JP3979118B2 - HEAT EXCHANGER, HEAT EXCHANGER MANUFACTURING METHOD, AND AIR CONDITIONER - Google Patents

HEAT EXCHANGER, HEAT EXCHANGER MANUFACTURING METHOD, AND AIR CONDITIONER Download PDF

Info

Publication number
JP3979118B2
JP3979118B2 JP2002042860A JP2002042860A JP3979118B2 JP 3979118 B2 JP3979118 B2 JP 3979118B2 JP 2002042860 A JP2002042860 A JP 2002042860A JP 2002042860 A JP2002042860 A JP 2002042860A JP 3979118 B2 JP3979118 B2 JP 3979118B2
Authority
JP
Japan
Prior art keywords
heat exchanger
plate
fin
heat transfer
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002042860A
Other languages
Japanese (ja)
Other versions
JP2003240472A (en
Inventor
繁治 平良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2002042860A priority Critical patent/JP3979118B2/en
Priority to AU2003207046A priority patent/AU2003207046A1/en
Priority to PCT/JP2003/001396 priority patent/WO2003071216A1/en
Priority to CNA03804028XA priority patent/CN1633578A/en
Priority to EP03703315A priority patent/EP1486748A4/en
Publication of JP2003240472A publication Critical patent/JP2003240472A/en
Application granted granted Critical
Publication of JP3979118B2 publication Critical patent/JP3979118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱交換器、熱交換器の製造方法及び空気調和機に関する。
【0002】
【従来の技術】
従来の熱交換器の一つとして、クロスフィン型の熱交換器がある。クロスフィン型の熱交換器は、空気調和機の室内機や室外機によく用いられており、その一例として、図1に示す空気調和機の室外機に配置されたL字形状の熱交換器51がある。
【0003】
熱交換器51は、プロペラファン61によって、室外機のケーシング62の背面側から前面側に向かって送風される空気流(矢印A0及びB0参照)と熱交換して、伝熱管の管内側を流通する冷媒を蒸発又は凝縮するために用いられている。
【0004】
熱交換器51は、板厚方向に所定の間隔を空けて配置された複数のプレートフィン52と、複数のプレートフィン52を板厚方向に貫通して装着された複数の伝熱管53とを備えている。プレートフィン52は、図1及び図2に示すように、通常、フィン幅W0が一定の長方形状の薄板であり、その長手方向に沿って複数の伝熱管53が貫通するための複数の孔52aが設けられている。複数の伝熱管53は一端にヘアピン形状のヘアピン部53aを有しており、熱交換器51では合計12本の伝熱管53が配置されている。また、伝熱管53のヘアピン部53aの反対側の管端部は、U字管54によって、隣り合う伝熱管53の管端部に接続されている。
【0005】
次に、熱交換器51の製造方法について説明する。熱交換器51の製造工程は、複数のプレートフィン52を製造するためのフィン製造工程と、複数の伝熱管53をプレートフィン52の板厚方向に貫通して装着して熱交換器を組み立てる組み立て工程とを備えている。
【0006】
従来のプレートフィン52を製造するためのフィン製造工程は、薄板からなる板状素材を一方向に送り、金型を用いて所定のフィン形状に型取りして製造する。詳細には、フィン製造工程は、図3に示すように、一方向(矢印E0方向)に送られる板状素材X0から長方形状のプレートフィン52を製造するために、各プレートフィン52の型取り方式として、E0方向(板状素材X0の長手方向)にプレートフィン52の長辺をとり、E0方向に直交する方向(板状素材X0の幅方向)にプレートフィン52の短辺をとる方式(以下、縦送り方式とする)を採用している。そして、E0方向に送りながら、板状素材X0にバーリング加工工程、ミシン目加工工程、サイドカット加工工程及びカットオフ加工工程を順に行い、複数のプレートフィン52を製造する。
【0007】
バーリング加工工程は、板状素材X0に伝熱管が貫通する複数の貫通孔52aを段階的に型取りする工程である。ミシン目加工工程は、板状素材X0のプレートフィン52の短辺寸法(フィン幅W0)に対応する位置にミシン目59を入れる工程である。サイドカット加工工程は、ミシン目55の位置で板状素材X0を切断する工程である。カットオフ加工工程は、サイドカット加工工程において切断された部分の長さがプレートフィン52の長辺寸法に達した後に、板状素材X0をE0方向に直交する方向で切断し、所定の長辺及び短辺寸法(フィン幅W0)を有する複数のプレートフィン52を製造する工程である。
【0008】
次に、熱交換器51の動作について、図1を用いて説明する。熱交換器51は、空気調和機の室内機(図示せず)が冷房運転する場合には冷媒の凝縮器として機能し、空気調和機の室内機(図示せず)が暖房運転する場合には冷媒の蒸発器として機能する。熱交換器51が凝縮器として機能する場合には、気体状態の冷媒が管端部C0から伝熱管53の管内に流入して伝熱管53内を流通し、伝熱管53の管外側を流れる空気と熱交換して凝縮し、液体状態の冷媒となって管端部D0から流出する。逆に、熱交換器51が蒸発器として機能する場合には、液体状態の冷媒が管端部D0から伝熱管53の管内に流入して伝熱管53内を流通し、伝熱管53の管外側を流れる空気と熱交換して蒸発し、気体状態の冷媒となって管端部C0から流出する。
【0009】
【発明が解決しようとする課題】
上記のように、熱交換器が凝縮器又は蒸発器として機能する場合のいずれにおいても、熱交換器の伝熱管の管内側には、冷媒が気体として流通する部分(ガス側)と、冷媒が液体として流通する部分(液側)とが形成されている。ここで、熱交換器の伝熱管の管径は、熱交換器の圧力損失を抑えるために、ガス側部分の冷媒の流速を基準として、ガス側から液側にわたる伝熱管の全てがガス側に適した管径となるように設計されている。このため、伝熱管の管径は、液側に対して大きな管径となっている。また、熱交換器の管内の熱伝達の観点からすると、伝熱管の管径が小さい方が望ましい。よって、熱交換器の圧力損失の観点と伝熱管の管内の熱伝達の観点とを考慮すると、熱交換器の液側の伝熱管の管径をガス側の伝熱管の管径よりも小さくするのが望ましい。
【0010】
一方、従来の熱交換器において、伝熱管の管径とプレートフィンのフィン幅とは、管外の熱伝達を考慮して最適な寸法比になるように設計されている。従って、従来の熱交換器において、液側の伝熱管の管径をガス側の管径よりも小さくするだけでは、プレートフィンのフィン幅が長手方向にわたって一定であるために、伝熱管の管径とプレートフィンのフィン幅との関係が最適な寸法比でなくなってしまい、管外の熱伝達率が低下するおそれがある。このため、熱交換器の液側の伝熱管の管径をガス側の伝熱管の管径よりも小さくするとともに、管外の熱伝達率の低下を抑えて熱交換器全体の熱伝達効率を向上させることが望まれる。
【0011】
さらに、上記のような液側の伝熱管の管径をガス側の管径よりも小さくした熱交換器を製作しようとすると、プレートフィンに伝熱管の管径に応じて異なる孔径の貫通孔をプレートフィンの長辺方向に沿って型取りしなければならない。しかし、従来のプレートフィンの製造方法は縦送り方式を採用しているため、プレートフィンの長辺方向に沿って異なる孔径の貫通孔を型取りすることが難しい。
【0012】
本発明の課題は、熱交換器の液側の伝熱管の管径をガス側の伝熱管の管径よりも小さくするとともに管外の熱伝達率の低下を抑えて熱伝達効率を向上させた熱交換器を提供すること、及び、それに適する熱交換器の製造方法を提供することにある。
【0013】
【課題を解決するための手段】
請求項1に記載の熱交換器は、板厚方向に所定の間隔を空け、かつ、フィン幅方向に空気を通過させるように配置された複数のプレートフィンと、複数のプレートフィンを板厚方向に貫通して装着された複数の伝熱管とを備えている。プレートフィンは、一方から他方に向かって連続的又は段階的にフィン幅が小さくなる形状を有している。複数の伝熱管は、2種類以上の異径管からなるものである。そして、プレートフィンのフィン幅の大きい部分には大径の伝熱管が配置され、フィン幅の小さい部分には前記大径の伝熱管よりも小径の伝熱管が配置されている。
【0014】
この熱交換器では、プレートフィンのフィン幅が一方から他方に向かって連続的又は段階的に小さくなる形状を有しており、プレートフィンのフィン幅の大きい部分には大径の伝熱管が配置されフィン幅の小さい部分には小径の伝熱管が配置されているため、伝熱管の管径とプレートフィンのフィン幅との寸法比をできるだけに一定に保つことができる。これにより、熱交換器の液側の伝熱管の管径をガス側の伝熱管の管径よりも小さくしつつ、管外の熱伝達率の低下を抑えて熱交換器全体の熱伝達効率を向上させることができる。
【0015】
請求項2に記載の熱交換器は、請求項1において、プレートフィンのフィン幅の大きい部分に対するフィン幅の小さい部分との比は、0.25以上、0.67以下の範囲である。
【0016】
この熱交換器では、プレートフィンのフィン幅の大きい部分に対するフィン幅の小さい部分との比が0.25以上、0.67以下の範囲であるため、管外の熱伝達率の低下を抑えて熱交換器全体の熱伝達効率を向上させる効果がさらに顕著なものとなる。
【0017】
請求項3に記載の熱交換器は、請求項1又は2において、型取りの際に、プレートフィンは複数のプレートフィンをプレートフィンのフィン幅方向に並べると、プレートフィン同士がフィン幅方向に互いに重なり合うことなく、かつ、フィン幅方向に隙間を空けることなく並べることができる形状を有している。
【0018】
この熱交換器では、板状素材からプレートフィンを型取りして製造する際に板状素材の材料ロスを少なくすることができる。
【0019】
請求項4に記載の熱交換器は、請求項3において、プレートフィンは、隣り合うプレートフィンを180度回転させて並べることによって、プレートフィン同士がフィン幅方向に互いに重なり合うことなく、かつ、フィン幅方向に隙間を空けることなく並べることができる形状を有している。
【0020】
請求項5に記載の熱交換器の製造方法は、請求項3又は4に記載の熱交換器の製造方法であって、以下の工程を備えている。
【0021】
板状素材を一方向に送り、板状素材の送り方向にプレートフィンのフィン幅をとりつつ、プレートフィンの型取り方向を板状素材の送り方向に直交する方向として順次型取りして、プレートフィンを製造するフィン製造工程。
【0022】
複数の伝熱管をプレートフィンの板厚方向に貫通させて装着して、熱交換器を組み立てる組み立て工程。
【0023】
この熱交換器の製造方法では、プレートフィンの型取り方向を板状素材の送り方向に直交する方向として順次型取りして製造するため(以下、横送り方式とする)、型取りのための金型の形状をプレートフィンの形状に適合するものを使用することが可能である。これにより、一方から他方に向かって異なる孔径の貫通孔を形成させつつ、フィン幅が連続的又は段階的に小さくなるようなフィン形状を型取りすることができる。
【0024】
請求項6に記載の空気調和機は、請求項1〜4のいずれかの熱交換器を備えている。
【0025】
この空気調和機では、熱交換器の熱伝達効率が向上しているため、空気調和機全体の空調性能を向上させることができる。
【0026】
【発明の実施の形態】
[第1実施形態]
以下、本発明の第1実施形態を図面に基づいて説明する。
【0027】
(1)熱交換器の構造
本発明の第1実施形態の熱交換器1を採用した空気調和機の室外機を示す概略斜視図を図4に示す。熱交換器1は、L字形状であり、プロペラファン11によって、室外機のケーシング12の背面側から前面側に向かって送風される空気流(矢印A1及びB1参照)と熱交換して、伝熱管の管内側を流通する冷媒を蒸発又は凝縮するために用いられている。
【0028】
熱交換器1は、板厚方向に所定の間隔を空けて配置された複数のプレートフィン2と、複数のプレートフィン2を板厚方向に貫通して装着された複数の伝熱管3とを備えている。プレートフィン2は、図4及び図5に示すように、フィン幅が一方から他方に向かって(具体的には、室外機の上方から下方に向かって)連続的にフィン幅がW1からW2に小さくなる形状を有している。また、プレートフィン2には、複数の伝熱管3が貫通する複数の貫通孔が設けられている。複数の貫通孔は2種類以上の異径孔からなり、フィン幅の大きい部分には大径の貫通孔が配置され、フィン幅の小さい部分には小径の貫通孔が配置されている。本実施形態では、複数の貫通孔は、3種類の異径孔2a、2b、2cから構成されている。異径孔2aは、プレートフィン2の上端部(W1側)から下方に向かって配置された8つの孔である。異径孔2bは、異径孔2aよりも小径の8つの孔であり、異径孔2aの下方に配置されている。異径孔2cは、異径孔2bよりも小径の8つの孔であり、最も下端部側(W2側)に配置されている。
【0029】
複数の伝熱管3は、2種類以上の異径管からなり、熱交換器1の上部には大径の伝熱管が配置され、熱交換器1の下部には小径の伝熱管が配置されている。本実施形態では、複数の異径管は、3種類の異径管13、14、15から構成されている。異径管13、14、15は、その一端にヘアピン形状のヘアピン部13a、14a、15aをそれぞれ有している。各異径管13、14、15は、プレートフィン2に形成された異径孔2a、2b、2cにそれぞれ対応するように、4本づつ配置されている。すなわち、異径管13は最も大径の管径を有し、異径管14は異径管13の管径よりも小径であり、異径管15は異径管14の管径よりも小径である。異径管13のヘアピン部13aの反対側の管端部は、U字管4によって隣り合う異径管13の管端部に接続されている。また、異径管14の管端部に隣り合う異径管13の管端部は、U字管5によって異径管14の管端部に接続されている。ここで、U字管5は、異径管13に対応する管径を有するU字管の一端に異径管14の管径に対応させるためのレジューサを備えたものである。異径管14の管端部は、U字管6によって隣り合う異径管14の管端部に接続されている。異径管15の管端部に隣り合う異径管14の反ヘアピン部14a側の管端部は、U字管5と同様、レジューサを備えたU字管7によって異径管15の管端部に接続されている。異径管15の管端部は、U字管8によって隣り合う異径管15の管端部に接続されている。
【0030】
これにより、熱交換器1は、プレートフィン2のフィン幅が上部から下部に向かって小さくなる形状を有し、それに対応するように、異径管13、14、15からなる複数の伝熱管3の管径が配置されている。
【0031】
次に、プレートフィン2のフィン幅の寸法の具体例について説明する。フィン幅W1(フィン幅の大きい部分)及びフィン幅W2(フィン幅の小さい部分)は、使用される複数の伝熱管3の管径に応じて設定されている。例えば、フィン幅W1は12mmから30mmのものが採用されており、フィン幅W2は3mmから20mmのものが採用されている。すなわち、フィン幅W1に対するフィン幅W2の比(W2/W1)は、0.25から0.67の寸法範囲である。
【0032】
(2)熱交換器の製造
次に、熱交換器1の製造方法について説明する。熱交換器1の製造工程は、複数のプレートフィン2を製造するためのフィン製造工程と、異径管13、14、15からなる複数の伝熱管3をプレートフィン2の板厚方向に貫通して装着して熱交換器1を組み立てる組み立て工程とを備えている。
【0033】
プレートフィン2を製造するためのフィン製造工程は、薄板からなる板状素材を一方向に送り、プレス金型を用いて所定のフィン形状に型取りして製造する。詳細には、フィン製造工程は、図6に示すように、一方向(E1方向)に送られる板状素材X1からプレートフィン2を製造するために、各プレートフィン2の型取り方式として、E1方向に直交する方向(板状素材X1の幅方向)にプレートフィン2の長辺をとり、E1方向(板状素材X1の長手方向)にプレートフィン2の短辺(フィン幅W1及びW2)をとる横送り方式を採用している。そして、板状素材X1をE1方向に送りながら、板状素材X1にバーリング加工工程、ミシン目加工工程、サイドカット加工工程及びカットオフ加工工程を順に行い、複数のプレートフィン2を製造する。
【0034】
バーリング加工工程は、板状素材X1に伝熱管が貫通する異径孔2a、2b、2cを型取りする工程である。具体的には、図5に示される形状のプレートフィン2をフィン幅方向に隙間なく並ぶように型取りする。具体的には、隣り合うプレートフィン2を180度回転させた配置にしている。ここで、バーリング加工のための金型は、プレートフィン2を複数枚づつ(本実施形態では、2枚づつ)型取りするものを採用している。
【0035】
ミシン目加工工程は、板状素材X1のプレートフィン2のフィン形状に対応する位置にミシン目9を入れる工程である。
【0036】
サイドカット加工工程は、ミシン目9のうちフィン長手方向の端部に対応する位置で板状素材X1を切断する。
【0037】
カットオフ加工工程は、プレートフィン2の幅方向の端部となる部分を板状素材X1をその送り方向に交差する方向で切断し、所定のフィン形状を有する複数のプレートフィン2を製造する工程である。
【0038】
その後、組み立て工程において、異径管13、14、15からなる複数の伝熱管3を複数のプレートフィン2の板厚方向に貫通して装着し、伝熱管3の各管端部同士をU字管によって接続して熱交換器1を組み立てる。
【0039】
(3)熱交換器の動作
次に、熱交換器1の動作について、図4を用いて説明する。熱交換器1は、空気調和機の室内機(図示せず)が冷房運転する場合には冷媒の凝縮器として機能し、空気調和機の室内機(図示せず)が暖房運転する場合には冷媒の蒸発器として機能する。熱交換器1が凝縮器として機能する場合には、冷媒ガスが管端部C1から伝熱管3の管内に流入して伝熱管3内を流通し、伝熱管3の管外側を流れる空気と熱交換して凝縮し、冷媒液となって管端部D1から流出する。逆に、熱交換器1が蒸発器として機能する場合には、冷媒液が管端部D1から伝熱管3の管内に流入して伝熱管3内を流通し、伝熱管3の管外側を流れる空気と熱交換して蒸発し、冷媒ガスとなって管端部C1から流出する。
【0040】
(4)熱交換器及び製造方法の特徴
本実施形態の熱交換器及び製造方法には、以下のような特徴がある。
【0041】
(A)熱伝達効率の向上
本実施形態の熱交換器1では、プレートフィン2のフィン幅が一方から他方に向かって連続的に小さくなる形状を有しており、プレートフィン2のフィン幅の大きい部分には大径の伝熱管13が配置されフィン幅の小さい部分には小径の伝熱管15が配置されているため、異径管13、14、15からなる伝熱管3の管径とプレートフィン2のフィン幅との寸法関係をできるだけ最適に保つことができる。これにより、熱交換器1の液側の伝熱管15の管径をガス側の伝熱管13の管径よりも小さくしつつ、管外の熱伝達率の低下を抑えて熱交換器全体の熱伝達効率を向上させることができる。また、このような熱交換器を備えた空気調和機では、空調性能が向上する。
【0042】
(B)伝熱管の管外側の圧力損失の低減
本実施形態の熱交換器1では、図5に示すように、プレートフィン2のガス側のフィン幅W1は従来の熱交換器51のフィン幅W0と同じであるか若しくは少し大きいものであるが(具体的には、フィン幅W0は10mmから30mmの寸法範囲である)、液側のフィン幅W2は従来の熱交換器51よりも小さくなっている。これにより、熱交換器1の管外側の圧力損失を従来よりも低減することができる。
【0043】
(C)横送り方式を採用したプレートフィンの製造方法
本実施形態の熱交換器1の製造方法では、プレートフィン2の製造において、プレートフィン2の型取り方向を板状素材X1の送り方向に直交する方向として順次型取りして製造する横送り方式を採用している。このため、型取りのための金型の形状をプレートフィン2の形状に適合するものを使用することができる。これにより、プレートフィン2の形状を一方から他方に向かって異なる孔径の貫通孔を形成させつつ、フィン幅が連続的に小さくしたフィン形状にすることができる。
また、プレートフィン2が複数のプレートフィン2をプレートフィン2のフィン幅方向に並べる際に、プレートフィン2同士がフィン幅方向に互いに重なり合うことなく、かつ、フィン幅方向に隙間を空けることなく並べることができる形状を有しているので、板状素材X1の材料ロスを少なくすることができる。プレートフィン2の型取りを複数枚ずつ行っているため、生産性も向上している。
【0044】
[第2実施形態]
第1実施形態では、図5に示すようにプレートフィン2のフィン幅を連続的に変化させているが、図7に示すプレートフィン22のように、一方から他方に向かって段階的にフィン幅がW1からW2まで小さくなるような形状にしてもよい。この場合においても、第1実施形態と同様な効果が得られる。
【0045】
[第3実施形態]
第1及び第2実施形態では、図5及び図7に示すようにプレートフィン2が幅方向の中心に対して対称な形状であるが、図8に示すプレートフィン32のように、2つのプレートフィンをフィン幅方向に並べた際に長方形をなす形状にしてもよい。この場合においては、第1及び第2実施形態よりもさらに板状素材の材料ロスを少なくすることができる。
【0046】
[他の実施形態]
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
【0047】
例えば、熱交換器における伝熱管の本数や異径管の種類は、前記3つの実施形態に限定されない。
【0048】
【発明の効果】
以上の説明に述べたように、本発明によれば、以下の効果が得られる。
【0049】
請求項1及び2にかかる発明では、熱交換器の液側の伝熱管の管径をガス側の伝熱管の管径よりも小さくしつつ、管外の熱伝達率の低下を抑えて熱交換器全体の熱伝達効率を向上させることができる。
【0050】
請求項3及び4にかかる発明では、板状素材からプレートフィンを型取りして製造する際に板状素材の材料ロスを少なくすることができる。
【0051】
請求項5にかかる発明では、一方から他方に向かって異なる孔径の貫通孔を形成させつつ、フィン幅が連続的又は段階的に小さくなるようなフィン形状のプレートフィンを製造することができる。
【0052】
請求項6にかかる発明では、熱交換器の熱伝達効率が向上しているため、空気調和機全体の空調性能を向上させることができる。
【図面の簡単な説明】
【図1】 従来の熱交換器を採用した空気調和機の室外機を示す概略斜視図。
【図2】 従来の熱交換器のプレートフィンを板厚方向から見た図。
【図3】 従来の熱交換器のプレートフィンの製造工程を示す図。
【図4】 本発明の第1実施形態の熱交換器を採用した空気調和機の室外機を示す概略斜視図。
【図5】 本発明の第1実施形態の熱交換器のプレートフィンを板厚方向から見た図。
【図6】 本発明の第1実施形態の熱交換器のプレートフィンの製造工程を示す図。
【図7】 本発明の第2実施形態の熱交換器のプレートフィンを板厚方向から見た図。
【図8】 本発明の第3実施形態の熱交換器のプレートフィンを板厚方向から見た図。
【符号の説明】
1 熱交換器
2、22、32 プレートフィン
3 伝熱管
13、14、15 異径管
1 板状素材
1 フィン幅
2 フィン幅
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger, a heat exchanger manufacturing method, and an air conditioner.
[0002]
[Prior art]
One conventional heat exchanger is a cross fin type heat exchanger. A cross fin type heat exchanger is often used for an indoor unit or an outdoor unit of an air conditioner. As an example, an L-shaped heat exchanger disposed in the outdoor unit of the air conditioner shown in FIG. There are 51.
[0003]
The heat exchanger 51 exchanges heat with an air flow (see arrows A 0 and B 0 ) blown from the back side of the casing 62 of the outdoor unit toward the front side by the propeller fan 61, so that the inside of the heat transfer pipe is inside. It is used to evaporate or condense the refrigerant that flows through.
[0004]
The heat exchanger 51 includes a plurality of plate fins 52 disposed at a predetermined interval in the plate thickness direction, and a plurality of heat transfer tubes 53 that are attached through the plurality of plate fins 52 in the plate thickness direction. ing. Plate fin 52, as shown in FIGS. 1 and 2, normally, the fin width W 0 is a constant rectangular thin plate, a plurality of holes for the plurality of heat transfer tubes 53 along its longitudinal direction through 52a is provided. The plurality of heat transfer tubes 53 have a hairpin-shaped hairpin portion 53 a at one end, and a total of twelve heat transfer tubes 53 are arranged in the heat exchanger 51. In addition, the tube end portion of the heat transfer tube 53 opposite to the hairpin portion 53 a is connected to the tube end portion of the adjacent heat transfer tube 53 by a U-shaped tube 54.
[0005]
Next, a method for manufacturing the heat exchanger 51 will be described. The manufacturing process of the heat exchanger 51 includes a fin manufacturing process for manufacturing a plurality of plate fins 52, and an assembly in which a plurality of heat transfer tubes 53 are attached in the plate thickness direction of the plate fins 52 to assemble the heat exchanger. Process.
[0006]
In the fin manufacturing process for manufacturing the conventional plate fin 52, a plate-shaped material made of a thin plate is fed in one direction, and is molded into a predetermined fin shape using a mold. Specifically, as shown in FIG. 3, in the fin manufacturing process, in order to manufacture the rectangular plate fins 52 from the plate-shaped material X 0 fed in one direction (arrow E 0 direction) as templating method, E 0 direction (the plate material X 0 lengthwise direction) takes the long side of the plate fin 52, a direction perpendicular to the E 0 direction of the plate fin 52 (plate material width direction of X 0) A system that takes a short side (hereinafter referred to as a vertical feed system) is adopted. A plurality of plate fins 52 are manufactured by sequentially performing a burring process, a perforation process, a side cut process, and a cut-off process on the plate-like material X 0 while feeding in the E 0 direction.
[0007]
Burring step is a step of stepwise templating a plurality of through holes 52a which heat transfer tubes penetrate the plate material X 0. The perforation processing step is a step in which a perforation 59 is formed at a position corresponding to the short side dimension (fin width W 0 ) of the plate fin 52 of the plate-like material X 0 . The side cut processing step is a step of cutting the plate material X 0 at the position of the perforation 55. Cutoff processing step, the length of the cut portions in side-cutting process after reaching the long side dimension of the plate fin 52, was cut in a direction orthogonal to plate material X 0 to E 0 direction, predetermined This is a step of manufacturing a plurality of plate fins 52 having long side and short side dimensions (fin width W 0 ).
[0008]
Next, the operation of the heat exchanger 51 will be described with reference to FIG. The heat exchanger 51 functions as a refrigerant condenser when an air conditioner indoor unit (not shown) performs a cooling operation, and when the air conditioner indoor unit (not shown) performs a heating operation. It functions as a refrigerant evaporator. When the heat exchanger 51 functions as a condenser, gaseous refrigerant flows into the tube end C 0 in the tube of the heat transfer tube 53 flows through the heat transfer tube 53, flows through the tube outside of the heat transfer tube 53 Heat is exchanged with air to condense, and it becomes a liquid refrigerant and flows out from the tube end D 0 . Conversely, when the heat exchanger 51 functions as an evaporator, liquid refrigerant flows from the tube end D 0 into the heat transfer tube 53 and flows through the heat transfer tube 53, and the tube of the heat transfer tube 53. It exchanges heat with the air flowing outside and evaporates to become a gaseous refrigerant and flows out from the tube end C 0 .
[0009]
[Problems to be solved by the invention]
As described above, in any case where the heat exchanger functions as a condenser or an evaporator, a portion (gas side) through which the refrigerant circulates as a gas is disposed inside the heat transfer tube of the heat exchanger, and the refrigerant is A portion (liquid side) that circulates as a liquid is formed. Here, the diameter of the heat exchanger tube of the heat exchanger is such that all of the heat exchanger tubes from the gas side to the liquid side are on the gas side with reference to the refrigerant flow rate in the gas side part in order to suppress the pressure loss of the heat exchanger. Designed to have a suitable pipe diameter. For this reason, the tube diameter of the heat transfer tube is larger than the liquid side. From the viewpoint of heat transfer in the heat exchanger tube, it is desirable that the heat transfer tube has a smaller diameter. Therefore, considering the viewpoint of pressure loss of the heat exchanger and the viewpoint of heat transfer in the heat transfer tube, the diameter of the heat transfer tube on the liquid side of the heat exchanger is made smaller than the diameter of the heat transfer tube on the gas side. Is desirable.
[0010]
On the other hand, in the conventional heat exchanger, the tube diameter of the heat transfer tube and the fin width of the plate fin are designed to have an optimum dimensional ratio in consideration of heat transfer outside the tube. Accordingly, in the conventional heat exchanger, simply by making the tube diameter of the liquid side heat transfer tube smaller than that of the gas side, the fin width of the plate fin is constant over the longitudinal direction. And the fin width of the plate fins is not at an optimal dimensional ratio, and the heat transfer coefficient outside the tube may be reduced. For this reason, the tube diameter of the heat transfer tube on the liquid side of the heat exchanger is made smaller than the tube diameter of the heat transfer tube on the gas side, and the heat transfer efficiency of the entire heat exchanger is reduced by suppressing the decrease in the heat transfer coefficient outside the tube. It is desired to improve.
[0011]
Furthermore, if an attempt is made to produce a heat exchanger in which the tube diameter of the liquid side heat transfer tube is smaller than the gas side tube diameter, through holes with different hole diameters are formed in the plate fins depending on the tube diameter of the heat transfer tube. The mold must be taken along the long side of the plate fin. However, since the conventional plate fin manufacturing method employs a longitudinal feed method, it is difficult to mold through holes having different hole diameters along the long side direction of the plate fin.
[0012]
An object of the present invention is to improve the heat transfer efficiency by making the tube diameter of the heat transfer tube on the liquid side of the heat exchanger smaller than the tube diameter of the heat transfer tube on the gas side and suppressing a decrease in the heat transfer coefficient outside the tube. It is to provide a heat exchanger and to provide a heat exchanger manufacturing method suitable for the heat exchanger.
[0013]
[Means for Solving the Problems]
The heat exchanger according to claim 1, wherein a plurality of plate fins arranged at predetermined intervals in the plate thickness direction and air to pass in the fin width direction and the plurality of plate fins in the plate thickness direction And a plurality of heat transfer tubes that are mounted to pass through. The plate fin has a shape in which the fin width decreases continuously or stepwise from one to the other. The plurality of heat transfer tubes are composed of two or more types of different diameter tubes. Then, a large portion of the fin width of the plate fins is arranged large-diameter heat transfer tubes, the small diameter of the heat transfer tube than the heat transfer tubes of larger diameter is arranged in the lower portion of fin width.
[0014]
In this heat exchanger, the fin width of the plate fin has a shape that decreases continuously or stepwise from one to the other, and a large-diameter heat transfer tube is arranged in a portion where the fin width of the plate fin is large. Since the small-diameter heat transfer tube is disposed in the portion having the small fin width, the dimensional ratio between the tube diameter of the heat transfer tube and the fin width of the plate fin can be kept as constant as possible. As a result, the heat transfer efficiency of the heat exchanger as a whole can be reduced by suppressing the decrease in the heat transfer coefficient outside the tube while making the tube diameter of the heat transfer tube on the liquid side of the heat exchanger smaller than the tube diameter of the heat transfer tube on the gas side. Can be improved.
[0015]
A heat exchanger according to a second aspect is the heat exchanger according to the first aspect, wherein the ratio of the plate fin having a large fin width to the portion having a small fin width is in a range of 0.25 or more and 0.67 or less.
[0016]
In this heat exchanger, the ratio of the fins with a small fin width to the fins with a small fin width is in the range of 0.25 or more and 0.67 or less. The effect of improving the heat transfer efficiency of the entire heat exchanger becomes even more remarkable.
[0017]
A heat exchanger according to a third aspect is the heat exchanger according to the first or second aspect, wherein the plate fins are arranged in the fin width direction when a plurality of plate fins are arranged in the fin width direction of the plate fins at the time of molding. It has a shape that can be arranged without overlapping each other and without leaving a gap in the fin width direction.
[0018]
In this heat exchanger, it is possible to reduce the material loss of the plate-shaped material when the plate fin is manufactured from the plate-shaped material.
[0019]
A heat exchanger according to a fourth aspect of the present invention is the heat exchanger according to the third aspect, wherein the plate fins are arranged by rotating adjacent plate fins 180 degrees so that the plate fins do not overlap each other in the fin width direction. It has a shape that can be arranged without leaving a gap in the width direction.
[0020]
The manufacturing method of the heat exchanger of Claim 5 is a manufacturing method of the heat exchanger of Claim 3 or 4, Comprising: The following processes are provided.
[0021]
The plate material is fed in one direction, the plate fin width is taken in the plate material feed direction, and the plate fin molding direction is taken as the direction perpendicular to the plate material feed direction, and then the plate is taken. Fin manufacturing process for manufacturing fins.
[0022]
An assembly process in which a plurality of heat transfer tubes are inserted through the plate fins in the plate thickness direction to assemble the heat exchanger.
[0023]
In this heat exchanger manufacturing method, the plate fins are made by sequentially taking the plate fins in the direction orthogonal to the feed direction of the plate material (hereinafter referred to as a transverse feed method). It is possible to use a mold that matches the shape of the plate fin. Thereby, it is possible to mold a fin shape in which the fin width decreases continuously or stepwise while forming through holes having different hole diameters from one to the other.
[0024]
The air conditioner of Claim 6 is provided with the heat exchanger in any one of Claims 1-4.
[0025]
In this air conditioner, since the heat transfer efficiency of the heat exchanger is improved, the air conditioning performance of the entire air conditioner can be improved.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings.
[0027]
(1) Structure of heat exchanger FIG. 4 is a schematic perspective view showing an outdoor unit of an air conditioner that employs the heat exchanger 1 of the first embodiment of the present invention. The heat exchanger 1 is L-shaped and exchanges heat with an air flow (see arrows A 1 and B 1 ) blown from the rear side of the casing 12 of the outdoor unit toward the front side by the propeller fan 11. It is used to evaporate or condense the refrigerant flowing inside the heat transfer tube.
[0028]
The heat exchanger 1 includes a plurality of plate fins 2 arranged at a predetermined interval in the plate thickness direction, and a plurality of heat transfer tubes 3 attached through the plurality of plate fins 2 in the plate thickness direction. ing. Plate fin 2, as shown in FIGS. 4 and 5 (specifically, from the top of the outdoor unit downward) toward the fin width is one to the other continuously W fin width from W 1 It has a shape that decreases to 2 . The plate fin 2 is provided with a plurality of through holes through which the plurality of heat transfer tubes 3 penetrate. The plurality of through holes are composed of two or more types of different diameter holes. A large diameter through hole is disposed in a portion having a large fin width, and a small diameter through hole is disposed in a portion having a small fin width. In the present embodiment, the plurality of through holes are composed of three types of different diameter holes 2a, 2b, and 2c. The different diameter holes 2 a are eight holes arranged downward from the upper end (W 1 side) of the plate fin 2. The different diameter holes 2b are eight holes having a smaller diameter than the different diameter holes 2a, and are arranged below the different diameter holes 2a. The different diameter holes 2c are eight holes having a smaller diameter than the different diameter holes 2b, and are arranged on the lowermost end side (W 2 side).
[0029]
The plurality of heat transfer tubes 3 are composed of two or more types of different diameter tubes. A large-diameter heat transfer tube is disposed in the upper portion of the heat exchanger 1, and a small-diameter heat transfer tube is disposed in the lower portion of the heat exchanger 1. Yes. In the present embodiment, the plurality of different-diameter pipes are composed of three types of different-diameter pipes 13, 14, and 15. The different diameter tubes 13, 14, and 15 have hairpin-shaped hairpin portions 13a, 14a, and 15a, respectively, at one end thereof. Each of the different diameter tubes 13, 14, 15 is arranged four by four so as to correspond to the different diameter holes 2 a, 2 b, 2 c formed in the plate fin 2. That is, the different diameter pipe 13 has the largest diameter, the different diameter pipe 14 has a smaller diameter than the diameter of the different diameter pipe 13, and the different diameter pipe 15 has a smaller diameter than the diameter of the different diameter pipe 14. It is. The tube end portion of the different diameter tube 13 opposite to the hairpin portion 13 a is connected to the tube end portion of the adjacent different diameter tube 13 by the U-shaped tube 4. Further, the tube end portion of the different diameter tube 13 adjacent to the tube end portion of the different diameter tube 14 is connected to the tube end portion of the different diameter tube 14 by the U-shaped tube 5. Here, the U-shaped tube 5 is provided with a reducer for corresponding to the diameter of the different diameter tube 14 at one end of the U-shaped tube having a diameter corresponding to the different diameter tube 13. The tube end portion of the different diameter tube 14 is connected to the tube end portion of the adjacent different diameter tube 14 by the U-shaped tube 6. The tube end on the side opposite to the hairpin portion 14a of the different diameter tube 14 adjacent to the tube end portion of the different diameter tube 15 is the tube end of the different diameter tube 15 by the U-shaped tube 7 provided with a reducer, like the U-shaped tube 5. Connected to the department. The pipe end of the different diameter pipe 15 is connected to the pipe end of the adjacent different diameter pipe 15 by the U-shaped pipe 8.
[0030]
As a result, the heat exchanger 1 has a shape in which the fin width of the plate fins 2 decreases from the upper part toward the lower part, and a plurality of heat transfer tubes 3 including the different-diameter tubes 13, 14, 15 are provided so as to correspond thereto. The tube diameter is arranged.
[0031]
Next, a specific example of the fin width dimension of the plate fin 2 will be described. The fin width W 1 (part with a large fin width) and the fin width W 2 (part with a small fin width) are set according to the tube diameter of the plurality of heat transfer tubes 3 used. For example, the fin width W 1 is 12 mm to 30 mm, and the fin width W 2 is 3 mm to 20 mm. That is, the ratio of the fin width W 2 to the fin width W 1 (W 2 / W 1 ) is in the range of 0.25 to 0.67.
[0032]
(2) Manufacturing of heat exchanger Next, the manufacturing method of the heat exchanger 1 is demonstrated. The manufacturing process of the heat exchanger 1 includes a fin manufacturing process for manufacturing a plurality of plate fins 2 and a plurality of heat transfer tubes 3 made of different diameter tubes 13, 14, 15 in the plate thickness direction of the plate fins 2. Mounting and assembling the heat exchanger 1.
[0033]
In the fin manufacturing process for manufacturing the plate fins 2, a plate-shaped material made of a thin plate is fed in one direction, and is molded into a predetermined fin shape using a press die. In particular, the fin manufacturing step, as shown in FIG. 6, in order from the plate material X 1 that is sent in one direction (E 1 direction) to produce a plate fin 2, as templating method of each plate fin 2 takes a long side of the plate fins 2 in the direction (the width direction of the plate material X 1) which is perpendicular to the E 1 direction, E 1 direction (plate material X 1 in the longitudinal direction) to the short side of the plate fins 2 (fin A lateral feed system having widths W 1 and W 2 ) is adopted. Then, while feeding the plate material X 1 in the E 1 direction, the plate material X 1 is sequentially subjected to a burring process, a perforation process, a side cut process, and a cut-off process, thereby producing a plurality of plate fins 2. To do.
[0034]
Burring process, different-diameter hole 2a of the heat transfer tubes in the plate material X 1 is penetrated, 2b, a step of templating the 2c. Specifically, the plate fins 2 having the shape shown in FIG. 5 are molded so as to be arranged without gaps in the fin width direction. Specifically, the adjacent plate fins 2 are arranged to be rotated 180 degrees. Here, as the metal mold for burring, a mold that molds a plurality of plate fins 2 (in this embodiment, two each) is adopted.
[0035]
Perforation forming step is to place the perforations 9 at a position corresponding to the fin shape of plate fins 2 of plate material X 1.
[0036]
Side cutting step, cutting the plate material X 1 at a position corresponding to the end portion of the fin longitudinal direction of the perforations 9.
[0037]
In the cut-off processing step, the plate fin 2 is cut in the direction that intersects the feeding direction of the plate-like material X 1 to produce a plurality of plate fins 2 having a predetermined fin shape. It is a process.
[0038]
Thereafter, in the assembly process, a plurality of heat transfer tubes 3 composed of different diameter tubes 13, 14, and 15 are mounted so as to penetrate in the plate thickness direction of the plurality of plate fins 2, and the tube ends of the heat transfer tubes 3 are U-shaped. The heat exchanger 1 is assembled by connecting with tubes.
[0039]
(3) Operation of Heat Exchanger Next, the operation of the heat exchanger 1 will be described with reference to FIG. The heat exchanger 1 functions as a refrigerant condenser when an air conditioner indoor unit (not shown) performs a cooling operation, and when the air conditioner indoor unit (not shown) performs a heating operation. It functions as a refrigerant evaporator. When the heat exchanger 1 functions as a condenser, the refrigerant gas flows into the tube of the heat transfer tube 3 from the tube end C 1 , flows through the heat transfer tube 3, and air flows outside the tube of the heat transfer tube 3. It is condensed by heat exchange and flows out from the pipe end D 1 as a refrigerant liquid. On the contrary, when the heat exchanger 1 functions as an evaporator, the refrigerant liquid flows into the tube of the heat transfer tube 3 from the tube end D 1 and flows through the heat transfer tube 3, and passes outside the tube of the heat transfer tube 3. and it evaporated exchanging heat with air flowing through and out of tube end C 1 become refrigerant gas.
[0040]
(4) Features of heat exchanger and manufacturing method The heat exchanger and manufacturing method of the present embodiment have the following features.
[0041]
(A) Improvement of heat transfer efficiency In the heat exchanger 1 of the present embodiment, the fin width of the plate fin 2 has a shape that continuously decreases from one to the other. Since the large-diameter heat transfer tube 13 is arranged in the large portion and the small-diameter heat transfer tube 15 is arranged in the small fin width portion, the tube diameter and plate of the heat transfer tube 3 composed of the different-diameter tubes 13, 14, 15 are arranged. The dimensional relationship with the fin width of the fin 2 can be kept as optimal as possible. Thereby, while making the tube diameter of the heat transfer tube 15 on the liquid side of the heat exchanger 1 smaller than the tube diameter of the heat transfer tube 13 on the gas side, the heat transfer coefficient outside the tube is suppressed and the heat of the entire heat exchanger is reduced. Transmission efficiency can be improved. Moreover, in an air conditioner equipped with such a heat exchanger, air conditioning performance is improved.
[0042]
(B) Reduction of pressure loss outside heat transfer tube In the heat exchanger 1 of the present embodiment, as shown in FIG. 5, the fin width W 1 on the gas side of the plate fin 2 is the fin of the conventional heat exchanger 51. Although the width W 0 is the same as or slightly larger than the width W 0 (specifically, the fin width W 0 is a dimension range of 10 mm to 30 mm), the liquid-side fin width W 2 is equal to the conventional heat exchanger 51. Is smaller than Thereby, the pressure loss of the pipe outer side of the heat exchanger 1 can be reduced more than before.
[0043]
(C) in transverse feed scheme adopted plate fin manufacturing method manufacturing method of the heat exchanger 1 of this embodiment, the in the production of plate fins 2, the feed direction of the templating direction plate material X 1 of the plate fin 2 A lateral feed method is adopted in which the molds are sequentially molded and manufactured in a direction orthogonal to the direction. For this reason, what matches the shape of the metal mold | die for mold taking with the shape of the plate fin 2 can be used. Thereby, it is possible to obtain a fin shape in which the fin width is continuously reduced while the plate fin 2 is formed with through holes having different hole diameters from one to the other.
Further, when the plate fins 2 arrange the plurality of plate fins 2 in the fin width direction of the plate fins 2, the plate fins 2 are arranged without overlapping each other in the fin width direction and without gaps in the fin width direction. because it has a shape that can, it is possible to reduce the material loss of plate material X 1. Since a plurality of plate fins 2 are molded, productivity is improved.
[0044]
[Second Embodiment]
In the first embodiment, the fin width of the plate fin 2 is continuously changed as shown in FIG. 5, but the fin width is gradually increased from one to the other like the plate fin 22 shown in FIG. There may also be shaped to be smaller from W 1 to W 2. Even in this case, the same effect as the first embodiment can be obtained.
[0045]
[Third Embodiment]
In the first and second embodiments, the plate fins 2 have a symmetrical shape with respect to the center in the width direction as shown in FIGS. 5 and 7, but two plates like the plate fin 32 shown in FIG. When the fins are arranged in the fin width direction, they may have a rectangular shape. In this case, the material loss of the plate-like material can be further reduced as compared with the first and second embodiments.
[0046]
[Other Embodiments]
As mentioned above, although embodiment of this invention was described based on drawing, a specific structure is not restricted to these embodiment, It can change in the range which does not deviate from the summary of invention.
[0047]
For example, the number of heat transfer tubes and the types of different diameter tubes in the heat exchanger are not limited to the three embodiments.
[0048]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
[0049]
In the invention according to claims 1 and 2, heat exchange is performed by suppressing the decrease in the heat transfer coefficient outside the tube while making the tube diameter of the heat transfer tube on the liquid side of the heat exchanger smaller than the tube diameter of the heat transfer tube on the gas side. The heat transfer efficiency of the entire vessel can be improved.
[0050]
In the inventions according to claims 3 and 4, when the plate fin is made from the plate material and manufactured, the material loss of the plate material can be reduced.
[0051]
In the invention according to claim 5, it is possible to manufacture fin-shaped plate fins in which the fin width decreases continuously or stepwise while forming through holes having different hole diameters from one to the other.
[0052]
In the invention concerning Claim 6, since the heat transfer efficiency of a heat exchanger is improving, the air conditioning performance of the whole air conditioner can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing an outdoor unit of an air conditioner that employs a conventional heat exchanger.
FIG. 2 is a view of a plate fin of a conventional heat exchanger as viewed from the plate thickness direction.
FIG. 3 is a view showing a manufacturing process of a plate fin of a conventional heat exchanger.
FIG. 4 is a schematic perspective view showing an outdoor unit of an air conditioner that employs the heat exchanger according to the first embodiment of the present invention.
FIG. 5 is a view of plate fins of the heat exchanger according to the first embodiment of the present invention as viewed from the plate thickness direction.
FIG. 6 is a diagram showing a manufacturing process of plate fins of the heat exchanger according to the first embodiment of the present invention.
FIG. 7 is a view of plate fins of a heat exchanger according to a second embodiment of the present invention as viewed from the plate thickness direction.
FIG. 8 is a view of plate fins of a heat exchanger according to a third embodiment of the present invention as viewed from the plate thickness direction.
[Explanation of symbols]
1 Heat Exchanger 2, 22, 32 Plate Fin 3 Heat Transfer Tube 13, 14, 15 Different Diameter Tube X 1 Plate Material W 1 Fin Width W 2 Fin Width

Claims (6)

一方から他方に向かって連続的又は段階的にフィン幅が小さくなる形状を有し、板厚方向に所定の間隔を空け、かつ、フィン幅方向に空気を通過させるように配置された複数のプレートフィン(2、22、32)と、
前記複数のプレートフィン(2、22、32)を板厚方向に貫通して装着された2種類以上の異径管(13、14、15)からなる複数の伝熱管(3)とを備え、
前記プレートフィン(2、22、32)のフィン幅の大きい部分には大径の伝熱管が配置され、フィン幅の小さい部分には前記大径の伝熱管よりも小径の伝熱管が配置されている、
熱交換器。
A plurality of plates having a shape in which the fin width decreases continuously or stepwise from one side to the other, with a predetermined interval in the plate thickness direction , and arranged to allow air to pass in the fin width direction Fins (2, 22, 32);
A plurality of heat transfer tubes (3) composed of two or more types of different diameter tubes (13, 14, 15) mounted through the plurality of plate fins (2, 22, 32) in the thickness direction;
A large-diameter heat transfer tube is disposed in a portion of the plate fin (2, 22, 32) having a large fin width, and a small-diameter heat transfer tube is disposed in a portion having a small fin width than the large-diameter heat transfer tube. Yes,
Heat exchanger.
前記プレートフィン(2、22、32)のフィン幅の大きい部分(W1)に対するフィン幅の小さい部分(W2)との比(W2/W1)は、0.25以上、0.67以下の範囲である、請求項1に記載の熱交換器。Wherein the ratio of the small portion of the fin width (W 2) for a large portion of the fin width of the plate fins (2,22,32) (W 1) ( W 2 / W 1) is 0.25 or more, 0.67 The heat exchanger according to claim 1, which is in the following range. 前記プレートフィン(2、22、32)は、型取りの際に、前記複数のプレートフィン(2、22、32)を前記プレートフィン(2、22、32)のフィン幅方向に並べると、前記プレートフィン(2、22、32)同士がフィン幅方向に互いに重なり合うことなく、かつ、フィン幅方向に隙間を空けることなく並べることができる形状を有している、
請求項1又は2に記載の熱交換器。
When the plate fins (2, 22, 32) are arranged in the fin width direction of the plate fins (2, 22, 32) when the molds are taken, The plate fins (2, 22, 32) have a shape that can be arranged without overlapping each other in the fin width direction and without a gap in the fin width direction.
The heat exchanger according to claim 1 or 2.
前記プレートフィン(2、22、32)は、隣り合うプレートフィン(2、22、32)を180度回転させて並べることによって、前記プレートフィン(2、22、32)同士がフィン幅方向に互いに重なり合うことなく、かつ、フィン幅方向に隙間を空けることなく並べることができる形状を有している、
請求項3に記載の熱交換器。
The plate fins (2, 22, 32) are arranged by rotating adjacent plate fins (2, 22, 32) by 180 degrees so that the plate fins (2, 22, 32) are aligned with each other in the fin width direction. It has a shape that can be arranged without overlapping and without leaving a gap in the fin width direction,
The heat exchanger according to claim 3.
請求項3又は4に記載の熱交換器の製造方法であって、
板状素材(X1)を一方向に送り、前記板状素材(X 1 )の送り方向にプレートフィン(2、22、32)のフィン幅をとりつつ、プレートフィン(2、22、32)の型取り方向を前記板状素材(X1)の送り方向に直交する方向として順次型取りして、プレートフィン(2、22、32)を製造するフィン製造工程と、
複数の伝熱管(3)を前記プレートフィン(2、22、32)の板厚方向に貫通させて装着して、熱交換器を組み立てる組み立て工程と、
を備えた熱交換器の製造方法。
It is a manufacturing method of the heat exchanger of Claim 3 or 4,
The plate material (X 1 ) is fed in one direction, and the fin width of the plate fins (2, 22, 32) is taken in the feed direction of the plate material (X 1 ), while the plate fins (2, 22, 32). A fin manufacturing step of manufacturing plate fins (2, 22, 32) by sequentially taking the mold forming direction as a direction orthogonal to the feeding direction of the plate material (X 1 ),
An assembly step of assembling a heat exchanger by attaching a plurality of heat transfer tubes (3) through the plate fins (2, 22, 32) in the thickness direction;
The manufacturing method of the heat exchanger provided with.
請求項1〜4のいずれかの熱交換器を備えた空気調和機。  The air conditioner provided with the heat exchanger in any one of Claims 1-4.
JP2002042860A 2002-02-20 2002-02-20 HEAT EXCHANGER, HEAT EXCHANGER MANUFACTURING METHOD, AND AIR CONDITIONER Expired - Fee Related JP3979118B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002042860A JP3979118B2 (en) 2002-02-20 2002-02-20 HEAT EXCHANGER, HEAT EXCHANGER MANUFACTURING METHOD, AND AIR CONDITIONER
AU2003207046A AU2003207046A1 (en) 2002-02-20 2003-02-10 Heat exchanger, heat exchanger manufacturing method, and air conditioner
PCT/JP2003/001396 WO2003071216A1 (en) 2002-02-20 2003-02-10 Heat exchanger, heat exchanger manufacturing method, and air conditioner
CNA03804028XA CN1633578A (en) 2002-02-20 2003-02-10 Heat exchanger, heat exchanger manufacturing method, and air conditioner
EP03703315A EP1486748A4 (en) 2002-02-20 2003-02-10 Heat exchanger, heat exchanger manufacturing method, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002042860A JP3979118B2 (en) 2002-02-20 2002-02-20 HEAT EXCHANGER, HEAT EXCHANGER MANUFACTURING METHOD, AND AIR CONDITIONER

Publications (2)

Publication Number Publication Date
JP2003240472A JP2003240472A (en) 2003-08-27
JP3979118B2 true JP3979118B2 (en) 2007-09-19

Family

ID=27750506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002042860A Expired - Fee Related JP3979118B2 (en) 2002-02-20 2002-02-20 HEAT EXCHANGER, HEAT EXCHANGER MANUFACTURING METHOD, AND AIR CONDITIONER

Country Status (5)

Country Link
EP (1) EP1486748A4 (en)
JP (1) JP3979118B2 (en)
CN (1) CN1633578A (en)
AU (1) AU2003207046A1 (en)
WO (1) WO2003071216A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7337832B2 (en) * 2003-04-30 2008-03-04 Valeo, Inc. Heat exchanger
BR0303172A (en) * 2003-07-21 2005-04-05 Multibras Eletrodomesticos Sa Evaporator for refrigerator
KR101189443B1 (en) * 2004-08-16 2012-10-09 엘지전자 주식회사 Heat changer structure for airconditioner
JP2008111622A (en) * 2006-10-31 2008-05-15 Toshiba Kyaria Kk Heat exchanger and outdoor unit of air conditioner using the same
JP2011247482A (en) * 2010-05-27 2011-12-08 Panasonic Corp Refrigeration device and cooling and heating device
CN102116584A (en) * 2011-01-14 2011-07-06 广东美的电器股份有限公司 Single-row variable pipe diameter heat exchanger
JP5447569B2 (en) * 2012-03-26 2014-03-19 ダイキン工業株式会社 Air conditioner heat exchanger and air conditioner
WO2015059832A1 (en) * 2013-10-25 2015-04-30 三菱電機株式会社 Heat exchanger and refrigeration cycle device using said heat exchanger
CN104001836B (en) * 2014-05-22 2016-08-24 辽宁省机械研究院有限公司 Heat exchanger core body tube expansion Handling device and using method the most up and down
WO2018229829A1 (en) * 2017-06-12 2018-12-20 三菱電機株式会社 Outdoor unit
CN107763830B (en) * 2017-11-09 2024-03-19 珠海格力电器股份有限公司 Heat exchanger and air conditioner indoor unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746037B2 (en) * 1987-04-08 1995-05-17 株式会社日立製作所 Heat exchanger and manufacturing method thereof
US5157941A (en) * 1991-03-14 1992-10-27 Whirlpool Corporation Evaporator for home refrigerator
JPH0798165A (en) * 1993-09-30 1995-04-11 Toshiba Corp Heat exchanger

Also Published As

Publication number Publication date
WO2003071216A1 (en) 2003-08-28
EP1486748A4 (en) 2008-06-25
EP1486748A1 (en) 2004-12-15
CN1633578A (en) 2005-06-29
JP2003240472A (en) 2003-08-27
AU2003207046A1 (en) 2003-09-09

Similar Documents

Publication Publication Date Title
EP2869016B1 (en) Heat exchanger, method for manufacturing heat exchanger, and air conditioner
WO2014091782A1 (en) Flat tube heat exchange apparatus, and outdoor unit for air conditioner provided with same
JP3979118B2 (en) HEAT EXCHANGER, HEAT EXCHANGER MANUFACTURING METHOD, AND AIR CONDITIONER
JP2006336935A (en) Outdoor unit for refrigeration air conditioner
JP2005083606A (en) Heat exchanger with fin and its manufacturing method
US7013961B2 (en) End plate for heat exchangers, heat exchanger having the same, and manufacturing method thereof
JP2007046868A (en) Evaporator
JP6157217B2 (en) Flat tube heat exchanger, outdoor unit of air conditioner equipped with the same, and method of manufacturing flat tube heat exchanger
JP2004019999A (en) Heat exchanger with fin, and manufacturing method therefor
JP2004116845A (en) Heat exchanger and its manufacturing method
WO2021161729A1 (en) Heat exchanger and air conditioner using same
JP2000154989A (en) Air heat exchanger
JPH02166394A (en) Heat exchanger with fin
JP2001091101A (en) Heat exchanger for air conditioner
JPS59206128A (en) Production of plate-finned heat exchanger
JP2008051352A (en) Heat exchanger, indoor unit of air conditioner and manufacturing method of heat exchanger
JPH1054685A (en) Heat exchanger and manufacture thereof
WO2013088722A1 (en) Air conditioner
JP6599023B2 (en) Heat exchanger, heat exchanger manufacturing method and fin assembly
JP4168333B2 (en) Manufacturing method of heat exchanger plate fins
JP2002257483A (en) Plate fin type heat exchanger
JP2010261638A (en) Indoor unit of air conditioner, heat exchanger used in the same, and method of manufacturing heat exchanger
EP3546875B1 (en) Heat exchanger, refrigeration cycle device, and method for manufacturing heat exchanger
JP7006376B2 (en) Heat exchanger
KR100807747B1 (en) Cooling fin for heat exchanger and its apparatus and method for manufacturing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R151 Written notification of patent or utility model registration

Ref document number: 3979118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees