JP3979189B2 - Process for producing aromatic carbonates - Google Patents

Process for producing aromatic carbonates Download PDF

Info

Publication number
JP3979189B2
JP3979189B2 JP2002175355A JP2002175355A JP3979189B2 JP 3979189 B2 JP3979189 B2 JP 3979189B2 JP 2002175355 A JP2002175355 A JP 2002175355A JP 2002175355 A JP2002175355 A JP 2002175355A JP 3979189 B2 JP3979189 B2 JP 3979189B2
Authority
JP
Japan
Prior art keywords
reaction zone
reaction
gas
upstream
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002175355A
Other languages
Japanese (ja)
Other versions
JP2004018458A (en
Inventor
信雄 虎谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002175355A priority Critical patent/JP3979189B2/en
Publication of JP2004018458A publication Critical patent/JP2004018458A/en
Application granted granted Critical
Publication of JP3979189B2 publication Critical patent/JP3979189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はジアルキルカーボネートとフェノール類とを反応させて、アルキルアリールカーボネートやジアリールカーボネートを生成させる方法の改良に関するものである。
【0002】
【従来の技術】
ジアルキルカーボネートとフェノールやクレゾールなどの置換フェノール(以下、これらを総称してフェノール類という)とを反応させて、アルキルアリールカーボネートやジアリールカーボネートを生成させることは公知である。最も一般的なのはジメチルカーボネートとフェノールとからのメチルフェニルカーボネートやジフェニルカーボネートの製造である。この反応は次のように進行することが知られている。
【0003】
【化1】

Figure 0003979189
【0004】
式(2)の反応は極めて遅いので、通常はフェノールとジメチルカーボネートとを反応させて、メチルフェニルカーボネートとこれに対して少量のジフェニルカーボネートを含む反応液を生成させ、次いでこの反応液中のメチルフェニルカーボネートを式(3)により不均化させてジフェニルカーボネートとジメチルカーボネートを生成させる。
【0005】
式(1)の反応は遅く、かつ反応平衡が原系側に著るしく偏っているので、反応を促進する方法が種々提案されている。例えば特開平6−234707号公報には、複数の撹拌槽を直列に接続し、最前段の撹拌槽にフェノール類を供給し、ジメチルカーボネートは各撹拌槽に供給する反応方法が記載されている。この反応方法では各撹拌槽の気相部のガスは、それぞれの撹拌槽に付設されている蒸留塔で蒸留して、副生したメタノールを塔頂から留去し、ジメチルカーボネートを含む塔底液はそれぞれの撹拌槽に循環している。撹拌槽間の反応液の移送はサイフォンにより行われる。また、別法として、ジメチルカーボネートを最後段の撹拌槽だけに供給する方法も記載されている。この反応方法では、各撹拌槽の気相部のガスはその直前の撹拌槽の液相中に供給され、最前段の撹拌槽の気相部のガスは付設されている蒸留塔で蒸留して、副生したメタノールを塔頂から留去し、ジメチルカーボネートを含む塔底液は最前段の撹拌槽に循環している。この反応方法においても撹拌槽間の反応液の移送はサイフォンにより行われる。
【0006】
特開平8−188558号公報には、気相部が共通で液相部が複数の区画に区分されている反応器を用いて、その最前段の区画にフェノールとジメチルカーボネートとを供給する反応方法が記載されている。反応液は各区画を順次経由して最後段の区画から抜出される。気相部のガスは付設されている蒸留塔で蒸留して、副生したメタノールを塔頂から留去し、ジメチルカーボネートを含む塔底液は反応器に循環される。
【0007】
【発明が解決しようとする課題】
しかしながら、従来提案されているこれらの反応方法は、それなりに有効な方法ではあるが、未だ満足すべきものではない。従って本発明はジアルキルカーボネートとフェノール類との更に改良された反応方法を提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明によれば、複数の反応帯域から成り、反応液が各反応帯域を順次経由して反応器から流出するようになっている反応器を用いて、フェノール類とジアルキルカーボネートとを反応させてアルキルアリールカーボネートを含む反応液を生成させる芳香族カーボネート類の製造方法において、反応原料の供給をフェノール類の少なくとも一部は最上流の反応帯域に供給し、ジアルキルカーボネートはいずれかの反応帯域に供給し、上流から下流に向って反応帯域の圧力を上昇させ、最上流の反応帯域を除き各反応帯域の気相部からガスを抜出してこれをその直前の反応帯域に供給し、かつ最上流の反応帯域の気相部からガスを抜出して蒸留塔で蒸留し、副生したアルキルアルコールを塔頂から留去し、塔底からジアルキルカーボネートを含む反応液を抜出していずれかの反応帯域に循環することにより、反応を効率よく進行させることができる。
【0009】
【発明の実施の形態】
本発明では、反応器として複数の反応帯域から成るものを用いる。反応帯域の数は2であってもよいが、3以上であるのが好ましい。反応帯域の数を多くするほど一般的に反応遂行上は有利であるが、逆に設備費が嵩む。反応遂行上の利点と設備費とを勘案すると、反応帯域の数は10以下、特に7以下とするのが好ましい。一般的には最も好ましい反応帯域の数は3〜5である。
【0010】
反応器への原料の供給は、フェノール類の少なくとも一部は最上流の反応帯域に供給する。すなわち最上流の反応帯域か又はこれを含むいくつかの反応帯域に分割供給する。通常は最上流の反応帯域だけに供給するのが好ましい。分割供給する場合でも供給量の50%以上、特に70%以上は最上流の反応帯域に供給するのが好ましく、かつ残余も主として次の反応帯域など最上流に近い反応帯域に供給するのが好ましい。これに対しジアルキルカーボネートは必ずしも最上流の反応帯域に供給する必要はない。ジアルキルカーボネートは沸点が低いので、これを最上流の反応帯域に供給するとこの帯域の気相部から抜出したガスを蒸留して、副生したアルキルアルコールを系外に除去する蒸留塔の負荷を増大させる。従ってジアルキルカーボネートの50%以上、特に70%以上は、後半分の反応帯域(反応帯域の数が(2N+1)個の場合には(N+1)番目以降の反応帯域)に供給するのが好ましい。通常はジアルキルカーボネートの全量を後半部の反応帯域に供給する。供給はいくつかの反応帯域に分割して行うのが好ましく、また最下流の反応帯域にも供給するのが好ましい。
【0011】
反応器内では液相と気相とは向流方向に移動する。すなわち液相は最上流の反応帯域から各反応帯域を順次経由して最下流の反応帯域に移動し、気相部のガスは最下流の反応帯域から各反応帯域を順次経由して最上流の反応帯域に移動する。最上流の反応帯域の気相部のガスは付設されている蒸留塔で蒸留して、副生したアルコールを塔頂から留出させて除去し、塔底から抜出されるジアルキルカーボネートを含む塔底液はいずれかの反応帯域に循環させる。通常は最上流の反応帯域に供給するか又はこの帯域を含むいくつかの反応帯域に分割供給する。
【0012】
本発明では反応器内の圧力を、最上流の反応帯域の圧力が最も低く、最下流の反応帯域の圧力が最も高くなるように、上流から下流に向けて圧力が高くなるようにする。反応器内におけるアルキルアリールカーボネートの濃度は後段の反応帯域ほど高いので、若し反応条件が各反応帯域を通して同一ならば、後段の反応帯域ほど反応量が低下する。しかし後段ほど圧力を高めると、圧力が高い方が反応原料であるジアルキルカーボネートの液相への溶解が促進されるので、後段の反応帯域における反応量の低下を阻止することができる。反応帯域間の圧力差は通常は0.1〜2kg/cm2以下、特に0.3〜0.7kg/cm2であるのが好ましい。
【0013】
本発明では、このように後段になるほど反応帯域の圧力を高くするので、反応帯域間の液相の移動はポンプにより行う。これに対し反応帯域間の気相の移動は、圧力差により行うことができる。その好ましい態様の一つでは、反応帯域の気相部からその直前の反応帯域の液相部に延びる連絡管を設け、両帯域間の圧力差により後段の気相部のガスが前段の液相中に導入されるようにする。これにより後段の気相部のガス中のジアルキルカーボネートが前段の液相中に溶解するのを促進することができる。また各反応帯域には気相中のジアルキルカーボネートの液相中への溶解を促進するため、気相と液相とを混合する混合装置を設けるのが好ましい。
【0014】
本発明では上記したように反応帯域間を液相と気相とを向流で移動させ、かつ後段の反応帯域ほど圧力を高くする以外は、常法に従って反応を行わせればよい。すなわち反応温度は150〜250℃、特に180〜200℃が好ましく、かつ後段の反応帯域ほど高温にして反応を促進するのが好ましい。また、最上流の反応帯域の気相部から抜出したガスからの副生アルコールの除去は、この反応帯域の液相中の副生アルコールの濃度が10重量%以下、好ましくは5重量%以下、特に1重量%以下となるように行うのが好ましい。
【0015】
本発明によれば、反応器として、内部が複数の帯域に区画されており、それぞれの帯域の圧力を独立に設定できるものであればよいので、安価な装置を用いることができる。また各反応帯域の反応条件を独立に設定できるので、運転管理が容易である。
【0016】
【実施例】
以下に反応器を複数の反応帯域に分割し、かつ後段の反応帯域ほど圧力を高くすることの効果をモデル的に示す実験例により、本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。
実験例1
反応器として内部が隔壁によりNo.1〜No.3の3つに区画されているものを用いた。各区画の容積は約1リットルであり、No.1区画とNo.2区画との間、及びNo.2区画とNo.3区画との間には、反応液の移送を行うためのポンプが設置されている。またNo.3区画の気相部とNo.2区画の液相部との間、及びNo.2区画の気相部とNo.1区画の液相部との間にはガスの移送を行うための連絡管が設置されている。
【0017】
この反応器のNo.1区画に、フェノールを160g/Hr、触媒のジブチルスズオキサイドを3g/Hr、ジメチルカーボネートを1800g/Hrで連続的に供給し、各区画ともその容積の半分が液で満たされるようにして、No.3区画から液を抜出し、No.1区画から気相部のガスを抜出した。No.1区画を170℃、7kg/cm2A、No.2区画を175℃、7.5kg/cm2A、第3区画を190℃、8kg/cm2Aとして反応を行ったところ、第3区画からの反応液の抜出量は約560g/Hrで、そのメチルフェニルカーボネートの濃度は約10重量%であった。
【0018】
比較実験例1
反応器として特開平8−188558号公報に記載されているような、内部が液相部のみ隔壁でNo.1〜No.3の3つに区画されており、気相部は共通となっているものを用いた。各区画の容積は約1リットルである。この反応器のNo.1区画にフェノールを160g/Hr、ジメチルカーボネートを1800g/Hr、触媒のジブチルスズオキサイドを3g/Hrで連続的に供給し、各区画ともその容積の半分が液で満たされるようにしてNo.3区画から液を抜出し、気相部からガスを抜出した。圧力を8kg/cm2A、No.1区画を180℃、No2区画を185℃、No.3区画を190℃として反応を行ったところ、第3区画からの液の抜出量は約550g/Hrで、そのメチルフェニルカーボネートの濃度は約8.5重量%であった。
実験例1と比較実験例1とを対比すると、前者の方がメチルフェニルカーボネートの収量が約20%ほど多い。また、No.1区画及びNo.2区画の温度はいずれも前者の方が10℃ほど低い。このことは反応器に供給するエネルギーが前者の方が少なくて済むことを意味している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a method for producing an alkylaryl carbonate or diaryl carbonate by reacting a dialkyl carbonate with a phenol.
[0002]
[Prior art]
It is known to react alkyl dicarbonates with substituted phenols such as phenol and cresol (hereinafter collectively referred to as phenols) to produce alkyl aryl carbonates and diaryl carbonates. The most common is the production of methyl phenyl carbonate and diphenyl carbonate from dimethyl carbonate and phenol. This reaction is known to proceed as follows.
[0003]
[Chemical 1]
Figure 0003979189
[0004]
Since the reaction of the formula (2) is extremely slow, usually, phenol and dimethyl carbonate are reacted to form a reaction solution containing methylphenyl carbonate and a small amount of diphenyl carbonate, and then the methyl in the reaction solution Phenyl carbonate is disproportionated according to formula (3) to form diphenyl carbonate and dimethyl carbonate.
[0005]
Since the reaction of formula (1) is slow and the reaction equilibrium is significantly biased toward the original system, various methods for promoting the reaction have been proposed. For example, JP-A-6-234707 describes a reaction method in which a plurality of stirring tanks are connected in series, phenols are supplied to the foremost stirring tank, and dimethyl carbonate is supplied to each stirring tank. In this reaction method, the gas in the gas phase part of each stirring tank is distilled in a distillation column attached to each stirring tank, and methanol produced as a by-product is distilled off from the top of the tower, and a liquid at the bottom containing dimethyl carbonate. Circulates in each stirred tank. The reaction liquid is transferred between the stirring tanks by a siphon. As another method, a method of supplying dimethyl carbonate only to the last stirred tank is also described. In this reaction method, the gas in the gas phase part of each agitation tank is supplied into the liquid phase of the immediately preceding agitation tank, and the gas in the gas phase part of the foremost agitation tank is distilled in an attached distillation column. The by-produced methanol is distilled off from the top of the tower, and the bottom liquid containing dimethyl carbonate is circulated in the foremost agitation tank. Also in this reaction method, the reaction solution is transferred between the stirring tanks by a siphon.
[0006]
Japanese Patent Application Laid-Open No. 8-188558 discloses a reaction method in which phenol and dimethyl carbonate are supplied to the foremost compartment using a reactor having a common gas phase portion and a liquid phase portion divided into a plurality of compartments. Is described. The reaction solution is extracted from the last compartment through each compartment in turn. The gas in the gas phase is distilled in an attached distillation tower, and methanol produced as a by-product is distilled off from the top of the tower, and the bottom liquid containing dimethyl carbonate is circulated to the reactor.
[0007]
[Problems to be solved by the invention]
However, although these conventionally proposed reaction methods are effective as such, they are not yet satisfactory. Accordingly, the present invention seeks to provide an improved process for the reaction of dialkyl carbonates with phenols.
[0008]
[Means for Solving the Problems]
According to the present invention, phenols and dialkyl carbonate are reacted with each other using a reactor that is composed of a plurality of reaction zones and in which a reaction solution flows out of the reactor via each reaction zone in turn. In the method for producing aromatic carbonates that produce a reaction liquid containing alkylaryl carbonate, at least a part of phenols is supplied to the most upstream reaction zone, and dialkyl carbonate is supplied to any of the reaction zones. Then, the pressure in the reaction zone is increased from upstream to downstream, the gas is extracted from the gas phase portion of each reaction zone except for the most upstream reaction zone, and this gas is supplied to the immediately preceding reaction zone, and the most upstream A gas is extracted from the gas phase part of the reaction zone and distilled in a distillation tower, and the by-produced alkyl alcohol is distilled off from the top of the tower, and dialkyl carbonate is contained from the bottom of the tower. By circulating in any of the reaction zone by withdrawing the reaction solution, it is possible to proceed the reaction efficiently.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a reactor comprising a plurality of reaction zones is used. The number of reaction zones may be 2, but is preferably 3 or more. Increasing the number of reaction zones is generally more advantageous for carrying out the reaction, but conversely increases the equipment cost. Considering the advantages in carrying out the reaction and the equipment cost, the number of reaction zones is preferably 10 or less, particularly 7 or less. In general, the most preferred number of reaction zones is 3-5.
[0010]
In the feed of the raw material to the reactor, at least a part of the phenols is fed to the most upstream reaction zone. That is, the supply is divided into the most upstream reaction zone or several reaction zones including this. Usually, it is preferable to supply only to the most upstream reaction zone. Even in the case of divided supply, 50% or more, particularly 70% or more of the supply amount is preferably supplied to the most upstream reaction zone, and the remainder is preferably supplied mainly to the most upstream reaction zone such as the next reaction zone. . On the other hand, the dialkyl carbonate is not necessarily supplied to the most upstream reaction zone. Dialkyl carbonate has a low boiling point, so if it is supplied to the most upstream reaction zone, the gas extracted from the gas phase of this zone is distilled to increase the load on the distillation column that removes by-produced alkyl alcohol out of the system. Let Therefore, 50% or more, particularly 70% or more of the dialkyl carbonate is preferably supplied to the reaction zone for the latter half (when the number of reaction zones is (2N + 1), the (N + 1) th and subsequent reaction zones). Usually, the entire amount of dialkyl carbonate is fed to the reaction zone in the latter half. The supply is preferably carried out by dividing it into several reaction zones, and it is also preferred to supply it to the most downstream reaction zone.
[0011]
In the reactor, the liquid phase and the gas phase move in the countercurrent direction. That is, the liquid phase moves from the most upstream reaction zone to the most downstream reaction zone via each reaction zone in sequence, and the gas in the gas phase section flows from the most downstream reaction zone to each most upstream reaction zone. Move to reaction zone. The gas in the gas phase part of the most upstream reaction zone is distilled in an attached distillation column, and the by-produced alcohol is distilled off from the top of the column to remove it. The bottom of the column contains dialkyl carbonate extracted from the bottom of the column. The liquid is circulated to either reaction zone. Usually, it is supplied to the most upstream reaction zone or divided into several reaction zones including this zone.
[0012]
In the present invention, the pressure in the reactor is increased from upstream to downstream so that the pressure in the most upstream reaction zone is the lowest and the pressure in the most downstream reaction zone is the highest. Since the concentration of the alkylaryl carbonate in the reactor is higher in the subsequent reaction zone, if the reaction conditions are the same throughout the reaction zones, the reaction amount decreases in the subsequent reaction zone. However, when the pressure is increased in the latter stage, the higher the pressure, the more the dissolution of the dialkyl carbonate, which is the reaction raw material, in the liquid phase is promoted, so that it is possible to prevent a reduction in the reaction amount in the latter reaction zone. The pressure difference between the reaction zones is usually 0.1 to 2 kg / cm 2 or less, preferably 0.3 to 0.7 kg / cm 2 .
[0013]
In the present invention, the pressure in the reaction zone is increased in the later stage as described above, so that the liquid phase is moved between the reaction zones by a pump. On the other hand, the movement of the gas phase between the reaction zones can be performed by a pressure difference. In one of the preferred embodiments, a communication pipe extending from the gas phase part of the reaction zone to the liquid phase part of the reaction zone immediately before is provided, and the gas in the gas phase part of the rear stage is caused to flow from the liquid phase of the front stage by the pressure difference between the two zones. To be introduced inside. Thereby, it can accelerate | stimulate that the dialkyl carbonate in the gas of the gas phase part of a back | latter stage melt | dissolves in the liquid phase of a front | former stage. Moreover, in order to accelerate | stimulate melt | dissolution in the liquid phase of the dialkyl carbonate in a gaseous phase in each reaction zone, it is preferable to provide the mixing apparatus which mixes a gaseous phase and a liquid phase.
[0014]
In the present invention, as described above, the reaction may be carried out according to a conventional method, except that the liquid phase and the gas phase are moved countercurrently between the reaction zones and the pressure in the subsequent reaction zone is increased. That is, the reaction temperature is preferably 150 to 250 ° C., and particularly preferably 180 to 200 ° C., and the reaction is preferably performed at a higher temperature in the subsequent reaction zone. Further, the removal of by-product alcohol from the gas extracted from the gas phase part of the most upstream reaction zone is such that the concentration of by-product alcohol in the liquid phase of this reaction zone is 10 wt% or less, preferably 5 wt% or less, It is particularly preferable to carry out so as to be 1% by weight or less.
[0015]
According to the present invention, any reactor can be used as long as the reactor is divided into a plurality of zones and the pressure in each zone can be set independently. In addition, since the reaction conditions for each reaction zone can be set independently, operation management is easy.
[0016]
【Example】
Hereinafter, the present invention will be described in more detail with reference to an experimental example in which the reactor is divided into a plurality of reaction zones and the effect of increasing the pressure in the subsequent reaction zone is modeled. It is not limited to.
Experimental example 1
As a reactor, the inside is No. by a partition wall. 1-No. What was divided into 3 of 3 was used. The volume of each compartment is about 1 liter. 1 section and No. Between two compartments and No. 2 and No. A pump for transferring the reaction liquid is installed between the three sections. No. No. 3 gas phase part and No. Between the two-phase liquid phase part and No. 2 gas phase part and No. A connecting pipe for transferring gas is installed between the liquid phase part of one section.
[0017]
No. of this reactor. In one section, phenol was continuously fed at 160 g / Hr, catalyst dibutyltin oxide at 3 g / Hr, and dimethyl carbonate at 1800 g / Hr, so that half of the volume was filled with liquid in each section. The liquid was extracted from the three compartments. The gas in the gas phase was extracted from one compartment. No. One section is 170 ° C., 7 kg / cm 2 A, No. When the reaction was carried out at 175 ° C. and 7.5 kg / cm 2 A for the second compartment and 190 ° C. and 8 kg / cm 2 A for the third compartment, the amount of the reaction solution extracted from the third compartment was about 560 g / Hr. The concentration of methyl phenyl carbonate was about 10% by weight.
[0018]
Comparative Experiment Example 1
As described in Japanese Patent Laid-Open No. 8-188558 as a reactor, the inside is a partition wall only with a liquid phase part, and No. 1-No. 3 was divided into three, and the common gas phase portion was used. The volume of each compartment is about 1 liter. No. of this reactor. In one compartment, phenol was supplied at 160 g / Hr, dimethyl carbonate at 1800 g / Hr, and catalyst dibutyltin oxide at 3 g / Hr, and each compartment was filled with half of its volume. The liquid was extracted from the three compartments, and the gas was extracted from the gas phase part. The pressure was 8 kg / cm 2 A, No. No. 1 section is 180 ° C., No. 2 section is 185 ° C. When the reaction was performed at 3 ° C. at 190 ° C., the amount of liquid extracted from the third compartment was about 550 g / Hr, and the concentration of methylphenyl carbonate was about 8.5% by weight.
Comparing Experimental Example 1 with Comparative Experimental Example 1, the former yields about 20% more methylphenyl carbonate. No. 1 section and No. The temperature in the two compartments is about 10 ° C. lower in the former. This means that the former requires less energy to be supplied to the reactor.

Claims (5)

複数の反応帯域から成り、反応液が各反応帯域を順次経由して反応器から流出するようになっている反応器を用いて、フェノール類とジアルキルカーボネートとを反応させてアルキルアリールカーボネートを含む反応液を生成させる芳香族カーボネート類の製造方法において、反応原料の供給をフェノール類の少なくとも一部は最上流の反応帯域に供給し、ジアルキルカーボネートはいずれかの反応帯域に供給し、上流から下流に向かって反応帯域の圧力を上昇させ、最上流の反応帯域を除き各反応帯域の気相部からガスを抜出してこれをその直前の反応帯域に供給し、かつ、最上流の反応帯域の気相部からガスを抜出して蒸留塔で蒸留し、副生したアルキルアルコールを塔頂から留去し、塔底からジアルキルカーボネートを含む液を抜出していずれかの反応帯域に循環することを特徴とする方法。Reaction that includes alkylaryl carbonate by reacting phenols with dialkyl carbonate using a reactor that consists of multiple reaction zones and the reaction liquid flows out from the reactor via each reaction zone in sequence. In the method for producing aromatic carbonates for producing a liquid, at least a part of phenols is supplied to the most upstream reaction zone, and the dialkyl carbonate is supplied to one of the reaction zones, from upstream to downstream. The pressure in the reaction zone is increased, gas is extracted from the gas phase portion of each reaction zone except for the most upstream reaction zone, and this gas is supplied to the immediately preceding reaction zone, and the gas phase in the most upstream reaction zone The gas is extracted from the section and distilled in a distillation tower, the by-produced alkyl alcohol is distilled off from the top of the tower, and a liquid containing dialkyl carbonate is extracted from the bottom of the tower. Wherein the circulating in any of the reaction zones. 反応帯域の気相部のガスをその直前の反応帯域に供給するのを、当該反応帯域の気相部からその直前の反応帯域の液相部にまで延びている連絡管を経て、両反応帯域の圧力差により行うことを特徴とする請求項1記載の方法。The gas in the gas phase part of the reaction zone is supplied to the reaction zone immediately before the two reaction zones through a connecting pipe extending from the gas phase part of the reaction zone to the liquid phase part of the reaction zone immediately before. The method according to claim 1, wherein the method is performed by a pressure difference of 各反応帯域に液相と気相とを混合する混合装置が設置されていることを特徴とする請求項1又は2記載の方法。The method according to claim 1 or 2, wherein a mixing device for mixing the liquid phase and the gas phase is installed in each reaction zone. 上流から下流に向かって、反応帯域の温度を上昇させることを特徴とする請求項1ないし3のいずれかに記載の方法。The method according to any one of claims 1 to 3, wherein the temperature of the reaction zone is increased from upstream to downstream. 反応原料のジアルキルカーボネートの少なくとも一部は後半部の反応帯域に供給することを特徴とする請求項1ないし4のいずれかに記載の方法。The method according to any one of claims 1 to 4, wherein at least a part of the reaction raw material dialkyl carbonate is supplied to the reaction zone in the latter half.
JP2002175355A 2002-06-17 2002-06-17 Process for producing aromatic carbonates Expired - Lifetime JP3979189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175355A JP3979189B2 (en) 2002-06-17 2002-06-17 Process for producing aromatic carbonates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175355A JP3979189B2 (en) 2002-06-17 2002-06-17 Process for producing aromatic carbonates

Publications (2)

Publication Number Publication Date
JP2004018458A JP2004018458A (en) 2004-01-22
JP3979189B2 true JP3979189B2 (en) 2007-09-19

Family

ID=31174030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175355A Expired - Lifetime JP3979189B2 (en) 2002-06-17 2002-06-17 Process for producing aromatic carbonates

Country Status (1)

Country Link
JP (1) JP3979189B2 (en)

Also Published As

Publication number Publication date
JP2004018458A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
KR101225389B1 (en) Method and device for producing 1,2-dichlorethane by means of direct chlorination
KR101279372B1 (en) Method for producing 1,2-dichloroethane by means of direct chlorination
KR100609674B1 (en) Method for the continuous production of 1,3-dioxolan-2-ones
US20170107177A1 (en) Process for synthesis of urea and a related arrangement for a reaction section of a urea plant
EP0018159A1 (en) Process for the production of phenol, acetone and alpha methylstyrene
JP2003300936A (en) Method for continuously and simultaneously producing dialkyl carbonate and glycol
JP2005517003A (en) Continuous production method of aromatic carbonate using heterogeneous catalyst and reaction apparatus thereof
JP3979189B2 (en) Process for producing aromatic carbonates
WO2007072728A1 (en) Process for production of dialkyl carbonate and diol in industrial scale
JPH07206781A (en) Production of dimethyl carbonate
CN108368012B (en) Improved process for preparing halogenated alkanes
WO2007069514A1 (en) Process for production of dialkyl carbonate and diol in industrial scale and with high yield
JPH11343257A (en) Production of bivalent phenol and device therefor
TWI309233B (en) Process for industrially producing dialkyl carbonate and diol
KR20190019135A (en) Acetic acid production method
JP4377234B2 (en) Allyl alcohol isomerization method
JP2003113144A (en) Method for producing alkylaryl carbonate
RU2769081C1 (en) Method of producing dialkyl carbonate
JP3998402B2 (en) Method for producing cyclododecanone
HU194538B (en) Continuous process for production of 1-/methil-thio/-acetaldoxim-n-methil-carbamate /methomil/
JP3921847B2 (en) Method for producing ethylene glycol
JP2004075570A (en) Method for producing aromatic carbonates
JP2003300918A (en) Method for continuous and simultaneous production of dialkyl carbonate and glycol
JPH0995480A (en) Production of epsilon-caprolactam
JPH1160541A (en) Production of dialkyl carbonate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3