JP3978317B2 - Radiation shield and manufacturing method thereof - Google Patents

Radiation shield and manufacturing method thereof Download PDF

Info

Publication number
JP3978317B2
JP3978317B2 JP2001169454A JP2001169454A JP3978317B2 JP 3978317 B2 JP3978317 B2 JP 3978317B2 JP 2001169454 A JP2001169454 A JP 2001169454A JP 2001169454 A JP2001169454 A JP 2001169454A JP 3978317 B2 JP3978317 B2 JP 3978317B2
Authority
JP
Japan
Prior art keywords
resin
radiation
sheet
manufacturing
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001169454A
Other languages
Japanese (ja)
Other versions
JP2002365394A (en
Inventor
建宝 松山
Original Assignee
プロト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プロト株式会社 filed Critical プロト株式会社
Priority to JP2001169454A priority Critical patent/JP3978317B2/en
Publication of JP2002365394A publication Critical patent/JP2002365394A/en
Application granted granted Critical
Publication of JP3978317B2 publication Critical patent/JP3978317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は放射線遮蔽体及びその製造方法に関し、より詳細には、例えばX線発生装置、原子力関連機器、放射線物質容器、放射線廃棄物容器等を構成する構造部材や、X線発生装置を操作するX線技師、医者、研究者、非破壊検査員、X線診断や放射線治療を受ける患者、放射性物質や放射性廃棄物の取扱・処理作業者、原子力関連機器の事故処理担当者等がX線、α線、β線、γ線等の放射線に被爆するのを防止するために用いられる放射線遮蔽体及びその製造方法に関する。
【0002】
【従来の技術】
図3は従来のこの種放射線遮蔽シートを模式的に示した断面図であり、図中31は塩化ビニル等の熱可塑性樹脂を示している。熱可塑性樹脂31は厚みがtのシート形状に形成されており、熱可塑性樹脂31中には所定量のPb(鉛)粉末32が配合・分散されている。これら熱可塑性樹脂31、Pb粉末32等を含んで放射線遮蔽シート30が構成されている。
【0003】
図示しないが、この放射線遮蔽シート30は、所定寸法に裁断され、布等に包んだ後、この布等を介して所定形状に縫い合わされ、ジャケット、ズボン、エプロン、コート、帽子、手袋等の防護衣として形成・着用されるようになっている。あるいはカバー、カーテンとして放射線源に沿って密着させるか、又は放射線源を間接的に覆うようにして使用される。
【0004】
又図示しないが、X線発生装置、原子力関連機器、放射性物質容器、放射性廃棄物容器等には、熱硬化性樹脂プレート中にPb粉末を配合・分散した放射線遮蔽体が構造部材として用いられている。
【0005】
【発明が解決しようとする課題】
上記した従来の放射線遮蔽シート30や放射線遮蔽プレートにあっては、放射線遮蔽シート30や放射線遮蔽プレートの厚みが薄いため、製造過程においてどうしても発生するピンホール(図示せず)がシート30中や放射線遮蔽プレートを貫通し易く、このピンホールを介して放射線が透過するおそれがあるという課題があった。
【0006】
本発明は上記課題に鑑みなされたものであり、ピンホールによる貫通を阻止して放射線遮蔽性能を高めることができる放射線遮蔽体及びその製造方法を提供することを目的としている。
【0007】
【課題を解決するための手段及びその効果】
上記目的を達成するために本発明に係る放射線遮蔽体は、原子番号40以上の元素を主体とする粉末又は化合物粉末が配合・分散されて形成された同種材料の樹脂シートが、複数枚積層され、ピンホールを圧潰・除去するための加熱・加圧を伴うラミネート加工が施されてなることを特徴としている。
上記した放射線遮蔽体によれば、配合・分散されている原子番号40以上の元素を主体とする粉末又は化合物粉末が放射線を吸収あるいは反射し易いので、放射線の透過を抑制することができる。又、前記樹脂シートが複数枚積層されているので、ピンホールどうしが連なって前記樹脂シート内を貫通するのを大幅に減少させることができる。又、前記シートの積層工程において、発生していたピンホールを圧潰・除去することができる。この結果、前記ピンホールを介して放射線が透過するのを阻止し、放射線を確実に遮蔽することができる。
【0008】
又、本発明に係る放射線遮蔽体の製造方法は、樹脂原料中に原子番号40以上の元素を主体とする粉末又は化合物粉末を混合し、押し出し成形法、カレンダー加工、コーティング法又は金型成形法により樹脂シートを製造した後、これら同種材料の樹脂シートを複数枚積層し、ピンホールを圧潰・除去するための約180℃の加熱・約60 Kgf/cm 2 の加圧を伴うラミネート加工を施すことを特徴としている。
上記した放射線遮蔽体の製造方法によれば、前記押し出し成形法、カレンダー加工、コーティング法又は金型成形法により、前記樹脂シートを製造することができると共に、前記ラミネート加工工程において、前記樹脂シートの製造工程中に発生していたピンホールを除去し、該ピンホールが前記シート内を貫通するのを減少させることができ、放射線遮蔽能力に優れた放射線遮蔽体を確実に製造することができる。
【0009】
【発明の実施の形態】
以下、本発明に係る放射線遮蔽体の実施の形態を図面に基づいて説明する。なお、従来例と同一機能を有する構成部品には同一の符号を付すこととする。
図1は実施の形態に係る放射線遮蔽体を模式的に示した断面図であり、図中10aは塩化ビニル樹脂等の樹脂シートを示している。樹脂シート10aの厚みは、最終製品としてのシート厚をtとした場合、約t/2に設定されている。この樹脂シート10a中には、Pb(原子番号82)粉末11aが所定量配合・分散されている。
【0010】
2枚の樹脂シート10a、10aは積層されており、これら放射線遮蔽シート10a、10aを含んで厚みがtの放射線遮蔽シート10が構成されている。
【0011】
このように構成された樹脂シート10aを製造する場合、ミキサーを用い、所定量の熱可塑性樹脂原料、Pb粉末、可塑剤、接着成分等を混合する。次にこれらの混合物を押し出し成形法、カレンダー加工法、コーティング法又は金型成形法により成形し、厚みが約t/2の樹脂シート10aを製造する。
【0012】
図2は、実施の形態に係る放射線遮蔽シートの製造方法を説明するためにプレス加工機を模式的に示した断面図であり、図中21はベッドを示している。ベッド21の上方には駆動ラム22が図中矢印A−B方向に駆動可能に配設されている。これらベッド21、駆動ラム22等を含んでプレス加工機本体20aが構成されている。一方、ベッド21と駆動ラム22との間には略直方体板形状をした基板23〜25が装着・配設されており、基板23〜25には加熱手段(図示せず)が装備されている。基板23〜25間には複数組の樹脂シート10a、10aが積み重ねられており、各1組の樹脂シート10a、10aはそれぞれステンレス鋼製の分離板26a、26aにより挟持されている。これら基板23〜25、分離板26a等を含んで治具20bが構成されている。
【0013】
上記プレス加工機を使用し、樹脂シート10a、10aを用いて放射線遮蔽シート10を製造する場合、まずベッド21上部、駆動ラム22下部に基板23、24を装着する。次に分離板26a、26aに挟持させたシート10a、10aを積み上げてゆき、所定箇所に基板25を配設した後、さらに分離板26a、26aに挟持させたシート10a、10aを積み上げる。その後加熱手段を作動させ、基板23〜25、分離板26a、26aを介してシート10a、10aを所定温度に昇温させ、次に駆動ラム22を図中矢印B方向に駆動させ、シート10a、10aに所定圧力を加える。この後、冷却することにより、樹脂シート10a、10aが一体化され、厚みがtの放射線遮蔽シート10が製造される。
【0014】
実施の形態に係る放射線遮蔽シート10では、配合・分散されている原子番号40以上であるPbを主体とする粉末が放射線を遮蔽し易いので、放射線の透過を抑制することができる。又、樹脂シート10a、10aが2枚積層されているので、ピンホールどうしが連なって熱可塑性樹脂シート10a、10a内を貫通するのを大幅に減少させることができる。又、シート10a、10aの製造工程において発生していたピンホールを積層工程において圧潰・除去することができる。この結果、ピンホールを介して放射線が透過するのを阻止し、放射線を確実に遮蔽することができる。
【0015】
又、押し出し成形法、カレンダー加工、コーティング法又は金型成形法により、ピンホールの発生を抑制しながら均一な厚みの樹脂シート10aを製造することができる。
【0016】
なお、実施の形態に係る放射線遮蔽シート10及びその製造方法では、2枚のシート10a、10aを積層する場合について説明したが、何ら2枚に限定されるものではなく、別の実施の形態では3枚、4枚、・・・であってもよい。積層枚数を多くするほど、ピンホールによるシート貫通の確率を下げることができるが、製造が少しずつ困難になる。
【0017】
又、実施の形態に係る放射線遮蔽シート10の製造方法では、ラミネート加工としてプレス加工を施す場合について説明したが、別の実施の形態では、加熱工程を含むロール圧延方法、あるいは接着剤を用いた接着加工を施してもよい。
【0018】
又、実施の形態に係る放射線遮蔽シート10では、金属単体のPb粉末11aを用いた場合について説明したが、別の実施の形態では、Pbの酸化物、合金等のような化合物粉末であってもよい。
【0019】
又、実施の形態に係る放射線遮蔽シート10では、Pb粉末を用いた場合について説明したが、何らこれに限定されるものではなく、原子番号が40以上の元素であればよく、例えばZr、Mo、Te、Ba及びこれらの化合物、あるいはこれらが組み合わされて用いられてもよい。
【0020】
又、実施の形態に係る放射線遮蔽シート10では、樹脂シート10aが熱可塑性の塩化ビニル樹脂で構成された場合について説明したが、別の実施の形態では、樹脂シート10aは熱可塑性のその他のビニル系樹脂、あるいはポリウレタン系樹脂、ポリエチレン系樹脂等で構成されていてもよい。
【0021】
又、実施の形態に係る放射線遮蔽シート10では、樹脂シート10aが熱可塑性の塩化ビニル樹脂で構成された場合について説明したが、別の実施の形態では、樹脂シート10aは熱硬化性のエポキシ系樹脂、フェノール系樹脂、あるいはシリコーン系樹脂等で構成されていてもよい。
【0022】
【実施例及び比較例】
以下の条件で、実施例及び比較例に係る放射線遮蔽体を製造し、以下の実験条件で遮蔽体1mm厚における鉛当量、引張強さ、引裂強さ、遮蔽体の製品厚み(0.5mm)における耐折性、ピンホールの発生状況を調査した結果について説明する。
【0023】
製造方法は、ミキサーを用い、下記の表1に示した塩化ビニル樹脂、Pb粉末と所定量の可塑剤、接着成分等を配合・混合し、押し出し法により所定厚みのシートを製造した後、実施例1はシート2枚を重ねてプレスによりラミネート加工を施した。加熱温度は180℃、プレス圧力は60Kgf/cm2 に設定した。比較例1はシート1枚のまま(ラミネート加工を施さない)とした。鉛当量、引張強さ、引裂強さ、耐折性の測定はJIS−Z4801(1991)に基づき、ピンホールの発生状況の評価はJIS−Z4501の2に基づき(フイルムサイズ25.4cm×30.5cm)、実施した。
配合割合、積層枚数、遮蔽体1mm当りの鉛当量、引張強さ、引裂強さ、製品厚み0.5mmにおける耐折性、ピンホールの発生状況の測定結果を下記の表1に示した。
【0024】
【表1】

Figure 0003978317
(1)表1より明らかなように、ピンホールの発生は、比較例1に比べて実施例1では減少した。
【0025】
(2)厚み1mm当りの鉛当量については、比較例1、実施例1ともに0.26mmPbであり、防護エプロン、防護コート、甲状腺防護具、防護手袋等における規格値(JISZ4831)の0.25mmPbを満足した。
【0026】
(3)引張強さ、引裂強さ、耐折性については、実施例1、比較例1共に規格値を上回った。
【図面の簡単な説明】
【図1】本発明に係る放射線遮蔽体の実施の形態を模式的に示した断面図である。
【図2】実施の形態に係る放射線遮蔽体の製造方法を説明するために模式的に示した断面図である。
【図3】従来の放射線遮蔽体を模式的に示した断面図である。
【符号の説明】
10 放射線遮蔽シート
10a 熱可塑性樹脂シート
11a Pb粉末[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiation shield and a method of manufacturing the same, and more specifically, operates a structural member or an X-ray generator that constitutes, for example, an X-ray generator, nuclear equipment, a radioactive material container, a radioactive waste container, or the like. X-rays from X-ray technicians, doctors, researchers, non-destructive inspectors, patients undergoing X-ray diagnosis and radiation therapy, workers handling and processing radioactive materials and radioactive waste, accident handling personnel for nuclear equipment, etc. The present invention relates to a radiation shield used for preventing exposure to radiation such as α rays, β rays, and γ rays, and a method for manufacturing the same.
[0002]
[Prior art]
FIG. 3 is a cross-sectional view schematically showing a conventional radiation shielding sheet of this type, in which 31 indicates a thermoplastic resin such as vinyl chloride. The thermoplastic resin 31 is formed in a sheet shape having a thickness t, and a predetermined amount of Pb (lead) powder 32 is blended and dispersed in the thermoplastic resin 31. The radiation shielding sheet 30 includes the thermoplastic resin 31, Pb powder 32, and the like.
[0003]
Although not shown, the radiation shielding sheet 30 is cut to a predetermined size, wrapped in a cloth, etc., and then stitched into a predetermined shape via the cloth, etc., and protection for jackets, trousers, apron, coat, hat, gloves, etc. Formed and worn as clothing. Alternatively, it is used as a cover or curtain in close contact with the radiation source or indirectly covering the radiation source.
[0004]
Although not shown, X-ray generators, nuclear-related equipment, radioactive material containers, radioactive waste containers, etc. have radiation shields containing Pb powder mixed and dispersed in thermosetting resin plates as structural members. Yes.
[0005]
[Problems to be solved by the invention]
In the above-described conventional radiation shielding sheet 30 and radiation shielding plate, since the thickness of the radiation shielding sheet 30 and the radiation shielding plate is thin, pinholes (not shown) that are inevitably generated in the manufacturing process are generated in the sheet 30 and the radiation. There existed a subject that it was easy to penetrate a shielding plate and there existed a possibility that a radiation might permeate | transmit through this pinhole.
[0006]
This invention is made | formed in view of the said subject, and it aims at providing the radiation shielding body which can prevent penetration by a pinhole, and can improve radiation shielding performance, and its manufacturing method.
[0007]
[Means for solving the problems and effects thereof]
In order to achieve the above object, the radiation shield according to the present invention is formed by laminating a plurality of resin sheets of the same material formed by mixing and dispersing a powder or compound powder mainly composed of an element having an atomic number of 40 or more. , lamination with heat and pressure to collapse and removing the pinhole is characterized Rukoto such is subjected.
According to the radiation shield described above, since the powder or compound powder mainly composed of the element having an atomic number of 40 or more mixed and dispersed easily absorbs or reflects radiation, the transmission of radiation can be suppressed. In addition, since a plurality of the resin sheets are laminated, it is possible to greatly reduce the fact that pinholes are connected to penetrate the resin sheet. Moreover, the pinhole which has occurred in the sheet stacking step can be crushed and removed. As a result, it is possible to prevent radiation from being transmitted through the pinhole and to shield the radiation reliably.
[0008]
The method for producing a radiation shield according to the present invention comprises mixing a powder or a compound powder mainly composed of an element having an atomic number of 40 or more in a resin raw material, an extrusion molding method, a calendering method, a coating method, or a mold molding method. After the resin sheet is manufactured by the above, a plurality of resin sheets of the same kind of material are laminated, and subjected to laminating with heating at about 180 ° C. and pressing at about 60 Kgf / cm 2 for crushing and removing the pinhole. It is characterized by that.
According to the manufacturing method of the radiation shielding body described above, the resin sheet can be manufactured by the extrusion molding method, calendar processing, coating method or mold molding method, and in the laminating process, Pinholes generated during the manufacturing process can be removed and the penetration of the pinholes into the sheet can be reduced, and a radiation shield excellent in radiation shielding ability can be reliably manufactured.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a radiation shield according to the present invention will be described below with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to the component which has the same function as a prior art example.
FIG. 1 is a cross-sectional view schematically showing a radiation shield according to the embodiment, in which 10a denotes a resin sheet such as a vinyl chloride resin. The thickness of the resin sheet 10a is set to about t / 2, where t is the sheet thickness as the final product. A predetermined amount of Pb (atomic number 82) powder 11a is blended and dispersed in the resin sheet 10a.
[0010]
The two resin sheets 10a and 10a are laminated, and the radiation shielding sheet 10 having a thickness t is configured including these radiation shielding sheets 10a and 10a.
[0011]
When manufacturing the resin sheet 10a comprised in this way, a predetermined amount of thermoplastic resin raw materials, Pb powder, a plasticizer, an adhesive component, etc. are mixed using a mixer. Next, these mixtures are molded by an extrusion molding method, a calendering method, a coating method, or a mold molding method to produce a resin sheet 10a having a thickness of about t / 2.
[0012]
FIG. 2 is a cross-sectional view schematically showing a press machine in order to explain the method for manufacturing the radiation shielding sheet according to the embodiment, in which 21 denotes a bed. A driving ram 22 is disposed above the bed 21 so as to be driven in the direction of arrows AB in the figure. The press machine main body 20a is configured including the bed 21, the drive ram 22, and the like. On the other hand, substrates 23 to 25 having a substantially rectangular parallelepiped plate shape are mounted and disposed between the bed 21 and the drive ram 22, and the substrates 23 to 25 are equipped with heating means (not shown). . A plurality of sets of resin sheets 10a and 10a are stacked between the substrates 23 to 25, and each set of resin sheets 10a and 10a is sandwiched between stainless steel separation plates 26a and 26a, respectively. A jig 20b is configured including the substrates 23 to 25, the separation plate 26a, and the like.
[0013]
When the radiation shielding sheet 10 is manufactured using the resin processing sheets 10a and 10a using the press machine, first, the substrates 23 and 24 are mounted on the upper part of the bed 21 and the lower part of the drive ram 22. Next, the sheets 10a and 10a sandwiched between the separation plates 26a and 26a are stacked. After the substrate 25 is disposed at a predetermined position, the sheets 10a and 10a sandwiched between the separation plates 26a and 26a are further stacked. Thereafter, the heating means is operated to raise the temperature of the sheets 10a and 10a to a predetermined temperature via the substrates 23 to 25 and the separation plates 26a and 26a, and then the drive ram 22 is driven in the direction of arrow B in the figure to A predetermined pressure is applied to 10a. Thereafter, by cooling, the resin sheets 10a and 10a are integrated, and the radiation shielding sheet 10 having a thickness t is manufactured.
[0014]
In the radiation shielding sheet 10 according to the embodiment, since the powder mainly composed of Pb having an atomic number of 40 or more that is blended and dispersed easily shields radiation, transmission of radiation can be suppressed. Further, since the two resin sheets 10a and 10a are laminated, it is possible to greatly reduce the penetration of the pinholes through the thermoplastic resin sheets 10a and 10a. In addition, the pinholes generated in the manufacturing process of the sheets 10a and 10a can be crushed and removed in the stacking process. As a result, it is possible to prevent radiation from being transmitted through the pinhole and to shield the radiation reliably.
[0015]
Further, the resin sheet 10a having a uniform thickness can be manufactured by suppressing the generation of pinholes by an extrusion molding method, a calendering method, a coating method, or a mold molding method.
[0016]
In addition, in the radiation shielding sheet 10 and the manufacturing method thereof according to the embodiment, the case where the two sheets 10a and 10a are stacked has been described. However, the number is not limited to two, and in another embodiment, Three, four,... As the number of stacked sheets increases, the probability of sheet penetration through pinholes can be lowered, but manufacturing becomes difficult little by little.
[0017]
Moreover, in the manufacturing method of the radiation shielding sheet 10 according to the embodiment, the case where the press working is performed as the laminating process has been described, but in another embodiment, a roll rolling method including a heating process or an adhesive is used. Adhesion may be applied.
[0018]
In the radiation shielding sheet 10 according to the embodiment, the case where the single metal Pb powder 11a is used has been described. However, in another embodiment, a compound powder such as an oxide or alloy of Pb is used. Also good.
[0019]
In the radiation shielding sheet 10 according to the embodiment, the case where Pb powder is used has been described. However, the present invention is not limited to this, and any element having an atomic number of 40 or more may be used. For example, Zr, Mo , Te, Ba and these compounds, or a combination thereof may be used.
[0020]
In the radiation shielding sheet 10 according to the embodiment, the case where the resin sheet 10a is made of a thermoplastic vinyl chloride resin has been described. In another embodiment, the resin sheet 10a is made of other thermoplastic vinyl. It may be composed of a resin, a polyurethane resin, a polyethylene resin, or the like.
[0021]
In the radiation shielding sheet 10 according to the embodiment, the case where the resin sheet 10a is made of a thermoplastic vinyl chloride resin has been described. However, in another embodiment, the resin sheet 10a is a thermosetting epoxy-based resin. It may be composed of a resin, a phenolic resin, a silicone resin, or the like.
[0022]
[Examples and Comparative Examples]
Under the following conditions, radiation shields according to Examples and Comparative Examples were manufactured, and lead equivalent, tensile strength, tear strength, and shield product thickness (0.5 mm) in the shield 1 mm thickness under the following experimental conditions. The results of investigating the folding resistance and the occurrence of pinholes will be explained.
[0023]
The manufacturing method was carried out after a vinyl chloride resin, Pb powder and a predetermined amount of plasticizer, adhesive components, etc. shown in Table 1 below were blended and mixed, and a sheet having a predetermined thickness was manufactured by an extrusion method. In Example 1, two sheets were stacked and laminated by pressing. The heating temperature was set to 180 ° C., and the press pressure was set to 60 kgf / cm 2 . In Comparative Example 1, one sheet was left (no lamination process). Measurement of lead equivalent, tensile strength, tear strength, and folding resistance is based on JIS-Z4801 (1991), and the evaluation of pinhole occurrence is based on JIS-Z4501-2 (film size 25.4 cm × 30.30). 5 cm).
Table 1 below shows the measurement results of the blending ratio, the number of laminated layers, the lead equivalent per 1 mm of the shield, the tensile strength, the tear strength, the folding resistance at a product thickness of 0.5 mm, and the occurrence of pinholes.
[0024]
[Table 1]
Figure 0003978317
(1) As is apparent from Table 1, the occurrence of pinholes was reduced in Example 1 as compared with Comparative Example 1.
[0025]
(2) The lead equivalent per 1 mm thickness is 0.26 mmPb in both Comparative Example 1 and Example 1, and the standard value (JISZ4831) of 0.25 mmPb in protective apron, protective coat, thyroid protective equipment, protective gloves, etc. Satisfied.
[0026]
(3) Regarding tensile strength, tear strength, and folding resistance, both Example 1 and Comparative Example 1 exceeded the standard values.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an embodiment of a radiation shield according to the present invention.
FIG. 2 is a cross-sectional view schematically showing the method for manufacturing the radiation shield according to the embodiment.
FIG. 3 is a cross-sectional view schematically showing a conventional radiation shield.
[Explanation of symbols]
10 radiation shielding sheet 10a thermoplastic resin sheet 11a Pb powder

Claims (2)

原子番号40以上の元素を主体とする粉末又は化合物粉末が配合・分散されて形成された同種材料の樹脂シートが、複数枚積層され、ピンホールを圧潰・除去するための加熱・加圧を伴うラミネート加工が施されてなることを特徴とする放射線遮蔽体。A plurality of resin sheets of the same material formed by mixing and dispersing powders or compound powders mainly composed of elements having an atomic number of 40 or more are laminated , accompanied by heating and pressurizing for crushing and removing pinholes radiation shield lamination is characterized Rukoto such is subjected. 樹脂原料中に原子番号40以上の元素を主体とする粉末又は化合物粉末を混合し、押し出し成形法、カレンダー加工、コーティング法又は金型成形法により樹脂シートを製造した後、これら同種材料の樹脂シートを複数枚積層し、ピンホールを圧潰・除去するための約180℃の加熱・約60 Kgf/cm 2 の加圧を伴うラミネート加工を施すことを特徴とする放射線遮蔽体の製造方法。After mixing a powder or compound powder mainly composed of an element having an atomic number of 40 or more in a resin raw material and manufacturing a resin sheet by an extrusion molding method, a calendering method, a coating method or a mold molding method, a resin sheet of these same materials A method for producing a radiation shield, comprising laminating a plurality of layers and laminating with heating at about 180 ° C. and pressing at about 60 Kgf / cm 2 for crushing and removing pinholes .
JP2001169454A 2001-06-05 2001-06-05 Radiation shield and manufacturing method thereof Expired - Fee Related JP3978317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169454A JP3978317B2 (en) 2001-06-05 2001-06-05 Radiation shield and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169454A JP3978317B2 (en) 2001-06-05 2001-06-05 Radiation shield and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002365394A JP2002365394A (en) 2002-12-18
JP3978317B2 true JP3978317B2 (en) 2007-09-19

Family

ID=19011524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169454A Expired - Fee Related JP3978317B2 (en) 2001-06-05 2001-06-05 Radiation shield and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3978317B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950590A (en) * 2010-07-09 2011-01-19 江苏康众数字医疗设备有限公司 Barrier plate for blocking high-energy ray radiation
JP2012225749A (en) * 2011-04-19 2012-11-15 Noboru Kumazawa Radiation absorption material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2007480A (en) * 1977-10-20 1979-05-16 Lintoff Eng Ltd Radiation shielding
JPS6071996A (en) * 1983-09-29 1985-04-23 チッソ株式会社 Heavy metal group composition for radiation defensive material
JPS60157092A (en) * 1984-01-26 1985-08-17 チッソ株式会社 Heavy metal composition for radiation protective material
JPH0776796B2 (en) * 1986-05-06 1995-08-16 東レ株式会社 Metal fiber composite sheet and manufacturing method thereof
JPH01277800A (en) * 1988-04-30 1989-11-08 Mitsui Toatsu Chem Inc Protection sheet
JP3573531B2 (en) * 1994-08-03 2004-10-06 鐘淵化学工業株式会社 Microcatheter
JPH0890807A (en) * 1994-09-27 1996-04-09 Toshiba Corp Method and apparatus for thermal transfer recording
JPH08201581A (en) * 1995-01-30 1996-08-09 Sutaaraito Kogyo Kk Composition for radiation shield and its usage
JP4172104B2 (en) * 1999-07-16 2008-10-29 凸版印刷株式会社 PTP package

Also Published As

Publication number Publication date
JP2002365394A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
KR100709140B1 (en) Radiation shielding body and method for producing the shielding body
JP3914720B2 (en) Radiation shield, method for producing the shield, and flame-retardant radiation shield
DE69001028T2 (en) SANDWICH BLISTER FOR TABLETS AND THE LIKE.
RU2545350C2 (en) Radiation shielding elastomeric material, multi-layered glove for protection against ionising radiation and application thereof
US20110165373A1 (en) Radio-opaque films of laminate construction
EP0365633B1 (en) Protection barrier against ionizing rays of the gamma-type and/or x-rays
US7449705B2 (en) Lead-free radiation protection material comprising at least two layers with different shielding characteristics
JP3978317B2 (en) Radiation shield and manufacturing method thereof
DE112005002793T5 (en) Laminate for packaging and packaging bags and a bag for packaging an electronic product, each containing the same
Park et al. Multilayer-structured non-leaded metal/polymer composites for enhanced X-ray shielding
US20210098144A1 (en) Method for manufacturing lead-free radiation shielding sheet and lead-free radiation shielding sheet
KR101591965B1 (en) Radiation shielding thin-film composite materials made by non-leaded bismuth-tin alloy particles dispersed in the polymer
WO2006049830A1 (en) Dental x-ray packets having lead-free radiation shielding
DE2641160A1 (en) METHOD AND DEVICE FOR MANUFACTURING PACKAGES
JPH0248841Y2 (en)
KR20040048589A (en) Radation shielding body and method for producing the same
US20170084356A1 (en) X-ray obscuration film and related techniques
KR20130076955A (en) Multilayered radiation shielding composite materials and their preparation
CN1287387C (en) Radioactive ray screen and method for preparation of the same
JP7439513B2 (en) Imaging table for mammography device, manufacturing method thereof, and mammography device
CN1271641C (en) Radiation protector and manufacturing method thereof
JPWO2019182077A1 (en) Imaging stand and method of manufacturing the same, imaging stand for mammography apparatus, method of manufacturing the same, and mammography apparatus
CN113183578B (en) Composite material for nuclear radiation protective clothing and preparation method thereof
JP3379559B2 (en) Hot press molding sheet
JP3098317U (en) Radiation protective clothing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20021212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3978317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees