JP3977100B2 - Linear actuator - Google Patents

Linear actuator Download PDF

Info

Publication number
JP3977100B2
JP3977100B2 JP2002049751A JP2002049751A JP3977100B2 JP 3977100 B2 JP3977100 B2 JP 3977100B2 JP 2002049751 A JP2002049751 A JP 2002049751A JP 2002049751 A JP2002049751 A JP 2002049751A JP 3977100 B2 JP3977100 B2 JP 3977100B2
Authority
JP
Japan
Prior art keywords
planetary
gear
sliding member
drive motor
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002049751A
Other languages
Japanese (ja)
Other versions
JP2003250246A (en
Inventor
博之 袴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2002049751A priority Critical patent/JP3977100B2/en
Publication of JP2003250246A publication Critical patent/JP2003250246A/en
Application granted granted Critical
Publication of JP3977100B2 publication Critical patent/JP3977100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は直動アクチュエータに関し、例えばエンターテイメント、医療用鉗子、搬送ハンド用などの小型ロボットに組み込まれ、その小型ロボットの一部を構成する関節部位などを駆動するために、小型軽量で高推力、かつ、高精度の位置決めを必要とする直動アクチュエータに関する。
【0002】
【従来の技術】
例えば、直動アクチュエータの従来例としては、特開平9−182407号公報、特開2000−341905公報や特開2001−86698公報に開示されたものがある。
【0003】
特開平9−182407号公報に開示された直動アクチュエータは、固定子コイルを収容した固定子と、永久磁石を軸受により軸線方向に軸支する回転子と、その回転子の内周に設けられた雌ねじと係合可能で、軸支部材により回転がロックされたねじ山付きスピンドルとからなるステッピングモータを具備する。この直動アクチュエータでは、回転子の回転をスピンドルの軸線方向に沿う直線移動に変換するようにしている。
【0004】
また、特開2000−341905公報に開示された直動アクチュエータは、コイルに通電することにより回転するロータ部と、一部にねじ部が形成されたスクリューシャフトと、ロータ部の回転力をスクリューシャフトに伝達する回転伝達機構と、スクリューシャフトの回転力をその軸方向推進力に変換する固定ナット等の運動変換機構と、スクリューシャフトを回転自在および軸方向に摺動自在に保持する軸受とからなる直線駆動型モータを具備する。この直動アクチュエータでは、ロータ部の回転力をスクリューシャフトの軸方向に沿う直線移動に変換するようにしている。
【0005】
さらに、特開2001−86698公報に開示された直動アクチュエータは、磁極が周上に分割着磁された永久磁石を有するロータと、磁界を発生させるための巻線および磁極と対向するように配置され、巻線に電流が流れた時に磁極が生成されるステータ磁極部を有するステータと、ロータの回転軸上に貫通した状態でロータに固定され、ステータに設けられた支持部材で支持される駆動シャフトとを具備する。この直動アクチュエータでは、ステータ磁極部における磁極の変化に応じてロータが回転軸回りに回転することにより、駆動シャフトが、ロータと共に回転しながら回転軸に沿って直進運動するようにしている。
【0006】
【発明が解決しようとする課題】
ところで、前述した特開平9−182407号公報、特開2000−341905公報や特開2001−86698公報に開示された直動アクチュエータのいずれも、減速機構を具備しないため、直動アクチュエータの推力がロータ等からなる駆動部の性能で制限されていることから、例えば、エンターテイメント、医療用鉗子、搬送ハンド用などの小型ロボットの一部を構成する関節部位などを駆動するために用いられる直動アクチュエータ、つまり、小型軽量で高推力、かつ、高精度の位置決めを必要とするような直動アクチュエータに用いることが困難であった。
【0007】
仮に、前述した構造の直動アクチュエータに減速機構を設けた場合でも、その減速機構を備えた直動アクチュエータ全体の重量が増大し、大型化するという問題も生じることになる。
【0008】
そこで、本発明は前記問題点に鑑みて提案されたもので、その目的とするところは、簡単な構造により所望の減速比が得られて、小型軽量で高推力、かつ、高精度の位置決めを実現容易にし得る直動アクチュエータを提供することにある。
【0009】
【課題を解決するための手段】
前記目的を達成するための技術的手段として、本発明は、駆動用モータの出力軸に遊星式減速機を設け、駆動用モータの回転を遊星式減速機を介して減速した上で摺動部材の直線往復動に変換する直動アクチュエータであって、前記遊星式減速機の出力部材の外周に、前記摺動部材と螺合するねじ部を形成し、前記駆動用モータの外径の少なくとも一部にフラット面を有し、そのフラット面を摺動部材の接触面としたことを特徴とする。
【0010】
この直動アクチュエータでは、駆動用モータの回転を遊星式減速機により所望の減速比でもって減速し、その減速された回転を摺動部材の直線往復動に変換することにより、高推力、高精度の位置決めが実現されるが、この時、摺動部材と螺合するねじ部を遊星式減速機の出力部材の外周に形成したことにより、部品点数を削減して直動アクチュエータの軽量コンパクト化を実現する。また、前記駆動用モータの外径の少なくとも一部にフラット面を有し、そのフラット面を摺動部材の接触面としたことにより、駆動用モータのフラット面が摺動部材の回り止めとして機能するので、回り止め構造を駆動用モータ以外の別部品で用意する必要がなく、部品点数の削減、製造コストの低減が図れる。
【0011】
なお、前記遊星式減速機としては、駆動用モータの出力軸に同軸的に設けられた太陽歯車と、回り止めされた前記摺動部材と螺合した出力部材である回転内歯車と、前記太陽歯車と回転内歯車との間にそれら両者と噛合するように介装された複数の遊星歯車と、これら遊星歯車を円周方向等間隔に回転自在に保持するキャリアとで構成された遊星歯車機構が好適であり、特に、駆動用モータの出力軸に同軸的に設けられた太陽歯車と、回り止めされた前記摺動部材と螺合した出力部材である回転内歯車と、前記駆動用モータに固着された固定内歯車と、前記太陽歯車と回転内歯車および固定内歯車との間にそれら両者と噛合するように介装された複数の遊星歯車と、これら遊星歯車を円周方向等間隔に回転自在に保持するキャリアとで構成された不思議遊星歯車機構であれば、高減速比が得られる点でより一層好ましい。
【0012】
本発明の前記構成において、前記直動アクチュエータの出力部分を構成する摺動部材は中空部を有し、その中空部に前記駆動用モータおよび遊星式減速機を収納配置したことを特徴とする。これにより、摺動部材内の空間スペースを有効利用することができて直動アクチュエータ全体のコンパクト化が図れ、摺動部材の直線往復動ストロークを増大させることも容易となる。
【0014】
本発明の前記構成において、前記遊星式減速機を構成する各部品および摺動部材を含む構成部品を樹脂製としたことを特徴とする。これにより、直動アクチュエータ全体の軽量化が図れ、また、製造コストの低減も実現容易となる。なお、前記樹脂としては、ポリアセタール、ポリイミド、ポリフェニレンサルファイドを含むエンジニアリングプラスチックが望ましい。エンジニアリングプラスチックを用いれば、構成部品の強度確保および耐磨耗性の向上が図れる。
【0015】
【発明の実施の形態】
図1および図2は本発明の実施形態で、遊星歯車機構からなる遊星式減速機を具備した直動アクチュエータを示す。直動アクチュエータは、小型の駆動用モータ1と、その駆動用モータ1の出力軸2に設けられた遊星式減速機3と、その遊星式減速機3の出力部材(後述の回転内歯車)に螺合した摺動部材(ナット)4とで主要部が構成される。なお、この直動アクチュエータは、例えば直径10mm程度、軸方向長さ20mm程度を有する小型ユニットである。
【0016】
駆動用モータ1と遊星式減速機3とは円筒形状を有する摺動部材4の内部に収納配置されている。このように摺動部材4の中空部5に駆動用モータ1および遊星式減速機3を収納配置したことにより、摺動部材4内の空間スペースを有効利用することができて直動アクチュエータ全体のコンパクト化が図れ、摺動部材4の直線往復動ストロークを増大させることも容易となる。
【0017】
遊星式減速機3は、駆動用モータ1の出力軸2に同軸的に設けられた太陽歯車6と、その太陽歯車6の軸端に転がり軸受7を介して回転自在に支持された出力部材である回転内歯車8と、太陽歯車6と回転内歯車8との間にそれら両者と噛合するように介装された複数の遊星歯車9と、これら遊星歯車9を円周方向等間隔に回転自在に保持するキャリア10とで構成された遊星歯車機構である。なお、回転内歯車8を太陽歯車6に支持する転がり軸受7は必ずしも必要なものではなく、この転がり軸受7を省略して回転内歯車8を太陽歯車6に滑りだけで直接的に支持するようにしてもよい。
【0018】
回転内歯車8は円筒形状を有し、その中空部11の内径に遊星歯車9と噛合する歯部12が形成され、中空部11内に遊星歯車9、太陽歯車6およびキャリア10が収納配置されている。各遊星歯車9はその軸方向両端から突出した軸13を有し、駆動用モータ1に固定された一方のキャリア10と転がり軸受7側に位置する他方のキャリア10により、遊星歯車9の軸13を回転自在に支持する構造としている。
【0019】
遊星式減速機3の出力部材である回転内歯車8の外周に摺動部材4と螺合するねじ部であるねじ溝14を形成する。このように回転内歯車8の外周にねじ溝14を直接的に形成したことにより、部品点数を削減して直動アクチュエータの軽量コンパクト化を図ることができる。
【0020】
摺動部材4は、その内径に回転内歯車8と螺合するねじ山15が形成され、駆動用モータ側端部に回り止め16が一体的に固着されている。また、摺動部材4の先端部(ストロークエンド)には、抜け止め防止用の突起20を形成している。駆動用モータ1にはフラットタイプと称される扁平モータを使用することにより、上下に位置するフラット面17を、直線往復動する摺動部材4と一体の回り止め16が摺動する接触面とすることで、摺動部材4の軸中心回転が規制されている。
【0021】
回転内歯車8の回転を摺動部材4の直線往復動に変換する効率を考慮すると、回転内歯車8のねじ溝14と摺動部材4のねじ山15のリードは大きい方がよいが、大きくし過ぎると、ねじ溝14とねじ山15の噛み合いが少なくなる。このねじ溝14とねじ山15の噛み合いを考慮すると、ねじ溝14とねじ山15のが最低2ピッチ以上必要である。
【0022】
なお、直動アクチュエータを小型ロボットに組み込むに際しては、駆動用モータ1の基端部を固定支持し、摺動部材4の外径に、小型ロボットの一部を構成する関節部位などの駆動機構を取り付けるようにすればよい。このように駆動用モータ1を固定側とし、摺動部材4を可動側とすることにより、可動側を軽量化することが可能であるが、逆に、摺動部材4を固定側とし、駆動用モータ1を可動側とすることも可能である。
【0023】
この直動アクチュエータでは、駆動用モータ1の回転を遊星式減速機3により所望の減速比でもって減速し、その減速された回転を摺動部材4の直線往復動に変換することにより、高推力、高精度の位置決めを実現する。具体的に、駆動用モータ1の出力軸2の回転により遊星式減速機3の太陽歯車6が回転し、この太陽歯車6の回転によりキャリア10に対して回転自在に支持された遊星歯車9が太陽歯車6の回りで回転することにより、駆動用モータ1の回転が所定の減速比でもって回転内歯車8に伝達される。
【0024】
この駆動用モータ1に対する回転内歯車8の減速回転により、そのねじ溝14およびねじ山15を介して螺合する摺動部材4が回転しようとするが、その摺動部材4の回り止め16が駆動用モータ1のフラット面17に接触しているため、摺動部材4の軸中心回転が規制される。このようにして摺動部材4の回り止め16が駆動用モータ1のフラット面17を摺動することにより、回転内歯車8の回転が摺動部材4の直線往復動に変換される(図3参照)。この摺動部材4の直線往復動により、小型ロボットの一部を構成する関節部位などを、小型軽量で高推力、かつ、高精度の位置決めで駆動することができる。
【0025】
このように駆動用モータ1のフラット面17を摺動部材4が直線往復動する回り止め16の接触面としたことにより、駆動用モータ1のフラット面17が摺動部材4の回り止めとして機能するので、摺動部材4の回り止め構造を駆動用モータ1以外の別部品で用意する必要がなく、部品点数の削減、製造コストの低減が図れる。なお、前述した回り止め16は、摺動部材4と一体成形により製作することも可能である。
【0026】
この直動アクチュエータを小型ロボットに組み込んで使用する場合、摺動部材4の直線往復動による直動アクチュエータの動作を制御する上でその伸縮位置を検出する必要がある。この直動アクチュエータの伸縮位置の時間変化から直動アクチュエータの伸縮速度を監視することが可能である。直動アクチュエータの伸縮位置を検出するための位置検出器は、直動アクチュエータ自体に組み込んでモジュール化することが可能であり、このモジュール化によりコスト削減やコンパクト化を実現できる。
【0027】
位置検出器は、例えば駆動用モータ1のフラット面17上に、プリント基板等の絶縁体を介して、回り止め16の移動方向(軸方向)と平行に延びる抵抗体を配設し、回り止め16の一部に前記抵抗体に摺動可能に接触する接点部材(ばね鋼、金メッキ)を装着した構造が実現容易である。この構造では、抵抗体の一端と接点部材との間の抵抗値が直動アクチュエータの伸縮位置に応じて変化するポテンショメータとなる。つまり、抵抗体の両端に一定電圧を印加すると、駆動モータ1側にある抵抗体の一端と、回り止め16から延びる接点部材との間の電圧が直動アクチュエータの伸縮量に応じて変化し、その変化する電圧値に基づいて直動アクチュエータの伸縮位置を検出することができる。
【0028】
なお、直動アクチュエータを構成する各部品、つまり、遊星式減速機3を構成する太陽歯車6、遊星歯車9、回転内歯車8や、摺動部材4、回り止め16を樹脂成形品とする。これにより、直動アクチュエータ全体の軽量化が図れ、製造コストの低減も実現容易となる。使用可能な樹脂としては、ポリアセタール、ポリイミド、ポリフェニレンサルファイドを含むエンジニアリングプラスチックがある。エンジニアリングプラスチックを用いれば、構成部品の強度確保および耐磨耗性の向上が図れる。また、回転内歯車8のねじ溝14と摺動部材4のねじ山15はその表面潤滑性を良好なものとするため、回転内歯車8と摺動部材4には、固体潤滑剤を含浸させた樹脂を使用することが好ましい。
【0029】
次に、図4は本発明の他の実施形態で、不思議遊星歯車機構からなる遊星式減速機3’を具備した直動アクチュエータを示す。図1の実施形態の直動アクチュエータと同一部分には同一参照符号を付して重複説明は省略する。図4の直動アクチュエータが図1の実施形態と異なる点は、遊星式減速機3’として不思議遊星歯車機構を用いたことにある。この直動アクチュエータでは、駆動用モータ1の回転を遊星式減速機3’により所望の減速比でもって減速し、その減速された回転が摺動部材4の直線往復動に変換される(図5参照)。
【0030】
遊星式減速機3’は、駆動用モータ1の出力軸2に同軸的に設けられた太陽歯車6と、その太陽歯車6の軸端に転がり軸受7を介して回転自在に支持された回転内歯車8と、駆動用モータ1に固定された固定内歯車18と、太陽歯車6と回転内歯車8および固定内歯車18との間にそれら両者と噛合するように介装された複数の遊星歯車9と、これら遊星歯車9を円周方向等間隔に回転自在に保持する二つのキャリア10とで構成された不思議遊星歯車機構である。なお、固定内歯車18は円筒形状を有し、その内径に遊星歯車9と噛合する歯部19が形成され、この固定内歯車18と回転内歯車8とによって形成された中空部11内に遊星歯車9、太陽歯車6およびキャリア10が収納配置されている。
【0031】
この直動アクチュエータでは、不思議遊星歯車機構からなる遊星式減速機3’において、固定内歯車18と回転内歯車8とには、歯数差が必要であり、その歯数差が小さいほど減速比が大きくなる。ここで、太陽歯車6の歯数をA、回転内歯車8の歯数をB、固定内歯車18の歯数をCとした場合、この遊星式減速機3’における減速比は、(1+C/A)/(1−C/B)で得られる。この実施形態の直動アクチュエータでは、遊星歯車機構からなる遊星式減速機を用いた実施形態(図1参照)よりも高減速比が得られる。
【0032】
なお、前述した二つの実施形態では、遊星式減速機として、遊星歯車機構や不思議遊星歯車機構を用いた場合について説明したが、本発明はこれに限定されることなく、遊星ローラを用いた遊星式減速機も可能である。
【0033】
【発明の効果】
本発明によれば、駆動用モータの出力軸に遊星式減速機を設け、駆動用モータの回転を遊星式減速機を介して減速した上で摺動部材の直線往復動に変換する直動アクチュエータであって、前記遊星式減速機の出力部材の外周に、前記摺動部材と螺合するねじ部を形成したことにより、高推力、高精度の位置決めが可能な直動アクチュエータの軽量コンパクト化を実現できる。また、前記駆動用モータの外径の少なくとも一部にフラット面を有し、そのフラット面を摺動部材の接触面としたことにより、駆動用モータが摺動部材の回り止めを兼用できるので、回り止め構造を駆動用モータ以外の別部品で用意する必要がなく、部品点数の削減、製造コストの低減が図れる。
【0034】
前記直動アクチュエータの出力部分を構成する摺動部材は中空部を有し、その中空部に前記駆動用モータおよび遊星式減速機を収納配置すれば、直動アクチュエータ全体のコンパクト化が図れ、摺動部材の直線往復動ストロークを増大させることも容易となる。
【0036】
前記遊星式減速機を構成する各部品および摺動部材を含む構成部品を樹脂製とすれば、直動アクチュエータ全体の軽量化が図れ、また、製造コストの低減も実現容易となる。なお、前記樹脂として、ポリアセタール、ポリイミド、ポリフェニレンサルファイドを含むエンジニアリングプラスチックを用いれば、構成部品の強度確保および耐磨耗性の向上が図れる。
【図面の簡単な説明】
【図1】本発明の実施形態で、遊星歯車機構からなる遊星式減速機を具備した直動アクチュエータを示す断面図である。
【図2】図1の直動アクチュエータを示す右側面図である。
【図3】図1の直動アクチュエータを動作させて摺動部材が直線動した状態を示す断面図である。
【図4】本発明の他の実施形態で、不思議遊星歯車機構からなる遊星式減速機を具備した直動アクチュエータを示す断面図である。
【図5】図4の直動アクチュエータを動作させて摺動部材が直線動した状態を示す断面図である。
【符号の説明】
1 駆動用モータ
2 出力軸
3 遊星式減速機
4 摺動部材
5 中空部
6 太陽歯車
8 出力部材(回転内歯車)
9 遊星歯車
10 キャリア
14 ねじ部(ねじ溝)
17 フラット面
18 固定内歯車
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a linear actuator, and is incorporated in a small robot such as entertainment, medical forceps, and a transfer hand, and is driven by a small, lightweight and high thrust force to drive a joint portion constituting a part of the small robot, In addition, the present invention relates to a linear motion actuator that requires highly accurate positioning.
[0002]
[Prior art]
For example, conventional examples of linear motion actuators are disclosed in Japanese Patent Application Laid-Open Nos. 9-182407, 2000-341905, and 2001-86698.
[0003]
A linear actuator disclosed in Japanese Patent Laid-Open No. 9-182407 is provided on a stator that houses a stator coil, a rotor that axially supports a permanent magnet by a bearing, and an inner periphery of the rotor. A stepping motor comprising a threaded spindle that is engageable with a female screw and whose rotation is locked by a shaft support member. In this linear actuator, rotation of the rotor is converted into linear movement along the axial direction of the spindle.
[0004]
Further, a linear motion actuator disclosed in Japanese Patent Laid-Open No. 2000-341905 includes a rotor portion that rotates by energizing a coil, a screw shaft that is partially formed with a screw portion, and a rotational force of the rotor portion that is a screw shaft. A rotation transmission mechanism that transmits to the shaft, a motion conversion mechanism such as a fixing nut that converts the rotational force of the screw shaft into its axial propulsive force, and a bearing that holds the screw shaft rotatably and slidably in the axial direction. A linear drive motor is provided. In this linear actuator, the rotational force of the rotor portion is converted into a linear movement along the axial direction of the screw shaft.
[0005]
Further, the linear motion actuator disclosed in Japanese Patent Laid-Open No. 2001-86698 is arranged so as to face a rotor having a permanent magnet with magnetic poles divided and magnetized on the circumference, a winding for generating a magnetic field, and the magnetic poles. And a stator having a stator magnetic pole portion that generates a magnetic pole when a current flows through the winding, and a drive that is fixed to the rotor in a state of penetrating on the rotating shaft of the rotor and supported by a support member provided on the stator And a shaft. In this linear motion actuator, the rotor rotates about the rotation axis in accordance with the change of the magnetic pole in the stator magnetic pole portion, so that the drive shaft moves linearly along the rotation axis while rotating together with the rotor.
[0006]
[Problems to be solved by the invention]
By the way, none of the linear motion actuators disclosed in the above-mentioned JP-A-9-182407, JP-A-2000-341905, and JP-A-2001-86698 has a speed reduction mechanism, so that the thrust of the linear motion actuator is generated by the rotor. Linear actuators that are used to drive joint sites that form part of small robots such as entertainment, medical forceps, and transport hands, That is, it has been difficult to use in a linear actuator that requires positioning with a small size, light weight, high thrust, and high accuracy.
[0007]
Even if the speed reducing mechanism is provided in the linear motion actuator having the above-described structure, the weight of the whole of the linear motion actuator including the speed reduction mechanism is increased, resulting in a problem that the size is increased.
[0008]
Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to obtain a desired reduction ratio with a simple structure, and to achieve positioning with a small size, light weight, high thrust, and high accuracy. It is an object of the present invention to provide a linear actuator that can be easily realized.
[0009]
[Means for Solving the Problems]
As a technical means for achieving the above object, the present invention provides a planetary speed reducer on the output shaft of a drive motor, reduces the rotation of the drive motor via the planetary speed reducer, and then slides. A linear actuator that converts a linear reciprocating motion of the planetary reduction gear, wherein a screw portion is formed on the outer periphery of the output member of the planetary reduction gear to be screwed with the sliding member, and is at least one of the outer diameters of the driving motor. The portion has a flat surface, and the flat surface is used as a contact surface of the sliding member .
[0010]
In this linear actuator, the rotation of the drive motor is decelerated with a desired reduction ratio by a planetary reduction gear, and the reduced rotation is converted into a linear reciprocating motion of a sliding member, thereby achieving high thrust and high accuracy. However, at this time, the screw part that is screwed with the sliding member is formed on the outer periphery of the output member of the planetary reduction gear, thereby reducing the number of parts and making the linear motion actuator lightweight and compact. Realize. Further, at least a part of the outer diameter of the driving motor has a flat surface, and the flat surface serves as a contact surface of the sliding member, so that the flat surface of the driving motor functions as a detent for the sliding member. Therefore, it is not necessary to prepare a rotation preventing structure as a separate component other than the drive motor, and the number of components and the manufacturing cost can be reduced.
[0011]
The planetary speed reducer includes a sun gear coaxially provided on the output shaft of the drive motor, a rotary internal gear that is an output member screwed with the sliding member that is prevented from rotating, and the sun gear. A planetary gear mechanism comprising a plurality of planetary gears interposed between a gear and a rotating internal gear so as to mesh with both of them, and a carrier that rotatably holds these planetary gears at equal circumferential intervals. In particular, a sun gear coaxially provided on the output shaft of the drive motor, a rotary internal gear that is an output member screwed to the sliding member that is prevented from rotating, and the drive motor A fixed fixed internal gear, a plurality of planetary gears interposed between the sun gear, the rotating internal gear and the fixed internal gear so as to mesh with both, and the planetary gears at equal intervals in the circumferential direction; Consists of a carrier that can be freely rotated If paradox planetary gear mechanism, even more preferred in that a high reduction ratio is obtained.
[0012]
In the configuration of the invention, the sliding member constituting the output portion of the linear actuator has a hollow portion, and the driving motor and the planetary reduction gear are accommodated in the hollow portion. As a result, the space in the sliding member can be used effectively, the entire linear actuator can be made compact, and the linear reciprocating stroke of the sliding member can be easily increased.
[0014]
The said structure of this invention WHEREIN: Each component which comprises the said planetary reduction gear, and the component parts containing a sliding member were made from resin, It is characterized by the above-mentioned. As a result, the weight of the entire linear actuator can be reduced, and the manufacturing cost can be easily reduced. The resin is preferably an engineering plastic containing polyacetal, polyimide, or polyphenylene sulfide. If engineering plastics are used, the strength of the component parts can be secured and the wear resistance can be improved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 and FIG. 2 show an embodiment of the present invention, which is a linear motion actuator equipped with a planetary reduction gear composed of a planetary gear mechanism. The linear actuator is a small drive motor 1, a planetary speed reducer 3 provided on the output shaft 2 of the drive motor 1, and an output member (a rotating internal gear described later) of the planetary speed reducer 3. The main part is constituted by the sliding member (nut) 4 screwed together. The linear actuator is a small unit having a diameter of about 10 mm and an axial length of about 20 mm, for example.
[0016]
The drive motor 1 and the planetary speed reducer 3 are accommodated in a sliding member 4 having a cylindrical shape. Since the drive motor 1 and the planetary speed reducer 3 are accommodated in the hollow portion 5 of the sliding member 4 in this way, the space in the sliding member 4 can be used effectively, and the entire linear motion actuator can be used. Compactness can be achieved, and the linear reciprocating stroke of the sliding member 4 can be easily increased.
[0017]
The planetary reduction gear 3 is a sun gear 6 coaxially provided on the output shaft 2 of the drive motor 1 and an output member that is rotatably supported by a shaft end of the sun gear 6 via a rolling bearing 7. A rotating internal gear 8, a plurality of planetary gears 9 interposed between the sun gear 6 and the rotating internal gear 8 so as to mesh with both, and the planetary gears 9 are freely rotatable at equal intervals in the circumferential direction. It is a planetary gear mechanism comprised with the carrier 10 hold | maintained to. The rolling bearing 7 for supporting the rotating internal gear 8 on the sun gear 6 is not necessarily required. The rolling bearing 7 is omitted, and the rotating internal gear 8 is directly supported on the sun gear 6 only by sliding. It may be.
[0018]
The rotating internal gear 8 has a cylindrical shape, and a tooth portion 12 that meshes with the planetary gear 9 is formed in the inner diameter of the hollow portion 11, and the planetary gear 9, the sun gear 6, and the carrier 10 are accommodated in the hollow portion 11. ing. Each planetary gear 9 has a shaft 13 protruding from both ends in the axial direction, and the shaft 13 of the planetary gear 9 is constituted by one carrier 10 fixed to the drive motor 1 and the other carrier 10 positioned on the rolling bearing 7 side. It is made the structure which supports so that it can rotate freely.
[0019]
A screw groove 14 that is a screw portion that is screwed into the sliding member 4 is formed on the outer periphery of the rotating internal gear 8 that is an output member of the planetary reduction gear 3. Thus, by forming the screw groove 14 directly on the outer periphery of the rotating internal gear 8, the number of parts can be reduced and the linear actuator can be reduced in weight and size.
[0020]
The sliding member 4 is formed with a screw thread 15 that is screwed to the rotary internal gear 8 on its inner diameter, and a rotation stopper 16 is integrally fixed to an end of the driving motor. Further, a protrusion 20 for preventing the slipping is formed at the tip end (stroke end) of the sliding member 4. By using a flat motor called a flat type for the drive motor 1, a flat surface 17 positioned above and below a contact surface on which a non-rotating 16 integrated with a sliding member 4 that linearly reciprocates slides. By doing so, the axial center rotation of the sliding member 4 is restricted.
[0021]
Considering the efficiency of converting the rotation of the rotating internal gear 8 into the linear reciprocating motion of the sliding member 4, the lead of the thread groove 14 of the rotating internal gear 8 and the thread 15 of the sliding member 4 is preferably large. If too much, the engagement between the thread groove 14 and the thread 15 is reduced. Considering the meshing of the thread groove 14 and the thread 15, the thread groove 14 and the thread 15 need to be at least two pitches.
[0022]
When the linear actuator is incorporated in a small robot, the base end of the driving motor 1 is fixedly supported, and a driving mechanism such as a joint part constituting a part of the small robot is provided on the outer diameter of the sliding member 4. It should be attached. In this way, it is possible to reduce the weight of the movable side by setting the driving motor 1 as the fixed side and the sliding member 4 as the movable side. It is also possible to make the motor 1 movable.
[0023]
In this linear actuator, the rotation of the drive motor 1 is reduced by the planetary reduction gear 3 with a desired reduction ratio, and the reduced rotation is converted into a linear reciprocating motion of the sliding member 4, thereby achieving high thrust. Realize high-precision positioning. Specifically, the sun gear 6 of the planetary reduction gear 3 is rotated by the rotation of the output shaft 2 of the drive motor 1, and the planetary gear 9 that is rotatably supported by the carrier 10 by the rotation of the sun gear 6 is By rotating around the sun gear 6, the rotation of the driving motor 1 is transmitted to the rotating internal gear 8 with a predetermined reduction ratio.
[0024]
Due to the reduced rotation of the rotary internal gear 8 with respect to the drive motor 1, the sliding member 4 screwed through the screw groove 14 and the screw thread 15 tries to rotate. Since it is in contact with the flat surface 17 of the drive motor 1, the axial center rotation of the sliding member 4 is restricted. In this way, the rotation stopper 16 of the sliding member 4 slides on the flat surface 17 of the driving motor 1, whereby the rotation of the rotating internal gear 8 is converted into the linear reciprocating motion of the sliding member 4 (FIG. 3). reference). The linear reciprocation of the sliding member 4 can drive a joint portion or the like constituting a part of the small robot with a small, light, high thrust and high-accuracy positioning.
[0025]
As described above, the flat surface 17 of the driving motor 1 is used as the contact surface of the detent 16 where the sliding member 4 linearly reciprocates, so that the flat surface 17 of the driving motor 1 functions as a detent of the sliding member 4. Therefore, it is not necessary to prepare a rotation preventing structure for the sliding member 4 as a separate part other than the driving motor 1, and the number of parts can be reduced and the manufacturing cost can be reduced. Note that the above-described detent 16 can be manufactured by integral molding with the sliding member 4.
[0026]
When this linear motion actuator is used by being incorporated in a small robot, it is necessary to detect the expansion / contraction position in order to control the operation of the linear motion actuator by the linear reciprocation of the sliding member 4. It is possible to monitor the expansion / contraction speed of the linear motion actuator from the time change of the expansion / contraction position of the linear motion actuator. The position detector for detecting the expansion / contraction position of the linear motion actuator can be incorporated into the linear motion actuator itself to be modularized, and this modularization can realize cost reduction and compactness.
[0027]
For example, the position detector is provided with a resistor that extends parallel to the movement direction (axial direction) of the rotation stopper 16 via an insulator such as a printed circuit board on the flat surface 17 of the drive motor 1. A structure in which a contact member (spring steel, gold plating) that slidably contacts the resistor is attached to a part of the resistor 16 can be easily realized. In this structure, the resistance value between the one end of the resistor and the contact member is a potentiometer that changes according to the expansion / contraction position of the linear motion actuator. That is, when a constant voltage is applied to both ends of the resistor, the voltage between one end of the resistor on the drive motor 1 side and the contact member extending from the detent 16 changes according to the amount of expansion / contraction of the linear actuator, The expansion / contraction position of the linear actuator can be detected based on the changing voltage value.
[0028]
In addition, each part which comprises a linear motion actuator, ie, the sun gear 6, the planetary gear 9, the rotation internal gear 8, the sliding member 4, and the rotation stopper 16 which comprise the planetary reduction gear 3, is made into a resin molded product. As a result, the entire linear actuator can be reduced in weight, and the manufacturing cost can be easily reduced. Usable resins include engineering plastics including polyacetal, polyimide, and polyphenylene sulfide. If engineering plastics are used, the strength of the component parts can be secured and the wear resistance can be improved. Further, since the thread groove 14 of the rotating internal gear 8 and the thread 15 of the sliding member 4 have good surface lubricity, the rotating internal gear 8 and the sliding member 4 are impregnated with a solid lubricant. It is preferable to use a resin.
[0029]
Next, FIG. 4 shows another embodiment of the present invention, which shows a linear motion actuator provided with a planetary reduction gear 3 ′ composed of a mysterious planetary gear mechanism. The same parts as those of the linear motion actuator of the embodiment of FIG. The linear actuator shown in FIG. 4 is different from the embodiment shown in FIG. 1 in that a mysterious planetary gear mechanism is used as the planetary reduction gear 3 ′. In this linear motion actuator, the rotation of the drive motor 1 is decelerated with a desired reduction ratio by the planetary reduction gear 3 ′, and the decelerated rotation is converted into a linear reciprocating motion of the sliding member 4 (FIG. 5). reference).
[0030]
The planetary reduction gear 3 ′ includes a sun gear 6 coaxially provided on the output shaft 2 of the drive motor 1, and a rotating inner shaft rotatably supported by a shaft end of the sun gear 6 via a rolling bearing 7. A gear 8, a fixed internal gear 18 fixed to the drive motor 1, and a plurality of planetary gears interposed between the sun gear 6, the rotary internal gear 8 and the fixed internal gear 18 so as to mesh with both of them. 9 is a mysterious planetary gear mechanism composed of 9 and two carriers 10 that rotatably hold the planetary gears 9 at equal intervals in the circumferential direction. The fixed internal gear 18 has a cylindrical shape, and a tooth portion 19 that meshes with the planetary gear 9 is formed on the inner diameter thereof. The planetary gear 11 is formed in the hollow portion 11 formed by the fixed internal gear 18 and the rotary internal gear 8. The gear 9, the sun gear 6, and the carrier 10 are accommodated.
[0031]
In this linear motion actuator, in the planetary reduction gear 3 ′ having a mysterious planetary gear mechanism, a difference in the number of teeth is required between the fixed internal gear 18 and the rotary internal gear 8, and the reduction ratio decreases as the difference in the number of teeth decreases. Becomes larger. Here, when the number of teeth of the sun gear 6 is A, the number of teeth of the rotating internal gear 8 is B, and the number of teeth of the fixed internal gear 18 is C, the reduction ratio in the planetary reduction gear 3 ′ is (1 + C / A) / (1-C / B). In the linear motion actuator of this embodiment, a higher reduction gear ratio can be obtained than in the embodiment (see FIG. 1) using a planetary reduction device comprising a planetary gear mechanism.
[0032]
In the two embodiments described above, the case where a planetary gear mechanism or a strange planetary gear mechanism is used as the planetary reduction gear has been described. However, the present invention is not limited to this, and a planetary roller using a planetary roller is used. A type speed reducer is also possible.
[0033]
【The invention's effect】
According to the present invention, the linear actuator is provided with a planetary reduction gear on the output shaft of the drive motor, and converts the rotation of the drive motor into a linear reciprocation of the sliding member after decelerating the rotation of the drive motor through the planetary reduction gear. In addition, by forming a threaded portion that engages with the sliding member on the outer periphery of the output member of the planetary reduction gear, a lightweight and compact linear motion actuator capable of positioning with high thrust and high accuracy can be achieved. realizable. In addition, by having a flat surface on at least a part of the outer diameter of the drive motor and making the flat surface a contact surface of the sliding member, the driving motor can also serve as a detent for the sliding member. There is no need to prepare a non-rotating structure as a separate part other than the drive motor, and the number of parts can be reduced and the manufacturing cost can be reduced.
[0034]
The sliding member constituting the output portion of the linear motion actuator has a hollow portion, and if the drive motor and the planetary reducer are accommodated in the hollow portion, the entire linear motion actuator can be made compact, and the sliding motion can be reduced. It is also easy to increase the linear reciprocating stroke of the moving member.
[0036]
If the components constituting the planetary reduction gear and the components including the sliding member are made of resin, the entire linear actuator can be reduced in weight, and the manufacturing cost can be easily reduced. If an engineering plastic containing polyacetal, polyimide, or polyphenylene sulfide is used as the resin, the strength of the component parts can be secured and the wear resistance can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a linear motion actuator including a planetary reduction gear composed of a planetary gear mechanism in an embodiment of the present invention.
FIG. 2 is a right side view showing the linear motion actuator of FIG. 1;
3 is a cross-sectional view showing a state in which the linear motion actuator of FIG. 1 is operated to linearly move the sliding member.
FIG. 4 is a cross-sectional view showing a linear motion actuator including a planetary reduction gear composed of a mysterious planetary gear mechanism according to another embodiment of the present invention.
5 is a cross-sectional view showing a state in which the linear motion actuator of FIG. 4 is operated to linearly move the sliding member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Drive motor 2 Output shaft 3 Planetary reduction gear 4 Sliding member 5 Hollow part 6 Sun gear 8 Output member (rotating internal gear)
9 Planetary gear 10 Carrier 14 Threaded part (thread groove)
17 Flat surface 18 Fixed internal gear

Claims (6)

駆動用モータの出力軸に遊星式減速機を設け、駆動用モータの回転を遊星式減速機を介して減速した上で摺動部材の直線往復動に変換する直動アクチュエータであって、前記遊星式減速機の出力部材の外周に、前記摺動部材と螺合するねじ部を形成し、前記駆動用モータの外径の少なくとも一部にフラット面を有し、そのフラット面を摺動部材の接触面としたことを特徴とする直動アクチュエータ。A planetary speed reducer provided on the output shaft of the drive motor, wherein the planetary speed reducer converts the rotation of the drive motor into a linear reciprocating motion of the sliding member after decelerating the speed through the planetary speed reducer. the outer periphery of the output member of the formula reducer, forming a threaded portion of the slide member and screwed, has a flat surface on at least a portion of the outer diameter of the driving motor, the sliding member and the flat surface A linear actuator characterized by a contact surface . 前記遊星式減速機は、駆動用モータの出力軸に同軸的に設けられた太陽歯車と、回り止めされた前記摺動部材と螺合した出力部材である回転内歯車と、前記太陽歯車と回転内歯車との間にそれら両者と噛合するように介装された複数の遊星歯車と、これら遊星歯車を円周方向等間隔に回転自在に保持するキャリアとで構成された遊星歯車機構であることを特徴とする請求項1に記載の直動アクチュエータ。  The planetary reducer includes a sun gear coaxially provided on an output shaft of a drive motor, a rotating internal gear that is an output member screwed with the sliding member that is prevented from rotating, and a rotation with the sun gear. It is a planetary gear mechanism composed of a plurality of planetary gears interposed between the internal gears so as to mesh with both of them and a carrier that rotatably holds these planetary gears at equal intervals in the circumferential direction. The linear motion actuator according to claim 1. 前記遊星式減速機は、駆動用モータの出力軸に同軸的に設けられた太陽歯車と、回り止めされた前記摺動部材と螺合した出力部材である回転内歯車と、前記駆動用モータに固着された固定内歯車と、前記太陽歯車と回転内歯車および固定内歯車との間にそれら両者と噛合するように介装された複数の遊星歯車と、これら遊星歯車を円周方向等間隔に回転自在に保持するキャリアとで構成された不思議遊星歯車機構であることを特徴とする請求項1に記載の直動アクチュエータ。  The planetary reduction device includes a sun gear coaxially provided on an output shaft of a drive motor, a rotary internal gear that is an output member screwed with the sliding member that is prevented from rotating, and a drive motor. A fixed fixed internal gear, a plurality of planetary gears interposed between the sun gear, the rotating internal gear and the fixed internal gear so as to mesh with both, and the planetary gears at equal intervals in the circumferential direction; The linear motion actuator according to claim 1, wherein the linear motion actuator is a mysterious planetary gear mechanism composed of a carrier that is rotatably held. 前記摺動部材は中空部を有し、その中空部に前記駆動用モータおよび遊星式減速機を収納配置したことを特徴とする請求項1乃至3のいずれかに記載の直動アクチュエータ。  The linear actuator according to any one of claims 1 to 3, wherein the sliding member has a hollow portion, and the driving motor and the planetary speed reducer are accommodated in the hollow portion. 前記遊星式減速機を構成する各部品および摺動部材を含む構成部品を樹脂製としたことを特徴とする請求項1乃至のいずれかに記載の直動アクチュエータ。Linear actuator according to any one of claims 1 to 4, characterized in that the components including the components and the sliding member constituting the planetary reduction gear was made of resin. 前記樹脂製の構成部品を、ポリアセタール、ポリイミド、ポリフェニレンサルファイドを含むエンジニアリングプラスチックで成形したことを特徴とする請求項に記載の直動アクチュエータ。6. The linear actuator according to claim 5 , wherein the resin component is formed of an engineering plastic containing polyacetal, polyimide, and polyphenylene sulfide.
JP2002049751A 2002-02-26 2002-02-26 Linear actuator Expired - Lifetime JP3977100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002049751A JP3977100B2 (en) 2002-02-26 2002-02-26 Linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002049751A JP3977100B2 (en) 2002-02-26 2002-02-26 Linear actuator

Publications (2)

Publication Number Publication Date
JP2003250246A JP2003250246A (en) 2003-09-05
JP3977100B2 true JP3977100B2 (en) 2007-09-19

Family

ID=28662183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002049751A Expired - Lifetime JP3977100B2 (en) 2002-02-26 2002-02-26 Linear actuator

Country Status (1)

Country Link
JP (1) JP3977100B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751315B2 (en) 2006-12-29 2011-08-17 本田技研工業株式会社 Telescopic actuator
TWI455458B (en) * 2007-09-20 2014-10-01 Thk Co Ltd Linear actuator
FR2987187B1 (en) * 2012-02-16 2014-10-31 Valeo Systemes Thermiques ACTUATOR, IN PARTICULAR FOR A HEATING, VENTILATION AND / OR AIR CONDITIONING INSTALLATION.

Also Published As

Publication number Publication date
JP2003250246A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
JP4917554B2 (en) Hollow motor drive device
US9985497B2 (en) Electrical linear actuator
US5809833A (en) Linear actuator
KR20090123789A (en) Wave-gear-type linear-actuation mechanism
EP0366594A2 (en) Cam-driven linear actuator apparatus
CN109109017A (en) A kind of structured automatical thread-arranging-winding machine structure for cable traction machine people
US6227064B1 (en) Power steering apparatus
EP0572543A4 (en) Miniature linear actuator.
JP3977100B2 (en) Linear actuator
JP2004301135A (en) Linear driving device
JP4489199B2 (en) Linear actuator
CN109681602A (en) A kind of harmonic speed changer with linear motion function
JP4543165B2 (en) Spiral linear motor
CN209036570U (en) A kind of structured automatical thread-arranging-winding machine structure for cable traction machine people
JPS63312562A (en) Speed change gear
WO2016198858A1 (en) Rotary actuator
JP2007120749A (en) Actuator
JPH11351348A (en) Electric actuator
JP2004364348A (en) theta-X ACTUATOR
TW468013B (en) Z-θ independent motion unit
RU2351817C1 (en) Mechatronic module for linear displacement
JP3700441B2 (en) Linear actuator
JPH11325213A (en) Electric actuator
GB2459297A (en) Electrically driven linear actuator
JPS61254061A (en) Stroke type stepping motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3977100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term