倍ほど高く与えられた。したがって円筒体を分割する場合には、切欠き部を内表面S1に設けた図3の場合の方が分割時の圧縮荷重Wを小さくすることができる。
【0029】
また、4等分割の実験例としては、円筒体1Bの外表面S0と内表面S1とに切欠き部N01、N02およびN11、N12を図7に示すように設け、さらに各切欠き部が引張応力の最大値となるようにするため円筒体1Bを配置して圧縮荷重Wを負荷した。円筒体1Bは圧縮荷重W=16kgfで円筒体1Bの内表面S1に2つ設けた切欠き部N11、N12で分割がほぼ同時に起こり円筒体1Bが2等分された。このとき円筒体1Bは切欠き部N11、N12で最初に分割されても円筒体1Bはその形状を保つ。したがってこの状態で圧縮荷重Wをさらに負荷し、圧縮荷重W=17kgfで円筒体1Bの外表面S0に2箇所設けた切欠き部N01、N02で分割が引き続き起こり、円筒体1Bは希望する縦断面で4等分割された。
【0030】
そして、1/4分割の実験例としては、円筒体1Cの外表面S0と内表面S1とに切欠きN01部とN11部とを図8に示すように設け、さらに各切欠き部が引張応力の最大値となるようにするため円筒体1Cを配置して圧縮荷重Wを負荷した。円筒体1Cは圧縮荷重W=18kgfで円筒体1Cの内表面S1に設けた切欠き部N11で亀裂が最初に伝播し、さらに圧縮荷重Wを負荷すると圧縮荷重W=41kgfで引き続き円筒体1Cの外表面S0に設けた切欠き部N01で亀裂が伝播し、円筒体1Cは希望したように1/4分割された。
【0031】
【実験例2】
次に、3点圧縮分割の実験例を説明する。
準備した試験片は前記実験例1の場合と同様にガラスからなる円筒体で、その寸法は外径D0=60mm、内径D1=51mm、軸長L=30mmである。円筒体の切欠き部は円筒体の内表面に設け、圧縮荷重は静的に負荷した。切欠きを設ける工具も前記実験例1と同様に市販のダイヤモンドペンである。
【0032】
3等分割の実験例としては、図9に示すように円筒体1Dを3等分割するため円筒体1Dの内表面S1に切欠き部N11〜N13を設け、円筒体1Dに圧縮荷重Wを負荷した。円筒体1Dは圧縮荷重W=27kgfで各切欠き部N11〜N13から亀裂が伝播して3等分割された。得られた各分割面はいずれも良好であった。
【0033】
また、種々の角度での分割の実験例としては、円筒体1Eの種々の角度θ=30°、60°、90°、120°、150°で分割するため円筒体1Eの内表面S1に切欠き部N11、N12を設け、図10に示すように円筒体1Eに圧縮荷重Wを負荷した。このときの角度αの値はα=45°とした。最初、圧縮荷重W1で切欠き部N11から第1分割による亀裂が伝播した。次に圧縮荷重Wを除荷して、再度、図11に示すように円筒体1Eを配置し直し、引き続き切欠き部N12で第2分割のために圧縮荷重Wを負荷した。分割は圧縮荷重W2で起こった。
【0034】
これらの切欠き部N11とN12における分割時の圧縮荷重W1とW2とはそれぞれ【表1】に示す値であった。なお、この場合の分割は2度の圧縮工程が必要であるが、希望した角度θで分割することができたばかりでなく、得られた分割面も良好であった。

Figure 0003980333
【0035】
【発明の効果】
以上の通り本発明によれば、以下の作用効果を奏する。
(1) 脆性材料の破壊作用を利用しているので、切削屑や熱の発生がなく、そのため環境に与える影響が少なく、きれいな職場環境を維持できる。
(2) また、荷重が負荷されている円筒体は分割まで弾性変形するので、分割に必要なエネルギーは僅かであり、省エネルギー的な分割方法である。
(3) しかも、分割後の接合が確実で寸法上の変化がないので、軸スリーブ等の分割に有効である。
(4) 切欠き部や荷重を負荷する位置を選択することで、縦断面における2等分割、4等分割、1/4分割、あるいは、3等分割、任意の角度での分割を行うことができる。
(5) オールドセラミックスのガラスを含めてニューセラミックスの分割に適用でき、岩石などのような脆性材料も分割可能である。
(6) またストレート状の円筒体のみならずメカニカルシールの密封摺動環のような異形環や異形円筒体に対しても適用できる。
【図面の簡単な説明】
【図1】最大引張応力の発生位置を示す正面図。
【図2】本発明を実施するために円筒体に切欠き部を形成する一実施形態を示す斜視図。
【図3】切欠き部を形成した円筒体に圧縮荷重を負荷する状態を示す正面図。
【図4】図3の側断面図。
【図5】分割された円筒体を示す斜視図。
【図6】外表面に切欠き部を設けて2等分割する場合を説明する正面図。
【図7】4等分割する場合を説明する正面図。
【図8】1/4分割する場合を説明する正面図。
【図9】3等分割する場合を説明する正面図。
【図10】任意角度での分割の第1分割工程を説明する正面図。
【図11】図10の第2分割工程を説明する正面図。
【符号の説明】
1、1A〜1E・・・円筒体
N01〜・・・(円筒体の外表面の)切欠き部
N11〜・・・(円筒体の内表面の)切欠き部
2・・・下板
3・・・上板
S0・・・円筒体の外表面
S1・・・円筒体の内表面
W、w、w′・・・荷重[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for dividing a ceramic cylindrical body.
[0002]
[Prior art]
For example, a ceramic cylindrical body is used for a sleeve-like casing used for shaft coupling or the like. Such a sleeve-like cylindrical body is divided into two in the axial direction (longitudinal direction), and when these are assembled to a shaft and joined together, repair and maintenance become easy.
[0003]
However, when the cylindrical body is cut in the axial direction with a saw, for example, the thickness of the saw blade is removed, so that the dimensions, particularly the inner diameter, differ between the production of the cylinder and the joining after cutting. .
[0004]
Of course, it is possible to make a cylindrical body in consideration of the cut dimensions, but there are many errors at the time of cutting, and it is unsuitable for use as an accurate sleeve.
[0005]
Japanese Patent Publication No. 58-55388 discloses a technique relating to the manufacture of a sealed sliding ring of a mechanical seal. In this technology, a jig with a large thermal expansion coefficient is inserted inside the cylinder, and the jig is heated and expanded to divide the cylinder, or the inner space of the cylinder is pressed radially outward. In both cases, the cylindrical body is divided, and both are divided by applying a load radially outward to the entire inner surface of the cylindrical body and generating a tensile stress in the circumferential direction. In the former, a jig suitable for the inner diameter of the cylindrical body is required, and in the latter, it is necessary to prevent pressure leakage due to pressurization. For this reason, the precision of each part becomes important, and the cylindrical body cannot be divided easily.
[0006]
In Japanese Patent Publication No. 39-16854, two seal rings each having a sealing surface extending in the diametrical direction are respectively supported by a housing and a shaft so that the sealing surfaces are opposed to each other. A technique for a sealing device that is divided and provided with the divided portions close to each other is disclosed.
However, the division shown in this technique depends on the length of the cylinder, and a long cylinder cannot be divided.
[0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for dividing a ceramic cylinder that easily divides a ceramic cylinder along the axial direction and that does not cause a substantial difference in dimensions even after joining after division. Is to provide.
[0008]
[Knowledge]
As a result of various studies, the inventor forms a notch in the axial direction of the cylindrical body, and when a static load, that is, a compressive force is applied in the diametrical direction, the cylindrical body is divided and cut along the notch, Moreover, it has been found that if the joint surface is not processed, both can be joined in close contact.
[0009]
[Means for Solving the Problems]
According to the method for dividing a ceramic cylindrical body of the present invention, a ceramic cylindrical body is prepared, and at least two locations on the inner surface of the ceramic cylindrical body are formed with notches extending in the axial direction, A compressive load in the diametrical direction is applied to the outer surface of the ceramic cylinder, so that the ceramic cylinder is divided along the notch.
[0010]
When a compressive load is applied in the diameter direction of a ceramic cylinder, bending stress is generated in each cross section of the cylinder, and as shown in FIG. 1, when a compressive load W is applied to two points in the vertical diameter direction, the cylinder Maximum tensile stresses are generated at the positions of the inner surface A in the load direction of the body 1 and the outer surface B in the direction perpendicular thereto. On the other hand, the tensile strength of ceramics is small compared to the compressive strength. The dividing method of the present invention effectively utilizes the tensile stress induced in the cylindrical body and the cracks generated at the time of tensile failure of the ceramic, and divides the cylindrical body in a longitudinal section in a single compression step.
[0011]
That is, a notch is formed at a desired division position on the inner surface or outer surface of the cylindrical body with a tool such as a glass cutter or a diamond wheel. Next, if a cylindrical body is arranged so that the maximum tensile stress is induced in the notch and a compressive load is applied, when the stress induced in the notch of the cylinder reaches the tensile strength, A crack occurs from the notch.
The crack generated from the notch is used to divide the cylindrical body. When a compressive load is applied to two points in the longitudinal section, the cylindrical body can be divided into two equal parts, and the position where the notch is provided is selected. By doing so, it is possible to perform a quarter division or a quarter division.
[0012]
In addition, according to the present invention, the position of the notch is appropriately selected, and the compression load in the diametrical direction is applied to the three points in the longitudinal section, thereby dividing into three equal parts or at an arbitrary angle (three-point compression). Division) can also be performed. The compressive load in the diametrical direction in the longitudinal section may be applied by inserting the cylindrical body into a V-shaped groove that contacts at a predetermined load point.
[0013]
In carrying out the present invention, the notch portion does not need to be provided over the entire length of the cylindrical body in the axial direction, and the cross-sectional shape of the notch portion is usually V-shaped, but is not limited thereto. Absent. In addition, a notch part in which a groove having a V-shaped shape is formed in advance in the cylindrical body may be used.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
In FIG. 2, a ceramic cylindrical body 1 is prepared, and extends in the axial direction to positions A and A on the inner surface S1 of the cylindrical body 1 that are angularly separated by 180 degrees using a tool T such as glass cutting. Linear notches N11 and N12 are formed.
[0015]
Next, as shown in FIGS. 3 and 4, the ceramic cylindrical body 1 having the outer diameter D0, the inner diameter D1, and the length L, in which the notches N11 and N12 are formed, is placed on a pressing device, for example, the lower plate 2 of the press. Then, a uniform compression load W is applied as a whole by the upper plate 3 operated by a ram (not shown).
[0016]
As shown in the figure, when the compressive load W is gradually increased at the positions of the notches N11 and N12, a bending moment proportional to the compressive load W is generated in the cylindrical body 1 and provided on the inner surface S1 of the cylindrical body 1. The maximum tensile stress is generated at the notches N11 and N12, and concentrated stress is superimposed because the notches N11 and N12 are present.
[0017]
Therefore, when the compressive load W reaches a certain value, cracks are generated in the notches N11 and N12, and the crack propagates outward in the radial direction. As shown in FIG. 1b. At that time, since the cylindrical body 1 is elastically deformed, the cylindrical shape is maintained even when the cylindrical body 1 is divided into the halves 1a and 1b.
[0018]
Therefore, the half part 1a, 1b can reproduce the same dimension as the cylindrical body 1 by joining.
[0019]
Another embodiment is shown in FIG. As shown in the drawing, the cylindrical body 1A is arranged and a compressive load W is applied so that the notches N01 and N02 in the outer surface S0 of the cylindrical body 1A have the maximum tensile stress. At this time, if the stress induced in the notches N01 and N02 reaches the tensile strength of the ceramic, a crack propagates from the notch toward the inner surface S1 of the cylindrical body 1A, and the cylindrical body 1A has a single compression process. The cylindrical body 1A is divided into two equal parts in the horizontal diameter direction.
[0020]
In the case where the cylindrical body is divided into four equal parts, as shown in FIG. 7, notches N01, N02 and N11, N12 respectively provided on the outer surface S0 and the inner surface S1 of the cylindrical body 1B have the maximum value of tensile stress. In order to do so, the cylindrical body 1B is arranged and a compressive load W is applied. At this time, if the stress induced in each notch N01, N02, N11, N12 reaches the tensile strength of the ceramic, the crack propagates from the notch toward the outer surface S0 and the inner surface S1 of the cylindrical body. The cylindrical body 1B is divided into four equal parts by the compression process.
[0021]
In the case of quarter division of the cylindrical body, as shown in FIG. 8, the notches N01 and N11 in the outer surface S0 and the inner surface S1 of the cylindrical body 1C are set to the maximum value of the tensile stress. Therefore, the cylindrical body 1 </ b> C is arranged to apply the compressive load W. At this time, if the stress induced in the notches N01 and N11 reaches the tensile strength of the ceramic, cracks propagate from each notch, and the cylindrical body 1C is divided into 1/4 by one compression process.
[0022]
The embodiment in which the compression load W is applied to two points in the vertical diameter direction of the cylindrical body and the cylindrical body is divided in the longitudinal section has been described above. According to this embodiment, when the notch is provided on the outer surface S0 of the cylindrical body and when it is provided on the inner surface S1, the compression load at the time of division can be reduced by providing it on the inner surface S1. Therefore, paying attention to the case where the notch is provided on the inner surface S1 of the cylinder, compressive loads W (W, W ') are applied to the three points of the cylinder as shown in FIGS. Next, division into three equal parts on a surface or division at an arbitrary angle will be described.
[0023]
As shown in FIG. 9, when the cylindrical body is divided into three equal parts, in order to divide the cylindrical body 1D into three equal parts in one compression step, three notches N11 to N13 are provided on the inner surface S1 of the cylindrical body 1D. The cylindrical body 1D is disposed so that the maximum tensile stress is induced in each of the notches N11 to N13, and the compressive load W is statically applied. At this time, when the compression load W reaches a certain value, cracks propagate from the notches N11 to N13, and the cylindrical body 1D is divided into three equal parts in one compression process.
[0024]
Further, when the cylindrical body is divided at an arbitrary angle, the cylindrical body 1E is divided by a longitudinal section at an arbitrary angle θ, so that the notch N11 and the angle θ formed therewith are formed on the inner surface S1 of the cylindrical body 1E. A notch N12 is provided at the position, and compressive loads W and w are applied to three points of the cylindrical body 1E as shown in FIG. The values of the compression loads W and w at this time depend on the angle α, but if α <60 °, W> w. When the compression load W is applied in this state, the first division first occurs at the notch N11. Next, the compression load W is unloaded, and the cylindrical body 1E is rearranged again to be divided at the notch portion N12 as shown in FIG. 11, and the compression load W is subsequently applied for the second division. In this way, a crack propagates from the notch N12 with a certain value of the compressive load W, and can be divided at an arbitrary desired angle θ. In this case, the compression process is performed twice.
[0025]
[Experiment 1]
Hereinafter, each experimental example for the above embodiment will be described.
As the test piece, select the glass “Pyrex (registered trademark)” which is an old ceramic, and provide a notch in the cylindrical body on the inner or outer surface of the cylindrical body to statically apply a compressive load. Was divided into two in one compression step by the above-mentioned various dividing methods in a longitudinal section.
In FIG. 4, the dimensions of the cylindrical body 1 are an outer diameter D0 = 60 mm, an inner diameter D1 = 51 mm, and an axial length L = 30 mm. A tool for providing a notch for designating the position of division was a commercially available diamond pen. The notch at that time had a width of 4 μm and a depth of 281 μm. Hereinafter, an experimental example of division using the prepared cylindrical body 1 will be described.
[0026]
As an experimental example of two equal divisions, the notches N11 and N12 of the cylindrical body 1 were provided on the inner surface S1 of the cylindrical body 1 as shown in FIG. The cylindrical body 1 was divided into two equal parts in a longitudinal section passing through the notches N11 and N12 by generating a slight beeping sound twice with substantially the same compression load at a compression load W = 20 kgf. The dividing surfaces at this time were all smooth.
[0027]
Moreover, as shown in FIG. 6, the notches N01 and N02 of the cylindrical body 1A were provided on the outer surface S0 of the cylindrical body 1A to apply a compressive load W to the cylindrical body 1A. The cylindrical body 1A was divided into two equal parts in a longitudinal section passing through the notches N01 and N02 by emitting a weak beep twice with a compression load W = 85 kgf. The dividing surface at this time was also smooth.
[0028]
When attention is paid to the compression load W at the time of division, the notches N11 and N12 are provided on the inner surface S1 of the cylindrical body when the notches N01 and N02 are provided on the outer surface S0 of the cylindrical body. It was given 4 times higher than the case. Therefore, when the cylindrical body is divided, the compression load W at the time of division can be reduced in the case of FIG. 3 in which the notch is provided on the inner surface S1.
[0029]
In addition, as an experimental example of four equal divisions, notches N01, N02 and N11, N12 are provided on the outer surface S0 and the inner surface S1 of the cylindrical body 1B as shown in FIG. 7, and each notch is tensioned. In order to obtain the maximum value of the stress, the cylindrical body 1B was arranged and a compressive load W was applied. In the cylindrical body 1B, with the compressive load W = 16 kgf, splitting occurred almost simultaneously at two notches N11 and N12 provided on the inner surface S1 of the cylindrical body 1B, and the cylindrical body 1B was divided into two equal parts. At this time, the cylindrical body 1B maintains its shape even if the cylindrical body 1B is first divided at the notches N11 and N12. Therefore, in this state, the compression load W is further applied, and the division continues at the notches N01 and N02 provided at two locations on the outer surface S0 of the cylinder 1B with the compression load W = 17 kgf. It was divided into 4 equal parts.
[0030]
As an experimental example of 1/4 division, notches N01 and N11 are provided on the outer surface S0 and the inner surface S1 of the cylindrical body 1C as shown in FIG. 8, and each notch has a tensile stress. The cylindrical body 1C was placed and a compressive load W was applied so as to obtain the maximum value. In the cylindrical body 1C, a crack first propagates at a notch N11 provided on the inner surface S1 of the cylindrical body 1C with a compressive load W = 18 kgf, and when the compressive load W is further applied, the cylindrical body 1C continues with the compressive load W = 41 kgf. Cracks propagated through the notch N01 provided on the outer surface S0, and the cylindrical body 1C was divided into quarters as desired.
[0031]
[Experimental example 2]
Next, an experimental example of three-point compression division will be described.
The prepared test piece is a cylindrical body made of glass as in the case of Experimental Example 1, and the dimensions are an outer diameter D0 = 60 mm, an inner diameter D1 = 51 mm, and an axial length L = 30 mm. The notch of the cylindrical body was provided on the inner surface of the cylindrical body, and the compressive load was statically applied. A tool for providing a notch is also a commercially available diamond pen as in the first experimental example.
[0032]
As an experimental example of three equal divisions, in order to divide the cylindrical body 1D into three equal divisions as shown in FIG. 9, notches N11 to N13 are provided on the inner surface S1 of the cylindrical body 1D, and a compression load W is applied to the cylindrical body 1D. did. Cylindrical body 1D was divided into three equal parts with cracks propagating from notches N11 to N13 with compression load W = 27 kgf. Each of the obtained divided surfaces was good.
[0033]
Further, as an experimental example of division at various angles, the inner surface S1 of the cylindrical body 1E is cut to be divided at various angles θ = 30 °, 60 °, 90 °, 120 °, and 150 ° of the cylindrical body 1E. Notches N11 and N12 were provided, and a compressive load W was applied to the cylindrical body 1E as shown in FIG. The value of angle α at this time was α = 45 °. Initially, the crack by the 1st division propagated from notch N11 with compression load W1. Next, the compressive load W was unloaded, and the cylindrical body 1E was again arranged as shown in FIG. 11, and the compressive load W was subsequently applied for the second division at the notch N12. Splitting occurred with compressive load W2.
[0034]
The compression loads W1 and W2 at the time of division at the notches N11 and N12 were the values shown in Table 1, respectively. In addition, although the division | segmentation in this case requires the compression process of 2 times, it was not only able to divide | segment by the desired angle (theta), but the obtained division surface was also favorable.
Figure 0003980333
[0035]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
(1) Since the destructive action of brittle materials is used, there is no generation of cutting waste and heat, so there is little impact on the environment and a clean work environment can be maintained.
(2) Moreover, since the cylindrical body to which the load is applied is elastically deformed until the division, the energy required for the division is small, and this is an energy-saving division method.
(3) Moreover, since the joining after the division is reliable and there is no dimensional change, it is effective for the division of the shaft sleeve and the like.
(4) By selecting a notch and a position where a load is applied, the vertical section can be divided into two equal parts, four parts, 1/4 parts, or three parts, or an arbitrary angle. it can.
(5) It can be applied to the division of new ceramics including glass of old ceramics, and brittle materials such as rocks can also be divided.
(6) Further, the present invention can be applied not only to a straight cylindrical body but also to a deformed ring or a deformed cylindrical body such as a sealed sliding ring of a mechanical seal.
[Brief description of the drawings]
FIG. 1 is a front view showing a position where a maximum tensile stress is generated.
FIG. 2 is a perspective view showing an embodiment in which a notch is formed in a cylindrical body in order to carry out the present invention.
FIG. 3 is a front view showing a state in which a compressive load is applied to a cylindrical body in which a notch is formed.
4 is a side sectional view of FIG. 3;
FIG. 5 is a perspective view showing a divided cylindrical body.
FIG. 6 is a front view for explaining a case where a notch portion is provided on the outer surface and divided into two equal parts.
FIG. 7 is a front view for explaining a case where four equal divisions are performed.
FIG. 8 is a front view for explaining a case of 1/4 division.
FIG. 9 is a front view for explaining the case of three equal divisions.
FIG. 10 is a front view illustrating a first division process of division at an arbitrary angle.
FIG. 11 is a front view for explaining the second dividing step in FIG. 10;
[Explanation of symbols]
1, 1A to 1E... Cylindrical body N01 to... Notched portion N11 to... (Noted portion of inner surface of cylindrical body) 2. ..Upper plate S0 ... Outer surface S1 of cylindrical body ... Inner surface W, w, w '... load of cylindrical body

Claims (3)

セラミックス製の円筒体を準備し、そのセラミックス製の円筒体の内表面の少なくとも2箇所に軸線方向に延びる切欠き部を形成し、次いでセラミックス製の円筒体の外表面に直径方向の圧縮荷重を負荷し、以ってセラミックス製の円筒体を切欠き部に沿って分割することを特徴とするセラミックス製の円筒体の分割方法。  Prepare a ceramic cylinder, form notches extending in the axial direction at at least two locations on the inner surface of the ceramic cylinder, and then apply a compressive load in the diametrical direction to the outer surface of the ceramic cylinder. A method for dividing a ceramic cylinder, comprising: applying a load, and dividing the ceramic cylinder along the notch. 前記切欠き部は圧縮荷重による円筒体の弾性変形の範囲内であって曲げモーメントによる引張応力によって亀裂する寸法である請求項1記載のセラミックス製の円筒体の分割方法。  2. The method of dividing a ceramic cylindrical body according to claim 1, wherein the notch has a size within a range of elastic deformation of the cylindrical body due to a compressive load and is cracked by a tensile stress due to a bending moment. 前記圧縮荷重として円筒体外表面に3方向から直径方向の圧縮荷重を負荷する請求項1または2記載のセラミックス製の円筒体の分割方法。  The method for dividing a ceramic cylindrical body according to claim 1 or 2, wherein a compressive load in a diametrical direction is applied to the outer surface of the cylindrical body as the compressive load.
JP2001357034A 2001-11-22 2001-11-22 Method for dividing ceramic cylindrical body Expired - Fee Related JP3980333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357034A JP3980333B2 (en) 2001-11-22 2001-11-22 Method for dividing ceramic cylindrical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357034A JP3980333B2 (en) 2001-11-22 2001-11-22 Method for dividing ceramic cylindrical body

Publications (2)

Publication Number Publication Date
JP2003160349A JP2003160349A (en) 2003-06-03
JP3980333B2 true JP3980333B2 (en) 2007-09-26

Family

ID=19168438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357034A Expired - Fee Related JP3980333B2 (en) 2001-11-22 2001-11-22 Method for dividing ceramic cylindrical body

Country Status (1)

Country Link
JP (1) JP3980333B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576621B2 (en) * 2003-09-03 2010-11-10 学校法人日本大学 Method for dividing ceramic cylindrical body
JP4728413B2 (en) * 2009-03-23 2011-07-20 日本ピラー工業株式会社 Method for dividing seal ring for mechanical seal
JP5371689B2 (en) * 2009-10-23 2013-12-18 Ntn株式会社 Outer ring manufacturing method, outer ring manufacturing apparatus, split outer ring member, roller bearing, and rotating shaft support structure
JP7034049B2 (en) * 2018-10-16 2022-03-11 株式会社酉島製作所 Manufacturing method of split type sliding ring and ring body for split type sliding ring

Also Published As

Publication number Publication date
JP2003160349A (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP5910773B2 (en) Cutting method of glass plate
JP3980333B2 (en) Method for dividing ceramic cylindrical body
EP0141336A1 (en) A pipe connection method and connecting structure
JP4576621B2 (en) Method for dividing ceramic cylindrical body
JP2008281415A (en) Measure for rebar gas pressure weld part
CN110280782B (en) Machining method of thin-wall part
JP5910039B2 (en) Test piece for welding evaluation test and welding evaluation test method
KR20090083050A (en) Long neck flange forming method using compression and expansion process
JP2015205329A (en) Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool
Lachaud et al. Delamination in mode I and II of carbon fibre composite materials: fibre orientation influence
JPH048818A (en) Ridge lock method and device thereof, and ridge lock muffler and manufacture thereof
JP2019174208A (en) Test piece, and manufacturing method and test method of test piece
JP5602447B2 (en) Shaft enlargement processing method for workpiece
JPS6483388A (en) Production of intermediate member for dissimilar metal weld joint
JP2009133496A (en) Method for separating seal ring for mechanical seal
JP2000205347A (en) Link plate for silent chain
JP2002323439A (en) Method of forming stress corrosion cracks in welded joints
CN114599908B (en) Method for manufacturing a pipe assembly and a pipe assembly
JP5061770B2 (en) Manufacturing method of pipe joint by pipe integrated processing
Zhang Stress intensity factors for spot welds joining sheets of unequal thickness
CN113165201B (en) How to break metal parts and how to break connecting rods
JPS6146338A (en) Segment assembly type press die
TW201817533A (en) Composite manufacturing method with extruding and turning processes
JP6992631B2 (en) Shearing method and shearing equipment
JP2003042361A (en) Structure of housing type pipe joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees