JP3978364B2 - High strength steel wire rod excellent in drawability and method for producing the same - Google Patents

High strength steel wire rod excellent in drawability and method for producing the same Download PDF

Info

Publication number
JP3978364B2
JP3978364B2 JP2002125406A JP2002125406A JP3978364B2 JP 3978364 B2 JP3978364 B2 JP 3978364B2 JP 2002125406 A JP2002125406 A JP 2002125406A JP 2002125406 A JP2002125406 A JP 2002125406A JP 3978364 B2 JP3978364 B2 JP 3978364B2
Authority
JP
Japan
Prior art keywords
steel wire
strength steel
strength
drawability
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002125406A
Other languages
Japanese (ja)
Other versions
JP2003321742A (en
Inventor
哲夫 白神
克彦 菊地
邦和 冨田
義正 船川
毅 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Bars and Shapes Corp
Original Assignee
JFE Steel Corp
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Bars and Shapes Corp filed Critical JFE Steel Corp
Priority to JP2002125406A priority Critical patent/JP3978364B2/en
Publication of JP2003321742A publication Critical patent/JP2003321742A/en
Application granted granted Critical
Publication of JP3978364B2 publication Critical patent/JP3978364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は橋梁用のワイヤーロープ、PC鋼線、ばね、スチールコード等に使用される高強度鋼線材およびその製造方法に関し、特に伸縮加工性に優れたφ16mm以下ものに関する。
【0002】
【従来の技術】
橋梁用のワイヤーロープ、PC鋼線、ばね、スチールコード、高強度鋼線材はJISG3502(ピアノ線材)やJISG3506(硬鋼線材)などの高炭素鋼を、パテンテイング処理(オンライン,オフライン)後、伸線冷間加工−熱処理−仕上げ伸線加工し、製造されている。
【0003】
高炭素鋼線材を加工硬化や合金元素の添加によるパーライトラメラ−間隔の調整により強化した場合、延性が低下するため、伸線中の断線低減や製品の撚り加工時の断線低減が課題となっている。
【0004】
断線防止の方法として、特開昭49−123923号公報、特開昭52−12611号公報には炭窒化物によりγ粒を微細化し延性を向上させる方法、特公平7−11060号公報には中心偏析におけるMnの偏析ピークを軽減させることが提案されている。
【0005】
また、特開平1−215928号公報には亜鉛メッキ鋼線のメッキ処理時、延性を向上させるため、メッキ前にブルーイング処理をすることが記載されている。尚、亜鉛メッキ鋼線のメッキ処理時の強度低下防止のため、Siを添加することがしられている。
【0006】
【発明が解決しようとする課題】
しかしながら、これらに記載の伸線後の鋼線の延性(引張試験時の絞り)は50%未満に過ぎず、更に伸線を高強度化するには不充分であり、また、亜鉛メッキ鋼線のメッキ処理時の強度低下防止のためSiを添加すると伸線性が低下し、製品コストも上昇する。
【0007】
そこで本発明では、伸線後の強度が2000MPa以上、絞り60%以上の伸線性に優れたφ16mm以下の高強度鋼線の素材(高強度鋼線材)およびその製造条件を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者等は、伸線鋼材の延性を損なわず強度を向上させる方法について、鋼の組織、組成の観点から鋭意検討を行い、低炭素鋼をフェライト単相組織とし伸線加工時の延性を向上させ、加工後の該加工による硬化と微細析出物による析出硬化を利用した場合、伸線性を損なわず高強度鋼線材が得られることを見出した。
【0009】
本発明は以上の知見を基に更に検討を加えてなされたものである。すなわち、請求項1記載の発明は、質量%で、C ≦0.1%、Si≦0.3%、Mn≦2%、Ti:0.03〜0.20%、Mo:0.05〜0.6%、残部Fe及び不可避的不純物よりなり、フェライト単相組織を有し、フェライト相中に粒径10nm未満の微細析出物が全析出物の90%以上、分散析出していることに特徴を有する伸線性に優れた高強度鋼線材である。
【0010】
請求項2記載の発明は、請求項1記載の伸線性に優れた高強度鋼線材において、鋼組成として更に式(1)を満足することに特徴を有するものである。
0.5≦(C/12)/{(Ti/48)+(Mo/96)}≦1.5 --- (1)
但し、各元素は含有量(質量%)とする。
【0011】
請求項3記載の発明は、請求項1または2記載の伸線性に優れた高強度鋼線材において、微細析出物がTiとMoの炭化物からなることに特徴を有するものである。
【0012】
請求項4記載の発明は、請求項1記載の伸線性に優れた高強度鋼線材において、鋼組成として、更に質量%で、Nb≦0.08%、V≦0.15%、W≦1.5%の一種または二種以上を含有することに特徴を有するものである。
【0013】
請求項5記載の発明は、請求項4記載の伸線性に優れた高強度鋼線材において、鋼組成として更に式(2)を満足することを特徴とする。
0.5≦(C/12)/{(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)}≦1.5 --- (2)
但し、各元素は含有量(質量%)とし、含有しないものは0とする。
【0014】
請求項6記載の発明は、請求項4または5記載の伸線性に優れた高強度鋼線材において、微細析出物がTiとMoとNb、V、Wの内の少なくとも一種とを含む炭化物であることに特徴を有するものである。
【0015】
請求項7記載の発明は、請求項1〜6のいずれか一つに記載の高強度鋼線材を伸線加工することに特徴を有する引張強度2000MPa以上の高強度鋼線である。
【0016】
請求項8記載の発明は、伸線性に優れた高強度鋼線材の製造方法であって、鋼組成が請求項1、2、4、5、7のいずれか一つに記載の成分からなり、フェライト・パーライト組織を有する棒鋼をPC鋼棒に成形後、焼入れし、その後、550〜700℃に10分以上保持する焼戻しを行うことに特徴を有するものである。
【0017】
請求項9記載の発明は、伸線性に優れた高強度鋼線材の製造方法であって、請求項1、2、4、5のいずれか一つに記載の組成を有する鋼を1100℃以上で加熱後、仕上げ圧延温度800℃以上で圧延し、その後の冷却において、700〜550℃を0.5℃/sec以下の冷却速度で冷却することに特徴を有するものである。
【0019】
【発明の実施の形態】
本発明鋼線材のミクロ組織、成分組成および製造条件について以下に詳細に説明する。
【0020】
1.ミクロ組織
本発明に係る高強度鋼線材は伸線加工後、所望の強度の鋼線が得られるようミクロ組織をフェライト単相組織で且つ粒径10nm未満の微細析出物を含む組織に規定する。
【0021】
伸線前の組織をフェライト単相組織とし、該組織中に微細析出物を分散析出させた場合、伸線性を損なわず、伸線加工後、所望の強度が得られる。
【0022】
本発明においてフェライト単相組織とは、断面組織観察(200倍の光学顕微鏡組織観察)でフェライト面積率95%以上とし、好ましくは98%以上とする。
【0023】
本発明では微細析出物は粒径10nm未満とする。析出物の粒径が10nm以上の場合、伸線加工による加工硬化によってもPC鋼線等高強度鋼線として必要な引張強さが得られない。
【0024】
微細析出物の粒径は小さいほど強度向上に有効で、望ましくは5nm,更に望ましくは3nm以下とし、そのような微細析出物としてTi、Moを複合含有した炭化物、またそれらに更にNb,V,Wの一種または二種以上を含む炭化物が好ましい。
【0025】
これらの微細析出物の分布形態は特に規定しないが、母相中に均一分散(分散析出)することが望ましい。
【0026】
また、本発明において、微細析出物の大きさは、全析出物の90%以上で満足すれば、伸線加工後目的とする引張強さが得られる。但し、10nm以上の大きさの析出物は析出物形成元素を消費し、強度に悪影響をあたえるため、50nm以下とすることが好ましい。
【0027】
上述した析出物とは別に少量のFe炭化物を含有しても本発明の効果は損なわれないが、平均粒径が1μm以上のFe炭化物を多量に含むと靭性を阻害するため、本発明においては含有されるFe炭化物の大きさ上限は1μm、含有率は全体の1%以下とすることが望ましい。
【0028】
本発明における微細析出物の全析出物に占める割合は、次の方法で決定できる。まず電子顕微鏡試料を、ツインジェット法を用いた電解研磨法で作成し、加速電圧200kVで観察する。
【0029】
その際、微細析出物が母相に対して計測可能なコントラストになるように母相の結晶方位を制御し、析出物の数え落としを最低限にするために焦点を正焦点からずらしたデフォーカス法で観察を行う。
【0030】
また、析出物粒子の計測を行った領域の試料の厚さは電子エネルギー損失分光法を用いて、弾性散乱ピークと非弾性散乱ピーク強度を測定することで評価する。
【0031】
この方法により、粒子数の計測と試料厚さの計測を同じ領域について実行することができる。粒子数および粒子径の測定は試料の0.5×0.5μmの領域4箇所について行い、1μm2当たりに分布する析出物を粒径ごとの個数として算出する。
【0032】
この値と試料厚さから、析出物の1μm3当たりに分布する粒子径ごとの個数を算出し、径が10nm未満の析出物について、測定した全析出物に占める割合を算出する。
【0033】
2.成分組成
本発明鋼は上述したミクロ組織で目的とする性能が得られるが、以下の成分組成が好ましい。
【0034】

Cは強度確保のため添加する。0.1%超えて含有すると微細析出物が粗大化し、強度が低下するため0.1%以下とすることが好ましい。
【0035】
Si
Siは強度確保ため添加する。0.3%を超えると伸線時の変形抵抗が高く、断線がしやすくなるため、0.3%以下とする。
【0036】
Mn
Mnは強度向上に有効なため添加するが、2%を超えると冷間加工性を劣化させるので2%以下とする。
【0037】
Ti
TiはMoとともにTi−Mo系炭化物の析出物を微細に析出させ、強度を向上させるため添加する。0.03%未満では析出物量が少なく所望の強度が得られないため0.03%以上とし、一方、0.20%を超えて添加すると析出物が粗大化し、断線が生じるため0.03〜0.20%とする。
【0038】
Mo
MoはTiとともにTi−Mo系炭化物の析出物を微細に析出させ、強度を向上させるため添加する。所望の引張強度を確保するため0.05%以上とし、一方、0.6%を超えて添加するとベイナイト等の低温変態相を形成し、微細析出物による析出強化が不足し、強度が低下するため0.05〜0.6%とする。
Moは拡散速度が遅く、Tiとともに析出する場合、析出物の成長速度が低下し、微細な析出物が得られる。
【0039】
(C/12)/{(Ti/48)+(Mo/96)}
本パラメータは、析出物の大きさに影響を与えるもので、0.5以上、1.5以下、好ましくは0.7以上1.2以下とした場合、粒径10nm未満の微細析出物の形成が容易となる。
【0040】
微細なTi−Mo系炭化物では、炭化物中のTi,Moは原子比で2.0≧Ti/Mo≧0.2、更に微細な場合は1.5≧Ti/Mo≧0.7であることが観察された。
【0041】
更に、特性を向上させる場合、Nb,V,Wの一種または二種以上を
添加することが好ましい。
【0042】
Nb
NbはTiとともに微細析出物を形成して強度上昇に寄与する。また組織を微細化し、結晶粒の整粒により延性を向上させる。0.08%を超えると析出物が粗大化するとともに、結晶粒が過度に微細化し、延性が低下するため0.08%以下とする。
【0043】

VはTiと微細析出物を形成するが、0.15%を超えると析出物が粗大化するようになるため、0.15%以下とする。
【0044】

WはTiと微細析出物を形成するが、1.5%を超えると析出物が粗大化するようになるため、1.5%以下とする。
【0045】
これらの元素の添加においては、C,Ti,Mo,Nb,V,Wの原子比を規定することが炭化物の微細化に有効で(C/12)/{(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)}を0.5以上、1.5以下、好ましくは0.7以上1.2以下とした場合、粒径10nm未満の微細析出物の形成が容易となる。
【0046】
また、微細なTi−Mo−(Nb,V,W)系炭化物では、炭化物中の各元素は原子比で2.0≧(Ti+Nb+V)/(Mo+W)≧0.2、更に微細な炭化物では1.5≧(Ti+Nb+V)/(Mo+W)≧0.7であることが観察された。
【0047】
また、本発明鋼では上記添加元素以外の残部はFe及び不可避不純物とするが、脱酸剤としてAlを0.1%以下添加することができる。また、強度、延性を向上させる場合、Ni,Crの一種または二種をNi≦2%、Cr≦2%の範囲で添加しても構わない。伸線性を更に向上させる場合には、不可避不純物であるP,NをP≦0.040%、N≦0.0080%に規制することが望ましい。
【0048】
尚、これらの元素の含有量や添加の有無により本発明の効果が損なわれることはない。
【0049】
3.製造条件
図1は本発明に係る熱間鍛造部品の概略製造工程図でS1は線材製造工程、S2は搬送工程、S3は製品仕上げ過程を示す。線材製造工程(S1)で鋼塊を熱間圧延しφ16mm以下の線材とし、製品仕上げ過程(S3)で該線材を所定の寸法に伸線加工により鋼線とし、必要に応じてメッキ処理し、橋梁用ワイヤーロープ、PC鋼線、スチールコードなど所望の製品とする。以下に望ましい製造工程について詳細に説明する。
【0050】
圧延加熱温度
圧延加熱温度は1100℃以上とする。本発明では、圧延終了後の冷却中に微細析出物を析出させるため、熱間圧延時に溶解時から残存する炭化物を固溶させる。
【0051】
圧延加熱温度を1100℃未満とした場合、溶解時から残存するTi−Mo系炭化物等が固溶しないため1100℃以上とする。
【0052】
圧延仕上げ温度
圧延仕上げ温度は800℃未満では圧延荷重が高く真円度が劣化するため800℃以上とする。
【0053】
冷却速度
圧延後の冷却速度の調整により、伸線加工前に微細析出物を析出させ、該析出による析出強化と伸線加工後の加工硬化により、所望の強度の製品とする。微細析出物の析出温度範囲の700〜550℃を、微細析出物が得られる限界冷却速度(0.5℃/sec)以下で冷却する。尚、冷却速度の規定は圧延後、線材が通過する巻き取り、搬送、集束のいずれかの工程において満足すれば良く、特にその工程は規定しない。図2に巻き取り以降の設備配置の一例を示す。
【0054】
【実施例】
[実施例1]
表1に示す種々の組成の鋼(No.1〜19)を用い、伸線性、線材の強度に及ぼす成分組成の影響について調査した。表中No.1〜11は本発明例(開発例)、No.12〜18は比較例、No.19は従来例を示す。
【0055】
供試鋼を150kg真空溶解炉にて溶製し、1100℃以上で加熱後、仕上げ温度:950℃で圧延し線材とした後、巻取り温度:880℃で巻取り、冷却速度0.1℃/secで室温まで冷却した。
【0056】
得られた線材は酸洗し、潤滑剤で皮膜処理を行った後、各ダイスでの減面率が平均25%のパススケジュールでφ2mmまで1次伸線し、更にφ0.5mmまで湿式伸線をおこなった。本工程において熱処理は実施しなかった。
【0057】
圧延まま、1次伸線後および湿式伸線後に引張試験、捻回試験を行った。引張試験では引張強度、絞りを求めた。
【0058】
捻回試験は線径の100倍の長さの部分を30rpmで断線するまで捻り、断線までの回転数と縦割れの発生状況を観察した。2次伸線後、0.4mmφの引張試験での絞りは測定困難のため、延性は捻回値のみ求めた。
【0059】
組織観察は断面を光学顕微鏡で観察するとともに、析出物を透過型電子顕微鏡(TEM)で観察し、その組成をエネルギー分散型X線分光装置(EDX)により求めた。
【0060】
表2に試験結果を示す。本発明例(開発例)No.1〜11は伸線中の断線もなく、伸線後、所望の強度、延性が得られている。
【0061】
一方、比較例のNo.12〜18、従来例のNo.19は微細析出物が得られなかった。No.12はCが上限を超え本発明範囲外で圧延後の組織がフェライト+パーライトとなり、延性が低く、伸線中に断線が多発し、捻回試験での縦われも顕著に観察された。
【0062】
No.13はTi,Moが、No.14はMoが、No.15はTiが本発明範囲外で析出強化量が不足し、伸線後所望の強度が得られなかった。No.15はWが本発明範囲外であり伸線中の断線、捻回値が低く冷間加工性に劣る。
【0063】
No.16はMo,Ti,Vが本発明範囲外で伸線性が悪く断線が頻発し、強度が低い。No.17はSiが本発明範囲外で高く、伸線中の断線が顕著で、またTiが本発明範囲外で低く析出強化が不足し強度が低い。
【0064】
No.18はMoが本発明範囲外で高く伸線中に断線、捻回試験時に縦割れが観察された。No.19は従来鋼(SWRH82クラス)で、延性不足で1次伸線でも断線が頻発し、2次伸線加工を実施できなかった。
【0065】
【表1】

Figure 0003978364
【0066】
【表2】
Figure 0003978364
【0067】
[実施例2]
表3に、表1中、No.3の組成の鋼を用い、圧延後の引張強度(伸線加工前の引張強度)におよぼす製造条件の影響を調査した結果、表4に更に伸線加工後480℃で30秒の浸漬により亜鉛めっきを施した結果を示す。
【0068】
表中、No.20はNo.3の組成の鋼で圧延加熱温度を本発明範囲外で低くし、No.21はNo.3の組成の鋼で仕上げ温度、冷却速度を本発明範囲外としたものである。
【0069】
本発明鋼であるNo.3は、圧延後1000MPaを超える引張強度が得られたが、No.20,21はいずれの鋼も析出強化が不充分で十分な強度が得られなかった。
【0070】
また、480℃×30秒に浸漬される亜鉛めっき後も本発明鋼では強度低下はほとんど観察されなかった。これは、圧延後得られる微細析出物が高温でも安定なためであり、本発明の特徴のひとつである。
【0071】
【表3】
Figure 0003978364
【0072】
【表4】
Figure 0003978364
【0073】
【発明の効果】
本発明によれば、伸線性に優れ且つ高強度な鋼線材およびその製造方法が得られ、産業上極めて有用である。
【図面の簡単な説明】
【図1】 本発明鋼線材の製造工程の一例を示す図。
【図2】 線材の巻取り以降の設備の状況を示す図。
【符号の説明】
1 巻取り装置
2 搬送装置
3 集束装置
4 鋼材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel wire used for wire ropes for bridges, PC steel wires, springs, steel cords, and the like, and a method for producing the same, and particularly relates to one having a diameter of 16 mm or less excellent in stretch workability.
[0002]
[Prior art]
Wire ropes for bridges, PC steel wires, springs, steel cords, and high-strength steel wires are drawn from high carbon steels such as JISG3502 (piano wire) and JISG3506 (hard steel wire) after patenting (online and offline). It is manufactured by cold working-heat treatment-finishing wire drawing.
[0003]
When high carbon steel wire is strengthened by adjusting the pearlite lamella spacing by work hardening or adding alloying elements, ductility decreases, so reducing wire breakage during wire drawing and wire breakage during twisting of products is an issue. Yes.
[0004]
As methods for preventing disconnection, JP-A-49-123923 and JP-A-52-12611 disclose a method of improving γ grains by carbonitride to improve ductility, and JP-B-7-11060 discloses a method for improving the ductility. It has been proposed to reduce the segregation peak of Mn in segregation.
[0005]
Japanese Patent Application Laid-Open No. 1-215928 discloses that a blueing treatment is performed before plating in order to improve ductility during the plating treatment of a galvanized steel wire. In addition, Si is added in order to prevent the strength reduction at the time of the plating process of the galvanized steel wire.
[0006]
[Problems to be solved by the invention]
However, the ductility of the steel wire after drawing described in these (drawing at the time of the tensile test) is only less than 50%, which is insufficient for further strengthening the drawing, and the galvanized steel wire. If Si is added to prevent a decrease in strength during the plating process, the drawability is lowered and the product cost is increased.
[0007]
Therefore, the present invention has an object to provide a high strength steel wire material (high strength steel wire) of φ16 mm or less having excellent strength after wire drawing of 2000 MPa or more and drawing of 60% or more, and its production conditions. To do.
[0008]
[Means for Solving the Problems]
The present inventors have intensively studied from the viewpoint of the structure and composition of the steel about the method of improving the strength without impairing the ductility of the drawn steel material, and made the low-carbon steel a ferrite single-phase structure to improve the ductility during the drawing process. It was found that a high-strength steel wire rod can be obtained without impairing the drawability when improved and by hardening by the processing after processing and precipitation hardening by fine precipitates.
[0009]
The present invention is Ru der been made in further studies based on the above findings. That is, the invention according to claim 1 is, in mass%, C ≦ 0.1%, Si ≦ 0.3%, Mn ≦ 2%, Ti: 0.03 to 0.20%, Mo: 0.05 to It consists of 0.6%, the remainder Fe and inevitable impurities, has a ferrite single-phase structure, and fine precipitates having a particle size of less than 10 nm are dispersed and precipitated in the ferrite phase by 90% or more of all precipitates. It is a high-strength steel wire with excellent drawability that has features.
[0010]
The invention described in claim 2 is characterized in that, in the high-strength steel wire rod excellent in drawability described in claim 1, the steel composition further satisfies the formula (1).
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96)} ≦ 1.5 --- (1)
However, each element has a content (% by mass).
[0011]
The invention described in claim 3 is characterized in that, in the high-strength steel wire rod excellent in drawability described in claim 1 or 2, the fine precipitates are made of carbides of Ti and Mo.
[0012]
The invention described in claim 4 is the high strength steel wire rod excellent in drawability according to claim 1, wherein the steel composition is further in mass%, Nb ≦ 0.08%, V ≦ 0.15%, W ≦ 1. It is characterized by containing 5% of one kind or two or more kinds.
[0013]
The invention described in claim 5 is characterized in that, in the high strength steel wire rod excellent in drawability described in claim 4, the steel composition further satisfies the formula (2).
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)} ≦ 1.5 −−− (2 )
However, the content of each element is the content (% by mass), and the content that is not contained is 0.
[0014]
The invention described in claim 6 is the carbide containing the at least one of Ti, Mo, Nb, V, and W in the high-strength steel wire rod excellent in drawability according to claim 4 or 5. It has a special feature.
[0015]
The invention described in claim 7 is a high-strength steel wire having a tensile strength of 2000 MPa or more, characterized by drawing the high-strength steel wire according to any one of claims 1-6.
[0016]
Invention of Claim 8 is a manufacturing method of the high strength steel wire rod excellent in drawability, Comprising: Steel composition consists of a ingredient given in any 1 paragraph of Claims 1, 2, 4, 5, and 7, It is characterized in that a steel bar having a ferrite / pearlite structure is formed into a PC steel bar, quenched and then tempered at 550 to 700 ° C. for 10 minutes or more.
[0017]
Invention of Claim 9 is a manufacturing method of the high strength steel wire rod excellent in drawability, Comprising: Steel which has the composition as described in any one of Claim 1, 2, 4, 5 is 1100 degreeC or more. It is characterized by rolling at a finish rolling temperature of 800 ° C. or higher after heating and cooling 700 to 550 ° C. at a cooling rate of 0.5 ° C./sec or lower in the subsequent cooling.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The microstructure, component composition and production conditions of the steel wire of the present invention will be described in detail below.
[0020]
1. Microstructure The high-strength steel wire according to the present invention defines the microstructure as a single-phase ferrite structure and a fine precipitate having a particle size of less than 10 nm so that a steel wire having a desired strength can be obtained after wire drawing.
[0021]
When the structure before wire drawing is a ferrite single phase structure and fine precipitates are dispersed and precipitated in the structure, a desired strength can be obtained after wire drawing without impairing wire drawing.
[0022]
In the present invention, the ferrite single phase structure is a ferrite area ratio of 95% or more, preferably 98% or more in cross-sectional structure observation (observation of 200 times optical microscope structure).
[0023]
In the present invention, the fine precipitate has a particle size of less than 10 nm. When the particle size of the precipitate is 10 nm or more, the tensile strength necessary for a high-strength steel wire such as a PC steel wire cannot be obtained even by work hardening by wire drawing.
[0024]
The smaller the particle size of the fine precipitates, the more effective for improving the strength, preferably 5 nm, more preferably 3 nm or less. As such fine precipitates, carbides containing a composite of Ti and Mo, and further Nb, V, Carbides containing one or more of W are preferred.
[0025]
Although the distribution form of these fine precipitates is not particularly defined, it is desirable to uniformly disperse (disperse precipitation) in the matrix.
[0026]
Moreover, in this invention, if the magnitude | size of a fine precipitate will satisfy | fill 90% or more of all the precipitates, the target tensile strength after wire drawing will be obtained. However, a precipitate having a size of 10 nm or more consumes a precipitate-forming element and adversely affects the strength.
[0027]
Although the effect of the present invention is not impaired even if a small amount of Fe carbide is contained in addition to the precipitate described above, toughness is inhibited when a large amount of Fe carbide having an average particle size of 1 μm or more is contained, in the present invention The upper limit of the size of Fe carbide contained is preferably 1 μm, and the content is preferably 1% or less of the whole.
[0028]
The ratio of the fine precipitates in the present invention to the total precipitates can be determined by the following method. First, an electron microscope sample is prepared by an electropolishing method using a twin jet method and observed at an acceleration voltage of 200 kV.
[0029]
At that time, the crystal orientation of the parent phase is controlled so that the fine precipitates have a measurable contrast with respect to the parent phase, and the defocus is shifted from the normal focus in order to minimize the counting of the precipitates. Observe by method.
[0030]
Moreover, the thickness of the sample in the region where the precipitate particles are measured is evaluated by measuring the elastic scattering peak and the inelastic scattering peak intensity using electron energy loss spectroscopy.
[0031]
By this method, the measurement of the number of particles and the measurement of the sample thickness can be executed for the same region. The measurement of the number of particles and the particle diameter is carried out for four locations of a 0.5 × 0.5 μm region of the sample, and the precipitates distributed per 1 μm 2 are calculated as the number for each particle diameter.
[0032]
From this value and the sample thickness, the number of precipitates distributed per 1 μm 3 of particle diameter is calculated, and the ratio of the precipitates having a diameter of less than 10 nm to the measured total precipitates is calculated.
[0033]
2. Component composition The steel of the present invention can achieve the desired performance with the microstructure described above, but the following component composition is preferred.
[0034]
C
C is added to ensure strength. If the content exceeds 0.1%, the fine precipitates become coarse and the strength decreases, so the content is preferably 0.1% or less.
[0035]
Si
Si is added to ensure strength. If it exceeds 0.3%, the deformation resistance at the time of wire drawing is high and breakage is likely to occur, so the content is made 0.3% or less.
[0036]
Mn
Mn is added because it is effective in improving the strength, but if it exceeds 2%, the cold workability deteriorates, so the content is made 2% or less.
[0037]
Ti
Ti is added to precipitate Ti-Mo carbide precipitates together with Mo to improve the strength. If less than 0.03%, the amount of precipitates is small and the desired strength cannot be obtained, so 0.03% or more. On the other hand, if added over 0.20%, the precipitates become coarse and disconnection occurs. 0.20%.
[0038]
Mo
Mo is added to precipitate Ti-Mo carbide precipitates together with Ti to improve the strength. In order to ensure the desired tensile strength, it is made 0.05% or more. On the other hand, if added over 0.6%, a low-temperature transformation phase such as bainite is formed, precipitation strengthening due to fine precipitates is insufficient, and the strength decreases. Therefore, the content is set to 0.05 to 0.6%.
Mo has a slow diffusion rate, and when it precipitates together with Ti, the growth rate of the precipitate is reduced and a fine precipitate is obtained.
[0039]
(C / 12) / {(Ti / 48) + (Mo / 96)}
This parameter affects the size of the precipitate. When the parameter is 0.5 or more and 1.5 or less, preferably 0.7 or more and 1.2 or less, the formation of fine precipitates having a particle size of less than 10 nm is formed. Becomes easy.
[0040]
For fine Ti-Mo carbides, Ti and Mo in the carbide should be 2.0 ≧ Ti / Mo ≧ 0.2 in atomic ratio, and 1.5 ≧ Ti / Mo ≧ 0.7 for finer carbides. Was observed.
[0041]
Furthermore, when improving the characteristics, it is preferable to add one or more of Nb, V, and W.
[0042]
Nb
Nb forms fine precipitates together with Ti and contributes to an increase in strength. In addition, the structure is refined and the ductility is improved by adjusting the grain size. If it exceeds 0.08%, the precipitates become coarse, the crystal grains become excessively fine, and the ductility is lowered.
[0043]
V
V forms fine precipitates with Ti, but if it exceeds 0.15%, the precipitates become coarse, so 0.15% or less.
[0044]
W
W forms fine precipitates with Ti, but if it exceeds 1.5%, the precipitates become coarse, so 1.5% or less.
[0045]
In the addition of these elements, it is effective to define the atomic ratio of C, Ti, Mo, Nb, V, and W for the refinement of carbides (C / 12) / {(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)} is 0.5 or more and 1.5 or less, preferably 0.7 or more and 1.2 or less, the particle size is less than 10 nm. It is easy to form fine precipitates.
[0046]
Further, in the fine Ti—Mo— (Nb, V, W) type carbide, each element in the carbide is 2.0 ≧ (Ti + Nb + V) / (Mo + W) ≧ 0.2 in atomic ratio, and 1 in the finer carbide. .5 ≧ (Ti + Nb + V) / (Mo + W) ≧ 0.7 was observed.
[0047]
In the steel of the present invention, the balance other than the above-mentioned additive elements is Fe and inevitable impurities, but Al can be added as a deoxidizer in an amount of 0.1% or less. Further, when improving the strength and ductility, one or two of Ni and Cr may be added in the range of Ni ≦ 2% and Cr ≦ 2%. In order to further improve the drawability, it is desirable to restrict the inevitable impurities P and N to P ≦ 0.040% and N ≦ 0.0080%.
[0048]
In addition, the effect of this invention is not impaired by content of these elements, or the presence or absence of addition.
[0049]
3. Manufacturing Conditions FIG. 1 is a schematic manufacturing process diagram of a hot forged part according to the present invention, in which S1 is a wire manufacturing process, S2 is a conveying process, and S3 is a product finishing process. The steel ingot is hot-rolled in the wire manufacturing process (S1) to obtain a wire having a diameter of 16 mm or less, and in the product finishing process (S3), the wire is formed into a steel wire by drawing to a predetermined size, and is plated as necessary. Desired products such as wire ropes for bridges, PC steel wires and steel cords. A desirable manufacturing process will be described in detail below.
[0050]
Rolling heating temperature Rolling heating temperature shall be 1100 degreeC or more. In this invention, in order to precipitate a fine precipitate during cooling after completion | finish of rolling, the carbide | carbonized_material which remains from the time of melt | dissolution at the time of hot rolling is made into a solid solution.
[0051]
When the rolling heating temperature is less than 1100 ° C., the Ti—Mo-based carbide remaining from the time of melting does not dissolve, so the temperature is set to 1100 ° C. or higher.
[0052]
Rolling finishing temperature When the rolling finishing temperature is less than 800 ° C, the rolling load is high and the roundness is deteriorated, so that the rolling finish temperature is set to 800 ° C or higher.
[0053]
By adjusting the cooling rate after the cooling rate rolling, fine precipitates are deposited before the wire drawing, and a product having a desired strength is obtained by precipitation strengthening by the precipitation and work hardening after the wire drawing. The precipitation temperature range of 700 to 550 ° C. of the fine precipitate is cooled at a critical cooling rate (0.5 ° C./sec) or less at which the fine precipitate is obtained. The regulation of the cooling rate may be satisfied in any of the winding, transporting, and converging processes through which the wire passes after rolling, and the process is not particularly defined. FIG. 2 shows an example of equipment arrangement after winding.
[0054]
【Example】
[Example 1]
Using the steels of various compositions shown in Table 1 (Nos. 1 to 19), the influence of the component composition on the drawability and the strength of the wire was investigated. No. in the table. 1-11 are examples of the present invention (development examples), No. Nos. 12 to 18 are comparative examples. Reference numeral 19 denotes a conventional example.
[0055]
The test steel was melted in a 150 kg vacuum melting furnace, heated at 1100 ° C. or higher, finished at a finishing temperature: 950 ° C. to obtain a wire rod, wound at a winding temperature: 880 ° C., and a cooling rate of 0.1 ° C. / Sec at room temperature.
[0056]
The obtained wire is pickled and treated with a lubricant, and then the primary wire is drawn to φ2 mm with a pass schedule with an average area reduction of 25% in each die, and further wet drawing to φ0.5 mm. I did it. No heat treatment was performed in this step.
[0057]
As-rolled, a tensile test and a twist test were performed after primary wire drawing and wet wire drawing. In the tensile test, tensile strength and drawing were determined.
[0058]
In the twisting test, a portion having a length 100 times the diameter of the wire was twisted until it was disconnected at 30 rpm, and the number of rotations up to the disconnection and the occurrence of vertical cracks were observed. After secondary wire drawing, the drawing in the 0.4 mmφ tensile test is difficult to measure, so the ductility was determined only for the twist value.
[0059]
In the structure observation, the cross section was observed with an optical microscope, the precipitate was observed with a transmission electron microscope (TEM), and the composition was determined with an energy dispersive X-ray spectrometer (EDX).
[0060]
Table 2 shows the test results. Invention Example (Development Example) No. Nos. 1 to 11 have no disconnection during wire drawing, and desired strength and ductility are obtained after wire drawing.
[0061]
On the other hand, no. 12-18, No. of the conventional example. No fine precipitate was obtained for No. 19. No. In No. 12, when C exceeded the upper limit and the structure after rolling was ferrite + pearlite, the ductility was low, wire breakage occurred frequently during wire drawing, and vertical deformation in the twist test was also observed remarkably.
[0062]
No. No. 13 is Ti and Mo. No. 14 is Mo. In No. 15, Ti was outside the scope of the present invention, and the precipitation strengthening amount was insufficient, and the desired strength was not obtained after wire drawing. No. No. 15 is outside the scope of the present invention, and the wire breakage during wire drawing and the twisting value are low and the cold workability is poor.
[0063]
No. In No. 16, Mo, Ti, and V are out of the scope of the present invention, the wire drawability is poor, breakage occurs frequently, and the strength is low. No. In No. 17, Si is high outside the range of the present invention, disconnection during wire drawing is remarkable, and Ti is outside the range of the present invention and precipitation strengthening is insufficient and the strength is low.
[0064]
No. In No. 18, Mo was high outside the scope of the present invention, and wire breakage was observed during wire drawing, and vertical cracks were observed during the twist test. No. No. 19 is a conventional steel (SWRH82 class), and due to insufficient ductility, disconnection frequently occurred even in primary wire drawing, and secondary wire drawing could not be performed.
[0065]
[Table 1]
Figure 0003978364
[0066]
[Table 2]
Figure 0003978364
[0067]
[Example 2]
In Table 3, in Table 1, No. As a result of investigating the influence of manufacturing conditions on the tensile strength after rolling (tensile strength before wire drawing) using steel having a composition of 3, the zinc was further immersed in 480 ° C for 30 seconds after wire drawing. The result of plating is shown.
[0068]
In the table, No. No. 20 is No. No. 3 steel with a rolling heating temperature lower than the scope of the present invention. No. 21 is No. 21. The finishing temperature and cooling rate of the steel of composition 3 are outside the scope of the present invention.
[0069]
No. which is steel of the present invention. No. 3 obtained a tensile strength exceeding 1000 MPa after rolling. No steels 20 and 21 were insufficient in precipitation strengthening, and sufficient strength could not be obtained.
[0070]
Further, even after galvanization immersed in 480 ° C. × 30 seconds, almost no reduction in strength was observed in the steel of the present invention. This is because fine precipitates obtained after rolling are stable even at high temperatures, which is one of the features of the present invention.
[0071]
[Table 3]
Figure 0003978364
[0072]
[Table 4]
Figure 0003978364
[0073]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the steel wire excellent in wire drawing property and high intensity | strength and its manufacturing method are obtained, and it is very useful industrially.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a manufacturing process of a steel wire rod according to the present invention.
FIG. 2 is a diagram showing the situation of equipment after winding of wire.
[Explanation of symbols]
1 Winding device 2 Conveying device 3 Converging device 4 Steel

Claims (9)

質量%で、
C ≦0.1%、
Si≦0.3%、
Mn≦2%、
Ti:0.03〜0.20%、
Mo:0.05〜0.6%、
残部Fe及び不可避的不純物
よりなり、フェライト単相組織を有し、フェライト相中に粒径10nm未満の微細析出物が全析出物の90%以上、分散析出していることを特徴とする伸線性に優れた高強度鋼線材。
% By mass
C ≦ 0.1%,
Si ≦ 0.3%,
Mn ≦ 2%,
Ti: 0.03 to 0.20%,
Mo: 0.05-0.6%
Remaining Fe and inevitable impurities
A high-strength steel excellent in drawability, characterized by having a ferrite single-phase structure and fine precipitates having a particle size of less than 10 nm dispersed and precipitated in the ferrite phase by 90% or more of the total precipitates wire.
鋼組成として更に式(1)を満足することを特徴とする請求項1記載の伸線性に優れた高強度鋼線材。
0.5≦(C/12)/{(Ti/48)+(Mo/96)}≦1.5 --- (1)
但し、各元素は含有量(質量%)とする。
The high-strength steel wire rod excellent in drawability according to claim 1, wherein the steel composition further satisfies the formula (1) .
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96)} ≦ 1.5 --- (1)
However, each element has a content (% by mass).
微細析出物がTiとMoの炭化物からなることを特徴とする請求項1または2記載の伸線性に優れた高強度鋼線材。High strength steel wire fine precipitates were excellent in drawability according to claim 1 or 2, wherein the consist carbide of Ti and Mo. 鋼組成として、更に質量%で、
Nb≦0.08%、
V ≦0.15%、
W ≦1.5%
の一種または二種以上を含有する請求項1記載の伸線性に優れた高強度鋼線材。
As a steel composition, it is further mass%,
Nb ≦ 0.08%,
V ≦ 0.15%,
W ≦ 1.5%
The high-strength steel wire rod excellent in wire drawing property of Claim 1 containing 1 type (s) or 2 or more types .
鋼組成として更に式(2)を満足することを特徴とする請求項4記載の伸線性に優れた高強度鋼線材。
0.5≦(C/12)/{(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)}≦1.5 --- (2)
但し、各元素は含有量(質量%)とし、含有しないものは0とする。
5. The high-strength steel wire rod excellent in drawability according to claim 4, wherein the steel composition further satisfies the formula (2) .
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)} ≦ 1.5 −−− (2 )
However, the content of each element is the content (% by mass), and the content that is not contained is 0.
微細析出物が、TiとMoとNb、V、Wの内の少なくとも一種とを含む炭化物であることを特徴とする請求項4または5記載の伸線性に優れた高強度鋼線材。The high-strength steel wire rod excellent in drawability according to claim 4 or 5 , wherein the fine precipitate is a carbide containing Ti, Mo, and at least one of Nb, V, and W. 請求項1〜6のいずれか一つに記載の高強度鋼線材を伸線加工することを特徴とする引張強度2000MPa以上の高強度鋼線。A high strength steel wire having a tensile strength of 2000 MPa or more, wherein the high strength steel wire rod according to any one of claims 1 to 6 is drawn. 請求項1、2、4、5のいずれか一つに記載の組成を有する鋼を1100℃以上で加熱後、仕上げ圧延温度800℃以上で圧延し、その後の冷却において、700〜550℃を0.5℃/sec以下の冷却速度で冷却することを特徴とする伸線性に優れた高強度鋼線材の製造方法。The steel having the composition according to any one of claims 1, 2, 4, and 5 is heated at 1100 ° C or higher and then rolled at a finish rolling temperature of 800 ° C or higher, and 700 to 550 ° C is reduced to 0 in subsequent cooling. A method for producing a high-strength steel wire rod excellent in wire drawing, characterized by cooling at a cooling rate of 5 ° C./sec or less. 請求項1、2、4、5のいずれか一つに記載の組成を有する鋼を1100℃以上に加熱後、仕上げ圧延温度800℃以上で圧延し、その後の冷却において、700〜550℃を0.5℃/sec以下で冷却した線材を伸線加工することを特徴とする伸線性に優れた高強度鋼線の製造方法。The steel having the composition according to any one of claims 1, 2, 4, and 5 is heated to 1100 ° C or higher and then rolled at a finish rolling temperature of 800 ° C or higher, and 700 to 550 ° C is reduced to 0 in subsequent cooling. A method for producing a high-strength steel wire excellent in drawability, characterized by drawing a wire cooled at 5 ° C./sec or less.
JP2002125406A 2002-04-26 2002-04-26 High strength steel wire rod excellent in drawability and method for producing the same Expired - Fee Related JP3978364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125406A JP3978364B2 (en) 2002-04-26 2002-04-26 High strength steel wire rod excellent in drawability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125406A JP3978364B2 (en) 2002-04-26 2002-04-26 High strength steel wire rod excellent in drawability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003321742A JP2003321742A (en) 2003-11-14
JP3978364B2 true JP3978364B2 (en) 2007-09-19

Family

ID=29540141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125406A Expired - Fee Related JP3978364B2 (en) 2002-04-26 2002-04-26 High strength steel wire rod excellent in drawability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3978364B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164293A (en) * 2013-03-28 2015-12-16 株式会社神户制钢所 High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5859209B2 (en) * 2008-03-04 2016-02-10 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme Cold-drawn low carbon steel filament and method for producing the filament
KR101714916B1 (en) 2015-11-12 2017-03-10 주식회사 포스코 Wire rod having excellent cold forging characteristics and method for manufacturing same
CN109047697B (en) * 2018-09-25 2020-04-28 湖南华菱湘潭钢铁有限公司 Production method of tire cord steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164293A (en) * 2013-03-28 2015-12-16 株式会社神户制钢所 High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire

Also Published As

Publication number Publication date
JP2003321742A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
EP2799562B1 (en) Hot-rolled steel sheet and process for manufacturing same
JP5093422B2 (en) High strength steel plate and manufacturing method thereof
JP4304421B2 (en) Hot rolled steel sheet
JP3954338B2 (en) High-strength steel wire excellent in strain aging embrittlement resistance and longitudinal crack resistance and method for producing the same
JP5257082B2 (en) Steel wire rod excellent in cold forgeability after low-temperature annealing, method for producing the same, and method for producing steel wire rod excellent in cold forgeability
US20110284139A1 (en) High-carbon steel wire rod of high ductility
JP3737354B2 (en) Wire rod for wire drawing excellent in twisting characteristics and method for producing the same
JP3997867B2 (en) Steel wire, method for producing the same, and method for producing steel wire using the steel wire
JP4638602B2 (en) High fatigue strength wire for steel wire, steel wire and manufacturing method thereof
JP2609387B2 (en) High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire
JP3572993B2 (en) Steel wire, steel wire, and method of manufacturing the same
JP3456455B2 (en) Steel wire rod, steel wire, and method for producing them
JP3978364B2 (en) High strength steel wire rod excellent in drawability and method for producing the same
US20140150934A1 (en) Wire rod having superior hydrogen delayed fracture resistance, method for manufacturing same, high strength bolt using same and method for manufacturing bolt
JP3443285B2 (en) Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same
JP4121300B2 (en) High strength PC steel bar excellent in high temperature relaxation characteristics and method for producing the same
WO2018008703A1 (en) Rolled wire rod
JP3277878B2 (en) Wire drawing reinforced high-strength steel wire and method of manufacturing the same
JP4268826B2 (en) Steel bar for cold forging, cold forged product and manufacturing method
JP3218442B2 (en) Manufacturing method of mechanical structural steel with excellent delayed fracture resistance
JPH07179994A (en) Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production
JP3785113B2 (en) High-strength bolts and nuts excellent in fire resistance and method for producing the same
JP2939770B2 (en) Method of manufacturing high strength bead wire
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JP3755300B2 (en) High-strength, high-workability hot-rolled steel sheet with excellent impact resistance and good sheet crown and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees