JP3979723B2 - Underfloor humidity control structure and underfloor humidity control method - Google Patents

Underfloor humidity control structure and underfloor humidity control method Download PDF

Info

Publication number
JP3979723B2
JP3979723B2 JP14837298A JP14837298A JP3979723B2 JP 3979723 B2 JP3979723 B2 JP 3979723B2 JP 14837298 A JP14837298 A JP 14837298A JP 14837298 A JP14837298 A JP 14837298A JP 3979723 B2 JP3979723 B2 JP 3979723B2
Authority
JP
Japan
Prior art keywords
humidity control
underfloor
layer
lime
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14837298A
Other languages
Japanese (ja)
Other versions
JPH11324152A (en
Inventor
清光 江藤
Original Assignee
クリオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリオン株式会社 filed Critical クリオン株式会社
Priority to JP14837298A priority Critical patent/JP3979723B2/en
Publication of JPH11324152A publication Critical patent/JPH11324152A/en
Application granted granted Critical
Publication of JP3979723B2 publication Critical patent/JP3979723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、床下用調湿構造体及び床下調湿方法に関するものである。より詳しくは、調湿材層または調湿部材が床下地盤の水分による影響をあまり受けないようにし、そのため調湿作用が低下することのない床下用調湿構造体及び床下調湿方法に関するものである。
【0002】
【従来の技術】
日本では古くから湿地に建てられる住居が多く、床下から住居内に水蒸気が侵入することによる被害が大きかった。また、最近においても、床下は、周囲をコンクリート側壁などで覆って、一辺が肩幅程度の矩形の出入口を空けただけのものが多く、風通しが不良なために多湿になりがちで、木材腐朽菌の繁殖や湿気を好む白アリによる被害の原因となっている。これに対し図5のように、素灰、天然軽石などの調湿材3を床下地盤1に直接撒いて、床下空間4の湿度を低減する方法が古くから行われていた。また、最近ではシリカゲル、ゼオライト、セピオライト、ケイ酸カルシウムなどの高性能な調湿材も使用されている。
【0003】
しかし、床下地盤1は、コンクリート等の人工部材で覆われていない自然の土や砂、粘土、ローム層等がむき出しになっており、水分を含有していることが多い。このため、前記調湿材3は、当初は湿気を吸って床下空間4の湿度を低維持できるものの、その床下地盤1から生じる水分を優先的に吸うために、時間の経過に伴って吸湿能力が次第に低下して行き、ついには飽和状態になってしまうため、床下を長期に低湿度に維持することは困難であった。
【0004】
そこで、床下地盤の水分に影響されずに床下を長期に低湿度に維持することを目的として、透湿性を有する面部と、不透湿性を有する面部とを備えたマット状袋に、調湿材が充填されてなる調湿部材が過去に発明されている(特開平3−21321号公報)。
【0005】
図6のように、このマット状調湿部材5は、床下地盤1の上に直接敷設するものであるが、床下地盤1の水分に影響されることなく、床下空間4の湿気だけを吸収するため、長期に亘り床下空間4の湿気を低く維持することができる。また、この調湿部材5を床下地盤1の全面に敷き詰めることにより、床下地盤1の水分のほとんどを床下空間4に侵入しないように遮断することができることも、長期に亘り床下空間4の湿気を低く維持することができる要因となっている。
【0006】
しかし、この調湿部材5は、不透湿性を有する面部をその調湿部材5の下側にして敷き詰めるため、床下地盤1から発生した水蒸気が、床下地盤1とこの不透湿性を有する面部との間に閉じ込められ、この間が高湿度な状態となってしまう。このため、やがて不透湿性を有する面部の下側には黴が発生し、さらに、湿気を好む有害菌や有害虫を発生させる場合があり、初期の目的を達したとは言えない状態になってしまうことがあった。
【0007】
【発明が解決しようとする課題】
したがって、本発明は、床下において以上のような木材腐朽菌や白アリ、黴、及び有害菌、有害虫が発生することを十分に防止し、しかも調湿材の調湿性能を十分に発揮させた床下用調湿構造体及び床下調湿方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の床下用調湿構造体は、床下地盤の上に直接形成されている床下用調湿構造体であって、石灰層とその上に施設された調湿材層または調湿部材とから構成されていることを特徴とする。
また、本発明の床下調湿方法は、石灰層とその上に施設された調湿材層または調湿部材とからなる床下用調湿構造体を床下地盤上に直接形成することを特徴とする。
【0009】
床下地盤の上に石灰層を形成すると、この石灰層は地盤の湿気を吸収する。その結果、地盤の表面はこの水和した石灰層で遮断される。さらにこの石灰層は、空気中の炭酸ガスを吸収固化することによって、その遮断性能が向上する。また、この石灰層と炭酸ガスによる反応は、石灰層の表面積の拡大に寄与し、石灰層自体の調湿機能の向上につながる。
【0010】
この水和した石灰による湿気の遮断層は、いわば、漆喰様の適度の通気性と調湿性を持った遮断層といえる。そして、このようにしてできた石灰層は強アルカリ性であることも加わって、木材腐朽菌や白アリ、黴、及び有害菌、有害虫の発生を防止する。
その上、前記湿気の吸収により石灰層は、水和固化して密な層を形成する。本発明において、さらに層を補強するために、石灰を施設する前後にラス網や寒冷紗などの補強部材を載置または埋設してもよい。
【0011】
本発明において、石灰層の厚さは0.5〜10mmであることが望ましい。石灰層の厚さが0.5mm未満では、湿気の遮断層としての機能を発揮することができず、逆に10mmを越える厚さにしてもその湿気の遮断等の効果は飽和状態になり、それ以上の効果の向上は見込めない。より好ましくは、2.0〜5.0mmである。
【0012】
また、調湿材層の形成材としては、セピオライト、アタパルジャイト、アロフェンシリカゲル、ゼオライト等の呼吸性のあるものがよいが、その中でも、多孔質ケイ酸カルシウム水和物からなるものがより良好である。多孔質ケイ酸カルシウム水和物とは、シリカのような珪酸質原料と、石灰、セメントのような石灰質原料とを、公知の方法で混合、硬化、水蒸気養生してなる無機多孔質の人工鉱物である。
【0013】
多孔質ケイ酸カルシウム水和物の具体的成分としては、トバモライト、ゾノトライト、C−S−Hゲル、フォシャジャイト、ジャイロライト又はヒレプタンダイトの群から選ばれる1種又は2種以上を主とする。多孔質ケイ酸カルシウム水和物は、熱伝導率が0.15〜0.05kcal/m・h・℃と低いため、断熱材としての機能も合わせもち地盤からの冷気を防ぐこともできる。
多孔質ケイ酸カルシウム水和物としては、トバモライトを主体とする軽量気泡コンクリート素材を破砕して得られるものが空隙の度合いやアルカリの度合い等の条件で適当である。また、このような調湿材は、袋や箱、シート等の中に収納した調湿部材として使用してもよい。
【0014】
本発明の床下調湿方法は、その重量において90%以上が、呼称寸法16mmの標準網篩を通過し、80%以上が呼称寸法500μmの標準網篩を通過しない粒状生石灰を床下地盤上に散布し、その生石灰に周りの水分を吸収させて水和崩壊させることにより形成すると良好に構成することができる。これより生石灰の粒度分布が細かくなると、散布時に生石灰が飛散しやすくなり、また、荒くなると生石灰の水分吸収にむらができやすくなる。より好ましくは、90%以上が呼称寸法8mmの標準網篩を通過し、70%以上が呼称寸法2mmの標準網篩を通過しないものであるのがよい。
【0015】
生石灰は、炭酸カルシウムを焼成してでき、その焼成度合いによって硬焼又は軟焼とよばれているものがあるが、一般的に硬焼のものがよい。より具体的には、軽量気泡コンクリートの原料に使用するもの、あるいは、予め軟焼部分を水和除去して作った肥料用のもの(粒状消石灰と呼ばれている)が適切である。また、生石灰が水和崩壊すると、その表面のレベルが平均化されるので、水溜まり等の発生を抑えることができる。逆に消石灰は、このような作用が得られない外、通常粒度分布が細かく飛散しやすい点で難点がある。
【0016】
また、本実施形態において、前記床下用調湿構造体は、前記粒状生石灰に、その重量において90%以上が呼称寸法16mmの標準網篩を通過し、80%以上が呼称寸法1mmの標準網篩を通過しない粒状調湿材を予め混合して、その粒状生石灰と粒状調湿材との混合物を床下地盤上に散布し、前記生石灰に周りの水分を吸収させて水和崩壊させることにより、石灰層と、その上側の調湿材層とを同時に形成したものであることとすることもできる。
【0017】
多孔質ケイ酸カルシウム水和物の一種であるトバモライトを主体とする軽量気泡コンクリート破砕物などの粒状調湿材は、一般に嵩高く軽量であり、粒状生石灰とはその比重差がかなりある場合が多い。そのため、粒状調湿材を粒状生石灰と予め混合して散布することにより、その生石灰が床下地盤からの湿気を吸収して水和崩壊する時に、その比重差により自然に石灰層を下にした層状構造を形成することができる。その結果として、床下への散布作業を一度のみとすることができるという利点がある。またこの場合の調湿材層のように、その中に石灰分が何割か混入されていても、その機能には何等問題はない。
【0018】
また、本発明の床下用調湿構造体を形成後、床下空間に通風機で強制的に風を通す床下調湿方法を併用することにより、より調湿効果を高めることができる。なお、本発明において、標準網篩としては、JIS Z 8801(1987年度版)に規定するものを使用するものとする。
【0019】
【発明の実施の形態】
本発明の種々の実施形態について図を用いて説明する。図1は、本発明の第一の実施形態として、周囲をコンクリート側壁などで覆われた床下地盤1の上に直接粒状生石灰をまき、周りの水分を吸収させて水和崩壊させ、層厚さ4mm程度の石灰層2を形成した。次に、その上に軽量気泡コンクリートの粉砕物からなる層厚さ5〜10mm程度の調湿材層3を形成して、本発明の床下用調湿構造体Pを床下地盤の上に直接形成したものである。
【0020】
図2は、本発明の第二の実施形態であり、図1と同じ床下地盤の上に直接粒状生石灰をまき、層厚さ4mm程度の石灰層2を形成し、その上に軽量気泡コンクリートの粉砕物を幅が40cm×40cm程度の透湿性袋体に収納してなる調湿部材5を施設したものである。この調湿部材5は一定の間隔を開けて施設してもよい。図3は、本発明の第三の実施形態であり、床下通気口に換気扇等の通風機6を設置し、屋外湿度が床下湿度より低い場合、床下空間4にその通風機で強制的に風を通す形態としたものである。
【0021】
【実施例1・比較例1】
気象等についてほぼ同じ条件であると考えられる、同じ長方形状の4つの家屋の床下を用い、それぞれ実施例1−1、実施例1−2、比較例1−1、比較例1−2の実験をおこなった。実施例1−1は発明の実施の形態における第一の実施形態とした。
実施例1−2は次のような実施形態で実験を行ったものである。まず、粒状生石灰に、軽量気泡コンクリートの粉砕物からなる粒状調湿材をその重量比にしておよそ7:10の割合で予め混合して、その粒状生石灰と粒状調湿材との混合物を床下地盤に散布した。
【0022】
次に、その生石灰に周りの水分を吸収させて水和崩壊させることにより、下側に石灰層を形成し上側に調湿材層を形成して実施例1−1と同じ床下用調湿構造体を形成した。
実施例1−1、実施例1−2に使用した粒状生石灰及び軽量気泡コンクリートの粉砕物の粒度分布は、表1の通りである。また、実施例1−2では、粒状調湿材を十分に乾燥させてから粒状生石灰と混合した。このようにして準備が完了した2種の形態による床下の各日における正午の相対湿度(%)を約1カ月にわたり測定した。
【0023】
【表1】

Figure 0003979723
【0024】
比較例1−1は床下地盤の上に何も施設せずに実施例1−1と同日における正午の相対湿度を測定したものである。
また、比較例1−2として図5に示すように、床下地盤1の上に直接軽量気泡コンクリートの粉砕物からなる層厚さ5〜10mm程度の調湿材層3を形成して、他は実施例1−1と同じ形態とした。比較例1−2に使用した軽量気泡コンクリートの粉砕物の粒度分布も、実施例1−1、実施例1−2と同じく表1の通りである。 このような2種の形態による床下についても実施例1−1及び実施例1−2と同日における正午の相対湿度を測定した。
【0025】
実施例1−1、実施例1−2、比較例1−1、比較例1−2の各日における正午の相対湿度の経緯を図4のグラフに示す。
図4において比較例1−1の経過と比較例1−2の経過とを比べてみると、比較例1−2は調湿性能があることがわかるが、実施例1−1、実施例1−2はそれより更に調湿性能があることが認められる。また、実施例1−2は実施例1−1とほぼ同じ調湿性能を示すことがわかる。
【0026】
【実施例2・比較例2】
実施例2として、実施例1−1で相対湿度を測定した形態の床下を、その後ずっと1年間放置しておき、調湿材層3及び石灰層2をめくってみた。結果、地盤1の上面には黴は発生しておらず、木材腐朽菌や白アリ及び有害菌、有害虫も生存していなかった。
【0027】
比較例2として、図6に示すように、上側が透湿性を示し、下面が非透湿性を示す幅40cm×40cmの袋の中に軽量気泡コンクリートの粉砕物を収納してなる調湿部材5を、比較例1−2と同じ床下地盤1全面の上に施設して、1年間放置しておき、調湿部材5をめくってみた。結果、地盤1の上面には黴が発生しており、じめじめしていて木材腐朽菌や白アリ及び有害菌、有害虫の生存に適した状態であった。
【0028】
【発明の効果】
本発明は、その石灰層が湿気の遮断をするので、調湿材層又は調湿部材が地盤の水分を吸うことがなく、したがって調湿材層又は調湿部材の調湿性能を落とすことがない。また、石灰層自体も調湿作用があり、その性能を高める。さらに、床下において石灰層が湿気の遮断をし、その上、この石灰層は強アルカリ性なので、木材腐朽菌や白アリ、黴、及び有害菌、有害虫の発生を十分に防止することができる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態を示す床下断面図。
【図2】本発明の第二の実施形態を示す床下断面図。
【図3】本発明の第三の実施形態を示す床下断面図。
【図4】相対湿度の経緯を示すグラフ。
【図5】従来の一形態を示す床下断面図。
【図6】従来の別の形態を示す床下断面図。
【符号の説明】
P 床下用調湿構造体
1 地盤
2 石灰層
3 調湿材層
4 床下空間
5 調湿部材
6 通風機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an underfloor humidity control structure and an underfloor humidity control method. More specifically, the present invention relates to an underfloor humidity control structure and an underfloor humidity control method so that the humidity control material layer or the humidity control member is not significantly affected by the moisture of the floor base board, and the humidity control action does not decrease. is there.
[0002]
[Prior art]
In Japan, many houses have been built in wetlands since ancient times, and the damage caused by water vapor entering the house from under the floor was significant. In addition, recently, many floor floors are covered with concrete side walls, etc., and only a rectangular entrance with a shoulder width on the side is left open, and they tend to be humid due to poor ventilation. Caused by white ants who prefer to breed and damp. On the other hand, as shown in FIG. 5, a method of reducing the humidity of the underfloor space 4 has been practiced for a long time by directly applying a humidity control material 3 such as ash and natural pumice to the floor base plate 1. Recently, high-performance humidity control materials such as silica gel, zeolite, sepiolite, and calcium silicate are also used.
[0003]
However, the floor base plate 1 is exposed to natural soil, sand, clay, loam layer and the like that are not covered with artificial members such as concrete, and often contains moisture. For this reason, although the humidity-controlling material 3 can initially absorb moisture and maintain the humidity of the underfloor space 4 at a low level, it absorbs moisture generated from the floor base board 1 preferentially. However, it has been difficult to maintain the floor under a low humidity for a long period of time.
[0004]
Therefore, for the purpose of maintaining a low humidity under the floor for a long time without being affected by the moisture of the floor base board, a humidity control material is provided in a mat-like bag having a moisture-permeable surface portion and a moisture-impermeable surface portion. Has been invented in the past (Japanese Patent Laid-Open No. 3-21321).
[0005]
As shown in FIG. 6, the mat-like humidity control member 5 is laid directly on the floor base plate 1, but absorbs only the moisture in the underfloor space 4 without being affected by the moisture of the floor base plate 1. Therefore, the moisture in the underfloor space 4 can be kept low for a long period. In addition, by placing the humidity control member 5 over the entire surface of the floor base plate 1, it is possible to block most of the moisture of the floor base plate 1 so as not to enter the under floor space 4. It is a factor that can be kept low.
[0006]
However, since the humidity control member 5 is laid with the moisture-impermeable surface portion below the humidity-control member 5, the water vapor generated from the floor substrate 1 is generated by the floor substrate 1 and the moisture-impermeable surface portion. It becomes trapped in between, and this space will be in a high humidity state. For this reason, wrinkles will eventually form on the underside of the moisture-impermeable surface, and may cause harmful bacteria and harmful insects that prefer moisture, and it cannot be said that the initial purpose has been achieved. There was a case.
[0007]
[Problems to be solved by the invention]
Therefore, the present invention sufficiently prevents the occurrence of the above-mentioned wood decaying fungi, white ants, moths, harmful fungi and harmful insects under the floor, and also makes the humidity control performance of the humidity control material sufficiently exhibited. Another object of the present invention is to provide an underfloor humidity control structure and an underfloor humidity control method.
[0008]
[Means for Solving the Problems]
The underfloor humidity control structure of the present invention is an underfloor humidity control structure that is directly formed on a floor base board, and includes a lime layer and a humidity control material layer or a humidity control member provided on the lime layer. It is configured.
Further, the underfloor humidity control method of the present invention is characterized in that an underfloor humidity control structure comprising a lime layer and a humidity control material layer or a humidity control member provided on the lime layer is directly formed on the floor base plate. .
[0009]
When a lime layer is formed on the floor base plate, the lime layer absorbs moisture from the ground. As a result, the ground surface is blocked by this hydrated lime layer. Further, the lime layer absorbs and solidifies carbon dioxide in the air, so that the shielding performance is improved. Moreover, reaction by this lime layer and carbon dioxide contributes to the expansion of the surface area of a lime layer, and leads to the improvement of the humidity control function of lime layer itself.
[0010]
The moisture barrier layer made of hydrated lime can be said to be a barrier layer having a proper stucco-like air permeability and humidity control. In addition, the lime layer formed in this way is strongly alkaline, preventing the occurrence of wood decaying fungi, white ants, spiders, harmful fungi and harmful insects.
In addition, the lime layer is hydrated and solidified by the absorption of moisture to form a dense layer. In the present invention, in order to further reinforce the layer, a reinforcing member such as a lath net or a cold water bottle may be placed or embedded before and after installing the lime.
[0011]
In the present invention, the thickness of the lime layer is preferably 0.5 to 10 mm. If the thickness of the lime layer is less than 0.5 mm, the function as a moisture barrier layer cannot be exhibited. Conversely, even if the thickness exceeds 10 mm, the effect of blocking moisture becomes saturated, No further improvement can be expected. More preferably, it is 2.0-5.0 mm.
[0012]
In addition, as a material for forming the humidity control material layer, a respirable material such as sepiolite, attapulgite, allophane silica gel, zeolite or the like is preferable, and among them, a material composed of porous calcium silicate hydrate is more preferable. . Porous calcium silicate hydrate is an inorganic porous artificial mineral obtained by mixing, curing, and steam curing a siliceous raw material such as silica and a calcareous raw material such as lime and cement by a known method. It is.
[0013]
The specific component of the porous calcium silicate hydrate mainly includes one or more selected from the group of tobermorite, zonotrite, C—S—H gel, foshygite, gyrolite, or hyptandite. Since the porous calcium silicate hydrate has a low thermal conductivity of 0.15 to 0.05 kcal / m · h · ° C., it also has a function as a heat insulating material and can also prevent cold air from the ground.
As the porous calcium silicate hydrate, those obtained by crushing a lightweight cellular concrete material mainly composed of tobermorite are suitable under conditions such as the degree of voids and the degree of alkali. Moreover, you may use such a humidity control material as a humidity control member accommodated in a bag, a box, a sheet | seat, etc.
[0014]
According to the underfloor humidity control method of the present invention, 90% or more of the weight passes through a standard mesh screen having a nominal size of 16 mm, and 80% or more is sprayed on the floor base plate with granular quick lime that does not pass through a standard mesh screen having a nominal size of 500 μm. And if it forms by making the quick lime absorb the surrounding water | moisture content and making it hydrate-disintegrate, it can comprise favorably. If the particle size distribution of quick lime becomes finer than this, quick lime will be scattered easily at the time of dispersion | spreading, and if it becomes rough, it will become easy to perform the water | moisture-content absorption of quick lime. More preferably, 90% or more should pass through a standard mesh screen having a nominal size of 8 mm, and 70% or more should not pass through a standard mesh screen having a nominal size of 2 mm.
[0015]
Quick lime is obtained by firing calcium carbonate, and there are those called hard firing or soft firing depending on the degree of firing, but hard firing is generally preferred. More specifically, a material used as a raw material for lightweight cellular concrete, or a fertilizer made by hydrating and removing a soft-fired portion in advance (called granular slaked lime) is appropriate. Further, when quicklime is hydrated and disintegrated, the level of the surface is averaged, so that the occurrence of a puddle or the like can be suppressed. Conversely, slaked lime is difficult in that it does not provide such an effect and the particle size distribution is usually fine and easily scattered.
[0016]
Further, in the present embodiment, the humidity control structure for underfloor passes through the standard quick screen having a nominal size of 16 mm and more than 80% by weight of the granular quicklime passing through the standard quick screen having a nominal size of 1 mm. The granular humidity conditioning material that does not pass through is mixed in advance, and the mixture of the granular quicklime and the granular humidity conditioning material is sprayed on the floor base plate, and the quicklime absorbs the surrounding water to cause hydration and collapse. The layer and the humidity control material layer on the upper side may be formed at the same time.
[0017]
Granular moisture-conditioning materials such as lightweight cellular concrete crushed material mainly composed of tobermorite, a kind of porous calcium silicate hydrate, are generally bulky and lightweight, and there are many cases where there is a considerable difference in specific gravity from granular quicklime. . Therefore, when the granular humectant is premixed with granular quicklime and sprayed, when the quicklime absorbs moisture from the floor base plate and hydrates and disintegrates, the layered structure with the lime layer naturally down due to its specific gravity difference A structure can be formed. As a result, there is an advantage that the spraying operation under the floor can be performed only once. Moreover, even if some percent of lime is mixed in the moisture conditioning material layer in this case, there is no problem in its function.
[0018]
Moreover, after forming the underfloor humidity control structure of the present invention, the humidity control effect can be further enhanced by using the underfloor humidity conditioning method in which the air is forced to pass through the underfloor space with a ventilator. In the present invention, as the standard mesh screen, those specified in JIS Z 8801 (1987 edition) are used.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Various embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the present invention, in which granular quicklime is spread directly on a floor base board 1 whose periphery is covered with a concrete side wall, etc. , and the surrounding moisture is absorbed to cause hydration and collapse. A lime layer 2 of about 4 mm was formed. Next, the humidity control material layer 3 having a layer thickness of about 5 to 10 mm made of pulverized lightweight aerated concrete is formed thereon, and the underfloor humidity control structure P of the present invention is directly formed on the floor base plate. It is a thing.
[0020]
FIG. 2 is a second embodiment of the present invention, in which granular quicklime is directly coated on the same floor base plate as in FIG. 1 to form a lime layer 2 having a layer thickness of about 4 mm, on which lightweight cellular concrete is formed. The humidity control member 5 in which the pulverized material is accommodated in a moisture-permeable bag having a width of about 40 cm × 40 cm is provided. The humidity control member 5 may be provided with a certain interval. FIG. 3 shows a third embodiment of the present invention. When a ventilator 6 such as a ventilating fan is installed in the underfloor vent and the outdoor humidity is lower than the underfloor humidity, the ventilator is forced to wind in the underfloor space 4. It is the form which lets it pass.
[0021]
[Example 1 and Comparative Example 1]
Experiments of Example 1-1, Example 1-2, Comparative Example 1-1, and Comparative Example 1-2, respectively, using the floors of the same rectangular four houses considered to be almost the same conditions for the weather and the like I did it. Example 1-1 is the first embodiment in the embodiment of the invention.
Example 1-2 is an experiment conducted in the following embodiment. First, a granular humidity control material made of pulverized lightweight aerated concrete is previously mixed with granular quick lime at a ratio of about 7:10 in terms of weight ratio, and the mixture of the granular quick lime and the granular humidity conditioning material is used as a floor base plate. Sprayed on.
[0022]
Next, the moisture content around the floor is the same as that of Example 1-1 by absorbing the surrounding moisture into the quick lime to cause hydration and disintegration, thereby forming a lime layer on the lower side and a humidity conditioning material layer on the upper side. Formed body.
Table 1 shows the particle size distribution of the crushed product of granular quicklime and lightweight cellular concrete used in Example 1-1 and Example 1-2. Moreover, in Example 1-2, the granular humidity conditioner was sufficiently dried and then mixed with granular quicklime. The relative humidity (%) at noon on each day under the floor in two forms thus prepared was measured over approximately one month.
[0023]
[Table 1]
Figure 0003979723
[0024]
In Comparative Example 1-1, the relative humidity at noon on the same day as Example 1-1 was measured without providing any facilities on the floor base plate.
Moreover, as shown in FIG. 5 as Comparative Example 1-2, the humidity-controlling material layer 3 having a layer thickness of about 5 to 10 mm made of pulverized lightweight lightweight concrete is directly formed on the floor base board 1, and the others are It was set as the same form as Example 1-1. The particle size distribution of the lightweight lightweight concrete pulverized material used in Comparative Example 1-2 is also as shown in Table 1 as in Example 1-1 and Example 1-2. The relative humidity at noon on the same day as Example 1-1 and Example 1-2 was also measured under the floor according to these two forms.
[0025]
The graph of FIG. 4 shows the history of relative humidity at noon on each day of Example 1-1, Example 1-2, Comparative Example 1-1, and Comparative Example 1-2.
When comparing the progress of Comparative Example 1-1 with the progress of Comparative Example 1-2 in FIG. 4, it can be seen that Comparative Example 1-2 has humidity control performance. It is recognized that -2 has further humidity control performance. Moreover, it turns out that Example 1-2 shows the humidity control performance substantially the same as Example 1-1.
[0026]
[Example 2 and Comparative Example 2]
As Example 2, the floor under the form in which the relative humidity was measured in Example 1-1 was left for one year thereafter, and the humidity control material layer 3 and the lime layer 2 were turned over. As a result, no wrinkles were generated on the upper surface of the ground 1, and wood decaying fungi, white ants, harmful fungi, and harmful insects were not alive.
[0027]
As Comparative Example 2, as shown in FIG. 6, a humidity control member 5 in which a pulverized product of lightweight cellular concrete is housed in a bag having a width of 40 cm × 40 cm in which the upper side shows moisture permeability and the lower side shows non-moisture permeability. Was installed on the same floor base plate 1 as in Comparative Example 1-2 and left for one year, and the humidity control member 5 was turned over. As a result, wrinkles were generated on the upper surface of the ground 1, and it was in a state suitable for survival of wood decaying fungi, white ants, harmful fungi and harmful insects.
[0028]
【The invention's effect】
In the present invention, since the lime layer blocks moisture, the humidity control layer or humidity control member does not absorb the moisture of the ground, and therefore the humidity control performance of the humidity control layer or humidity control member may be reduced. Absent. Further, the lime layer itself has a humidity control action, and enhances its performance. Further, the lime layer blocks moisture under the floor, and furthermore, since this lime layer is strongly alkaline, it is possible to sufficiently prevent the occurrence of wood decay fungi, white ants, spiders, harmful bacteria and harmful insects.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view below a floor showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view below the floor showing a second embodiment of the present invention.
FIG. 3 is a cross-sectional view below the floor showing a third embodiment of the present invention.
FIG. 4 is a graph showing the history of relative humidity.
FIG. 5 is a cross-sectional view below the floor showing one embodiment of the prior art.
FIG. 6 is a cross-sectional view below the floor showing another conventional configuration.
[Explanation of symbols]
P Humidity control structure 1 for the floor 1 Ground 2 Lime layer 3 Humidity control material layer 4 Underfloor space 5 Humidity control member 6 Ventilator

Claims (7)

石灰層(2)とその上に施設された調湿材層(3)または調湿部材(5)とからなる床下用調湿構造体(P)を床下地盤(1)上に直接形成する床下調湿方法であって、前記石灰層(2)は、90%以上が呼称寸法16mmの標準網篩を通過し、80%以上が呼称寸法500μmの標準網篩を通過しない粒状生石灰を床下地盤(1)上に散布し、その生石灰に周りの水分を吸収させて水和崩壊させることにより形成したものである床下調湿方法。Underfloor that directly forms an underfloor humidity control structure (P) consisting of a lime layer (2) and a humidity control material layer (3) or a humidity control member (5) provided on the floor base board (1). 90% or more of the lime layer (2) passes through a standard mesh screen having a nominal size of 16 mm, and 80% or more of the lime layer (2) passes granular quick lime that does not pass through a standard mesh screen having a nominal size of 500 μm. 1) An underfloor humidity control method that is formed by spraying on top and absorbing the surrounding water in the quicklime to cause hydration and collapse. 前記床下用調湿構造体(P)は、前記粒状生石灰に、90%以上が呼称寸法16mmの標準網篩を通過し、80%以上が呼称寸法1mmの標準網篩を通過しない粒状調湿材を予め混合して、その粒状生石灰と粒状調湿材との混合物を床下地盤(1)上に散布し、前記生石灰に周りの水分を吸収させて水和崩壊させることにより、石灰層(2)と、その上側の調湿材層(3)とを同時に形成したものである請求項1に記載の床下調湿方法。In the underfloor humidity control structure (P), 90% or more of the granular quicklime passes through a standard mesh screen having a nominal size of 16 mm, and 80% or more does not pass through a standard mesh screen having a nominal size of 1 mm. Is mixed beforehand, and the mixture of the granular quicklime and the granular moisture-controlling material is sprayed on the floor base plate (1), and the lime layer (2) The underfloor humidity control method according to claim 1, wherein the humidity control material layer (3) on the upper side is formed simultaneously. 前記床下用調湿構造体(P)を形成後、床下空間(4)に通風機(6)で強制的に風を通すことを特徴とする請求項1または請求項2に記載の床下調湿方法。The underfloor humidity control according to claim 1 or 2, wherein after the underfloor humidity control structure (P) is formed, air is forcibly passed through the underfloor space (4) by a ventilator (6). Method. 床下地盤(1)の上に直接形成されている床下用調湿構造体であって、
石灰層(2)とその上に施設された調湿材層(3)または調湿部材(5)とから構成されており、
前記石灰層(2)は、90%以上が呼称寸法16mmの標準網篩を通過し、80%以上が呼称寸法500μmの標準網篩を通過しない粒状生石灰を床下地盤(1)上に散布し、その生石灰に周りの水分を吸収させて水和崩壊させることにより形成したものである床下用調湿構造体。
An underfloor humidity control structure directly formed on the floor base plate (1),
It is composed of a lime layer (2) and a humidity control material layer (3) or a humidity control member (5) provided on the lime layer (2) ,
90% or more of the lime layer (2) passes through a standard mesh screen having a nominal size of 16 mm, and more than 80% is sprayed on the floor base plate (1) with granular quick lime that does not pass through a standard mesh screen having a nominal size of 500 μm, An underfloor humidity control structure formed by absorbing moisture around the quicklime to cause hydration and collapse.
前記粒状生石灰に、90%以上が呼称寸法16mmの標準網篩を通過し、80%以上が呼称寸法1mmの標準網篩を通過しない粒状調湿材を予め混合して、その粒状生石灰と粒状調湿材との混合物を床下地盤(1)上に散布し、前記生石灰に周りの水分を吸収させて水和崩壊させることにより、石灰層(2)と、その上側の調湿材層(3)とを同時に形成したものである請求項4に記載の床下用調湿構造体。90% or more of the granular quicklime is previously mixed with a granular moisture-conditioning material that passes through a standard mesh screen having a nominal size of 16 mm, and 80% or more does not pass through a standard mesh screen having a nominal size of 1 mm. The mixture with the wet material is spread on the floor base plate (1), and the lime layer (2) and the humidity control material layer (3) above the lime layer (3) are obtained by absorbing the surrounding moisture into the quick lime and causing it to hydrate and disintegrate. 5. The underfloor humidity control structure according to claim 4, which is formed at the same time. 前記石灰層(2)の厚さは0.5〜10mmである請求項4または請求項5に記載の床下用調湿構造体。The humidity control structure for underfloor according to claim 4 or 5, wherein the lime layer (2) has a thickness of 0.5 to 10 mm. 前記調湿材層(3)または調湿部材(5)は多孔質ケイ酸カルシウム水和物からなるものである請求項6に記載の床下用調湿構造体。The humidity control structure for underfloor according to claim 6, wherein the humidity control material layer (3) or the humidity control member (5) is made of porous calcium silicate hydrate.
JP14837298A 1998-05-12 1998-05-12 Underfloor humidity control structure and underfloor humidity control method Expired - Fee Related JP3979723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14837298A JP3979723B2 (en) 1998-05-12 1998-05-12 Underfloor humidity control structure and underfloor humidity control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14837298A JP3979723B2 (en) 1998-05-12 1998-05-12 Underfloor humidity control structure and underfloor humidity control method

Publications (2)

Publication Number Publication Date
JPH11324152A JPH11324152A (en) 1999-11-26
JP3979723B2 true JP3979723B2 (en) 2007-09-19

Family

ID=15451295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14837298A Expired - Fee Related JP3979723B2 (en) 1998-05-12 1998-05-12 Underfloor humidity control structure and underfloor humidity control method

Country Status (1)

Country Link
JP (1) JP3979723B2 (en)

Also Published As

Publication number Publication date
JPH11324152A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
ES2674548T3 (en) Dry mix of building materials and thermal insulation plaster that can be obtained from this
ES2670021T3 (en) Heat insulating plate
KR20060134839A (en) A mud-plastered house
JP3979723B2 (en) Underfloor humidity control structure and underfloor humidity control method
JP2009057811A (en) Water retentive, cold reserving and heat insulating panel optimal for heat reservation on rooftop
KR101596000B1 (en) Pavement using Waste Ceramic for Playground and its Construction Method
JP3535715B2 (en) Building structures and floor panels
KR100547953B1 (en) Non-combustible, heat insulation, heat insulation, absorption. Foamed concrete mortar composition with sound insulation function and method for producing same
US20040040227A1 (en) Material for improving living environment, and building material, laying material and spraying agent using the same
JP2004169547A (en) Thermal insulation material for construction, wooden building using the thermal insulation material for construction, and its construction method
KR100547951B1 (en) Non-combustible, heat insulation, heat insulation, absorption. Foamed concrete mortar composition with sound insulation function and method for producing same
JP4413005B2 (en) Insulated wall structure
JP3028502B2 (en) Manufacturing method of large panel materials for environmental control
JP2000282593A (en) Humidity conditioning wall material and humidity conditioning wall structure
JP2003213809A (en) Air environment conditioning system for building
JP4163820B2 (en) Underfloor structure
JPH03166446A (en) Method of removing moisture under floor of building
KR20040052778A (en) Method for manufacturing lightweight board and lightweight board thereof
JP4416500B2 (en) Insulated wall structure
JP3074227B2 (en) Underfloor humidifier and method for producing underfloor humectant
CN1147559C (en) Composite water-stopping isolating agent
JP3762951B2 (en) Underfloor heat storage layer
JP2529439Y2 (en) Humidity control and insulation mat for underfloor
JP4413004B2 (en) Thermal insulation structural panel
JPH0882017A (en) Breathing building structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees