JP3977078B2 - Interfering device - Google Patents

Interfering device Download PDF

Info

Publication number
JP3977078B2
JP3977078B2 JP2001400298A JP2001400298A JP3977078B2 JP 3977078 B2 JP3977078 B2 JP 3977078B2 JP 2001400298 A JP2001400298 A JP 2001400298A JP 2001400298 A JP2001400298 A JP 2001400298A JP 3977078 B2 JP3977078 B2 JP 3977078B2
Authority
JP
Japan
Prior art keywords
light beam
light
interference
beams
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001400298A
Other languages
Japanese (ja)
Other versions
JP2003194512A (en
Inventor
成樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001400298A priority Critical patent/JP3977078B2/en
Priority to US10/278,078 priority patent/US6914682B2/en
Priority to DE10249409A priority patent/DE10249409B4/en
Priority to GB0224804A priority patent/GB2386417B/en
Publication of JP2003194512A publication Critical patent/JP2003194512A/en
Application granted granted Critical
Publication of JP3977078B2 publication Critical patent/JP3977078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、非接触にて物体の位置変動を検出する干渉測長装置に関するものである。
【0002】
【従来の技術】
図5に従来式の光源に半導体レーザーを使用した干渉計の概略図を示す。半導体レーザー1aから射出されたレーザー光束20はコリメーターレンズ2aで平行光とされ偏光ビームスプリッター4に入射し測定光20aと20bに分割される。光束20aは1/4λ板5bを透過し集光レンズ6で集光光束とされ被測定物7で集光される。一方偏光ビームスプリッター4で反射された光束20bは参照光として1/4λ板5aを透過しリファレンスミラー8で反射される。それぞれ被測定物7、リファレンスミラー8で反射された光束は再び1/4λ板を透過し今度リファレンス光は透過し、測定光は反射し合波光束21となって1/4λ板5cに入射する。光束21は測定光の帰り光の偏光情報のみ変調されているので1/4λ板5cを透過した光束は回転する直線偏光となる。その後光束は非偏光ビームスプリッター10に入射し光束22、23に分割される。その後それぞれ互いに45度光学軸を傾けた偏光板11a、11bを光束が通過することにより、図6に示すごとく互いに90度位相の異なる正弦波信号(以後A相信号、B相信号と呼ぶ)がセンサー12a、12bで検出されることになる。被測定物の変位によって光束21の偏光方向が回転するので被測定物の変位に応じてλ/2で一周期のサイン信号が得られる。
【0003】
【発明が解決しようとする課題】
上記従来例に示したような干渉を用いた変位計は例えば機械加工で製作した回転する軸等を測定する散乱部分にレーザー光を照射すると反射光に様々な位相の光束が混在することに起因するスペックルパターンが生じる。スペックルパターンは光の粒状パターンであるがスペックルパターンとリファレンス光を干渉させた場合スペックルそれぞれの干渉信号はランダムな位相を持つためセンサー上の干渉光信号は平均化され、いわゆるドロップアウトという状態になる。センサーからのA相B相正弦波信号は、A相信号、B相信号をカウンターでカウントしたカウント値とA相B相の位相情報で変位に計算される。つまりドロップアウト時には変位情報計算に必要なカウンター値が更新されないので信号復活時に、被検物体がカウンター作動距離以上の変位をすると、その分は誤差となる。回転体では毎週同一部分でドロップアウトが生じ、また軸の挙動は回転に同期した軸ぶれが大部分を占めるためドロップアウト時に軸はほぼ同じ様な挙動を示す。よって毎週ドロップアウト時の誤差は累積され無限にずれていく。上記示したように回転体の測定では誤差が無限に累積していくという問題を抱えていた。
【0004】
【課題を解決するための手段】
本発明の一側面としての干渉計は、マルチモード半導体レーザー光源と、該マルチモード半導体レーザー光源発する光束を2つの光束に分割し一方の光束をリファレンスミラーに照射し他方の光束を移動体に照射する第一の光束分割手段と、前記リファレンスミラーからの反射光束と前記移動体からの反射光束とを合波して得られる干渉光束を複数の光束に分割する第二の光束分割手段と、前記第二の光束分割手段によって分割されたそれぞれの光束を受光する受光手段とを有する干渉計であって、前記干渉光束光路中に設けられ、前記合波して得られる干渉光束のうち特定波長の光束のみを抽出し前記受光素子に導光するためのバンドパスフィルターと、前記マルチモード半導体レーザー光源からの光束を前記第一の光束分割手段へ導光するマルチモードファイバーと、を有する
また、本発明の別の一側面としての干渉計は、スーパールミネッセンスダイオードと、該スーパールミネッセンスダイオードが発する光束を2つの光束に分割し一方の光束をリファレンスミラーに照射し他方の光束を移動体に照射する第一の光束分割手段と、前記リファレンスミラーからの反射光束と前記移動体からの反射光束とを合波して得られる干渉光束を複数の光束に分割する第二の光束分割手段と、前記第二の光束分割手段によって分割されたそれぞれの光束を受光する受光手段とを有する干渉計であって、前記干渉光束光路中に設けられ、前記合波して得られる干渉光束のうち特定波長の光束のみを抽出し前記受光素子に導光するためのバンドパスフィルターを有する
【0005】
【発明の実施の形態】
図1は、本発明の実施例に係る半導体レーザーを使った小型干渉計の概略構成である。図中、従来例と同様の部材には同じ符番を付してある。
【0006】
中心波長λのマルチモード半導体レーザー1aから射出されたレーザー光束20aはレンズ2aで集光光束となりマルチモードファイバー30に導かれ、マルチモードファイバー30を通過した後、レンズ2bに入射する。光束20aはレンズ2bにより平行光束となり、偏光ビームスプリッター3bでP波とS波に分離され、一方の光束は参照光束21となり1/4λ波長板5aを透過して反射ミラー4で反射される。一方、偏光ビームスプリッター3bを透過した光束は測定光束22として1/4λ波長板5bを透過して集光レンズ6で集光光束となり被検物体7に照射される。このとき測定光22は被検物体の反射面7に集光するようにしてある。反射面7で反射された光束22は反射後再びもとの光路を通りビームスプリッター3bにより反射される。一方参照光束21は反射後もとの光路を通り今度はビームスプリッター3bを透過し測定光と合波され光束23となる。光束23はその後、非偏光ビームスプリッター8に入射し反射光は光束24、透過光は光束25となる。
【0007】
このとき光束22の集光点を参照光束21が反射される反射面6と波動光学的な等光路長になるように集光レンズ6のパワーを設定しておけば、低コヒーレンシー光源を利用した干渉計として最大の効果を発揮する。つまり波面で考えると、干渉信号が最大のコントラストの位置で、被検物体の反射面7からの反射光と、リファレンス光としての反射面4からの戻り光は両方とも平行光として合波されるため、のちに構成する光電センサーでは最大の信号が得られる。
【0008】
光束24はλの波長のみを透過するバンドパスフィルター13aを透過することで、λの情報のみを抽出する。波長λの光束は1/4λ板9aを透過することで直線偏光となり、偏光情報は被検物体7の変位に基づいて偏光方向が回転する。回転する直線偏光の光束24はその非偏光ビームスプリッター10aで分割され、透過光は偏光板11a、反射光は偏光板11bを透過することにより光の明暗信号となりそれぞれ光電センサー12a、12bで受光されてその出力信号は被検物体の移動に伴い1/2λ移動に対して1周期のサイン波の電気信号となる。波長板12a、12bはそれぞれ偏光軸が45度傾いて設置してあり光電センサー12a、12bからのサイン信号は90度位相の異なる信号(以後A相、B相となる。一方非偏光ビームスプリッター8を透過した光束25はλの波長のみを透過するバンドパスフィルター13bを透過することでλの情報のみを抽出する。以後1/4λ板13bを透過し、光束24と同様に非偏光ビームスプリッター10bで2分割された後、偏光板11c、11dをそれぞれ透過し光電センサー12c、12dに入射する。この場合、電気信号は被検物体の移動に伴い1/2λ移動に対して1周期のサイン波の電気信号となる。やはり11c、11dは偏光軸を互いに45度傾けて設置してあるので、やはりA相、B相の90度位相の異なるサイン信号となる。ここで図3において抽出するλ及びλに関する説明を行う。
【0009】
光源1aはマルチモード半導体レーザーであるので波長スペクトル細いスペクトル線の集合体としてλを中心として約3nmの幅を持つ。この光源光として分散効果を持つマルチモードファイバーを通すことで輝線スペクトルの集合体であるマルチモードレーザーのスペクトルを図3のごとくガウシアン分布のなだらかなスペクトルに変換している。この光束の干渉光を透過スペクトルλ1のフィルター13aを通すことで波長λ1の干渉情報のみ抽出して光束24としている。光束25は透過スペクトルλ2のフィルター13bで波長λ2の干渉情報のみ抽出している。マルチモードレーザーを光源とする光束がマルチモードファイバーを透過することでスペクトルを分散させてなまらせた光束を得ることができる。そして、バンドパスフィルターを介して特定の輝線スペクトルを抽出するとシングルモードレーザーに近い特性光束が得られることは知られているが、本実施例でも同様の特定波長抽出方法を使用することで、干渉計としての干渉距離を格段に伸ばすことに成功している。しかも、その光源はマルチモードレーザーであるのでモードホップによるノイズの影響も受けないで安定した測定を可能にしている。
【0010】
たとえば20μmの軸ぶれをしているφ4mmの軸で0.5mm幅の傷や面欠陥があるものを測定する場合、0.5mm幅の傷で信号ドロップアウトを生じたときに、外周の1/25の部分で信号が欠落することになる。これはドロップアウト時に約2μm変位する可能性を意味する。つまり4μmの測定範囲で2波長λλから得られるサイン信号の位相が同じ状態にならない信号を出力すれば、ドロップアウトを生じても、ドロップアウトから回復した時点で再び正しい値で測定が開始できることになる。
【0011】
つまり、本発明の変位計では幅4μmの範囲でλ、λの波長を持つ光より得られるサイン信号の位相が重ならないようにλ、λを設定すれば、すなわち
λ×{λ÷(λ−λ)}/2≧4μmであれば高精度回転軸測定を容易に可能とする。本発明の実施例ではマルチモードレーザー光のスペクトル幅の中から2波長を抽出するため近接した2波長を抽出することができる。
【0012】
具体的にはλ=649nm、λ=651nmとするとセンサー12a、12bからの出力は649/2=324.5nmの正弦波信号が出力される。センサー12c、12dからの出力は651/2=325.5nmとなる。両サイン信号の位相が同じ状態になるのは約±105μm先であるので上記式を十分満たし、ドロップアウト後信号が復活しても、正しい位置信号を出力できることがわかる。
【0013】
さらに、光源をペルチェ素子等で温度調整すれば、安定した波長λ、λが得られる干渉信号が同一レベルに保つことができる。さらに光電センサー11a、11b、11c、11dの信号レベルをモニターし、バンドパスフィルター13a、13bの透過光量が等しくなるようにペルチェ素子にフィードバックをすればさらに安定した波長λ、λを得て干渉信号を同一レベルに安定させることできる。
【0014】
また、光源はSLED(スーパールミネッセンスダイオード)でも同様の効果が得られる。
【0015】
また、干渉膜フィルターはファイバーグレーティングを利用したフィルターでも同様の効果が得られる。分波に関しては本実施例では非偏光ビームスプリッターおよびバンドパスフィルターで波長を抽出しているが、これを周知なAWG(Arrayed Wave Guide)を利用しても同様にλλの波長の光を抽出することができる。
【0016】
【発明の効果】
以上説明したように、本発明が提案する干渉計は、光源に低コヒーレンシー光源を使用し、光束を光透過部材内にて2つの光束に分割し、一方の光束(測定光束)を光学ヘッドに固設したリファレンスミラーにて照射させ、他方の光束を移動あるいは変位する測定対象物に照射させ、それぞれの反射光束を前記透過部材内にて合波させて干渉光束を得て特定の波長光のみが透過する波長選択フィルターで特定波長光を抽出し受光素子で検出するという構成を採用する。この構成を採用によって光源にマルチモード半導体レーザーを採用することができるため、所謂モードホップによるノイズの影響を受けない光源手段が採用でき、且つ測定面上の傷等によるドロップアウトが生じても信号復活時に正しい位置出力をすることが可能な干渉計を実現できる。また、波長選択フィルターを介して特定の輝線スペクトルを抽出することでシングルモードレーザーに近い特性の計測光束が得られ、かつ、干渉計としての干渉距離を格段に伸ばすことができる。さらに光源を温調することにより複数波長が常に同一レベルで出力することもできる。
【図面の簡単な説明】
【図1】本発明による実施形態例の干渉計の概略図
【図2】本発明による実施形態例の干渉計の出力信号を示す概略図
【図3】本発明による実施形態例の干渉計に使用された光源の発光波長スペクトル説明図
【図4】本発明による実施形態例の干渉計に使用されたバンドパスフィルターの透過特性図
【図5】従来の干渉計の概略図
【図6】従来の干渉計の出力信号を示す概略図
【符号の説明】
1a 半導体レーザー
2a、2b コリメーターレンズ
3b、4 偏光ビームスプリッター
5a、5b、5c、9a、9b 1/4λ板
6 集光レンズ
7 被測定物
8、10、10a、10b 非偏光ビームスプリッター
11a、11b、11c、11d 偏光板
12a、12b、12c、12d 光電センサー
20a、20b、20、21、22、23、24、25 光束
30 マルチモードファイバー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an interference length measuring device that detects a change in the position of an object without contact.
[0002]
[Prior art]
FIG. 5 shows a schematic diagram of an interferometer using a semiconductor laser as a conventional light source. The laser light beam 20 emitted from the semiconductor laser 1a is converted into parallel light by the collimator lens 2a, enters the polarization beam splitter 4, and is divided into measurement light 20a and 20b. The light beam 20 a passes through the ¼λ plate 5 b, becomes a condensed light beam by the condenser lens 6, and is condensed by the object 7 to be measured. On the other hand, the light beam 20b reflected by the polarization beam splitter 4 passes through the ¼λ plate 5a as reference light and is reflected by the reference mirror 8. The light beams reflected by the DUT 7 and the reference mirror 8 are again transmitted through the 1 / 4λ plate, and then the reference light is transmitted. The measurement light is reflected and becomes a combined light beam 21 and enters the 1 / 4λ plate 5c. . Since the light beam 21 is modulated only in the polarization information of the return light of the measurement light, the light beam that has passed through the ¼λ plate 5c becomes rotating linearly polarized light. Thereafter, the light beam enters the non-polarizing beam splitter 10 and is split into light beams 22 and 23. Thereafter, when the light beams pass through the polarizing plates 11a and 11b inclined by 45 degrees with respect to each other, sinusoidal signals having different phases by 90 degrees as shown in FIG. 6 (hereinafter referred to as A phase signal and B phase signal). It is detected by the sensors 12a and 12b. Since the direction of polarization of the light beam 21 is rotated by the displacement of the object to be measured, a sine signal of one cycle is obtained at λ / 2 according to the displacement of the object to be measured.
[0003]
[Problems to be solved by the invention]
The displacement meter using interference as shown in the conventional example measures, for example, a rotating shaft manufactured by machining . When laser light is irradiated on the scattering portion, a speckle pattern is generated due to the presence of light beams of various phases in the reflected light. The speckle pattern is a granular pattern of light, but when the speckle pattern and reference light interfere with each other, the interference signal of each speckle has a random phase, so the interference light signal on the sensor is averaged, so-called dropout It becomes a state. The A-phase B-phase sine wave signal from the sensor is calculated as a displacement based on the A-phase signal, the count value obtained by counting the B-phase signal with a counter, and the phase information of the A-phase B-phase. In other words, since the counter value required for calculating displacement information is not updated at the time of dropout, if the object to be detected is displaced more than the counter working distance when the signal is restored, an error is generated. In the rotating body, dropouts occur in the same part every week, and the shaft behavior is largely the same as the shaft shake synchronized with the rotation, so the shaft shows almost the same behavior at the time of dropout. Therefore, the error at the dropout every week is accumulated and deviates infinitely. As described above, the measurement of the rotating body has a problem that errors accumulate infinitely.
[0004]
[Means for Solving the Problems]
Interferometer as one aspect of the present invention, a multi-mode semiconductor laser light source, one of the light beam to divide the light beam into two light beams the multimode semiconductor laser light source is emitted by irradiating the reference mirror and the other light beam to the mobile A first light beam splitting unit that irradiates; a second light beam splitting unit that splits an interference light beam obtained by combining the reflected light beam from the reference mirror and the reflected light beam from the moving body into a plurality of light beams; and interferometer met and a light receiving means for receiving the respective light fluxes divided by said second beam splitting means, provided in said interference light beam optical path, a specific wavelength of the interference light beams obtained by the combined of the band-pass filter for guiding the light receiving element to extract only the light beam, the multi-mode semiconductor laser light the light beam from the light source to the first beam splitter And multi-mode fiber that, to have a.
An interferometer according to another aspect of the present invention includes a super luminescence diode and a light beam emitted from the super luminescence diode, which is divided into two light beams, which irradiates one of the light beams to a reference mirror and uses the other light beam as a moving body. A first light beam splitting unit that irradiates; a second light beam splitting unit that splits an interference light beam obtained by combining the reflected light beam from the reference mirror and the reflected light beam from the moving body into a plurality of light beams; and interferometer met and a light receiving means for receiving the respective light fluxes divided by said second beam splitting means, provided in said interference light beam optical path, a specific wavelength of the interference light beams obtained by the combined to be extracted only a light beam have a band-pass filter for guiding the light receiving element.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic configuration of a small interferometer using a semiconductor laser according to an embodiment of the present invention. In the figure, the same reference numerals are given to the same members as in the conventional example.
[0006]
The laser beam 20a emitted from the multimode semiconductor laser 1a having the center wavelength λ becomes a condensed beam by the lens 2a, is guided to the multimode fiber 30, passes through the multimode fiber 30, and then enters the lens 2b. The light beam 20a is converted into a parallel light beam by the lens 2b, separated into a P wave and an S wave by the polarization beam splitter 3b, and one of the light beams becomes a reference light beam 21, which is transmitted through the ¼λ wavelength plate 5a and reflected by the reflection mirror 4. On the other hand, the light beam that has passed through the polarization beam splitter 3 b passes through the ¼λ wavelength plate 5 b as the measurement light beam 22, and becomes a condensed light beam by the condenser lens 6 and is irradiated onto the object 7 to be examined. At this time, the measurement light 22 is focused on the reflection surface 7 of the object to be examined. The light beam 22 reflected by the reflecting surface 7 passes through the original optical path again after being reflected and is reflected by the beam splitter 3b. On the other hand, the reference light beam 21 passes through the original optical path after reflection and then passes through the beam splitter 3b and is combined with the measurement light to become a light beam 23. Thereafter, the light beam 23 enters the non-polarizing beam splitter 8, and the reflected light becomes the light beam 24 and the transmitted light becomes the light beam 25.
[0007]
At this time, if the power of the condensing lens 6 is set so that the converging point of the light beam 22 becomes equal to the reflection surface 6 on which the reference light beam 21 is reflected and a wave optical equivalent optical path length, a low coherency light source is used. Demonstrates the maximum effect as an interferometer. In other words, considering the wavefront, the reflected light from the reflecting surface 7 of the object to be measured and the returning light from the reflecting surface 4 as the reference light are both combined as parallel light at the position of the contrast where the interference signal is maximum. Therefore, the maximum signal can be obtained in the photoelectric sensor that is configured later.
[0008]
The light beam 24 by passing through the band-pass filter 13a that transmits only wavelengths of lambda 1, to extract only the lambda 1 information. The light beam having the wavelength λ 1 becomes linearly polarized light by passing through the ¼λ plate 9 a, and the polarization direction of the polarization information is rotated based on the displacement of the test object 7. The rotating linearly polarized light beam 24 is split by the non-polarizing beam splitter 10a, the transmitted light is transmitted through the polarizing plate 11a, and the reflected light is transmitted through the polarizing plate 11b to be a light / dark signal, which is received by the photoelectric sensors 12a and 12b, respectively. the output signal Te is the electrical signal of the sine wave of one cycle with respect to 1/2 [lambda] 1 moves along with the movement of the inspected object. The wave plates 12a and 12b are respectively installed with the polarization axes inclined by 45 degrees, and the sine signals from the photoelectric sensors 12a and 12b are signals having phases different from each other by 90 degrees (hereinafter, A phase and B phase. On the other hand, the non-polarizing beam splitter 8 light beam 25 that has passed through the extracts only the second information lambda by passing through the band-pass filter 13b which passes only the wavelength of lambda 2. Thereafter transmitted through the 1 / 4.lamda plate 13b, similarly to the light beam 24 unpolarized light beam after being divided into two sections by splitter 10b, and enters the polarizing plate 11c, 11d and transmitted photoelectric sensor 12c, respectively, to 12d. 1 cycle with respect to this case, the electrical signal moves as 1/2 [lambda] 2 to the movement of the object to be detected 11c and 11d are also installed with their polarization axes inclined by 45 degrees, so that the signs of the 90-degree phases of the A and B phases are also different. The No.. Performs where description of lambda 1 and lambda 2 to be extracted in FIG.
[0009]
Since the light source 1a is a multimode semiconductor laser, the wavelength spectrum has a width of about 3 nm with λ as the center as a collection of narrow spectral lines. By passing a multimode fiber having a dispersion effect as the light source light, the spectrum of the multimode laser, which is an assembly of emission line spectra, is converted into a gentle spectrum of Gaussian distribution as shown in FIG . By passing the interference light of this light beam through the filter 13a of the transmission spectrum λ1, only the interference information of the wavelength λ1 is extracted to be a light beam 24. Only the interference information of wavelength λ2 is extracted from the light beam 25 by the filter 13b having the transmission spectrum λ2. A light beam with a multi-mode laser as a light source passes through the multi-mode fiber so that a light beam with a dispersed spectrum can be obtained. And, it is known that extracting a specific emission line spectrum through a band-pass filter will yield a characteristic light beam close to a single mode laser. In this embodiment, interference can be obtained by using the same specific wavelength extraction method. It has succeeded in extending the interference distance as a total. Moreover, since the light source is a multimode laser, it is possible to perform stable measurement without being affected by noise due to mode hopping.
[0010]
For example, when measuring a φ4 mm shaft having a 20 μm shaft deflection and having a scratch of 0.5 mm width or a surface defect, when a signal dropout occurs due to a scratch of 0.5 mm width, The signal is lost at 25 portion. This means that there is a possibility of displacement of about 2 μm at the time of dropout. In other words, if a signal that does not have the same phase of the sine signal obtained from the two wavelengths λ 1 λ 2 in the measurement range of 4 μm is output, even if dropout occurs, measurement is performed again with the correct value when recovered from dropout. You can start.
[0011]
That is, in the displacement meter of the present invention, if λ 1 and λ 2 are set so that the phases of the sine signals obtained from the light having the wavelengths of λ 1 and λ 2 in the range of 4 μm in width are not overlapped, that is, λ 1 × { If λ 1 ÷ (λ 2 −λ 1 )} / 2 ≧ 4 μm, highly accurate rotation axis measurement can be easily performed. In the embodiment of the present invention, since two wavelengths are extracted from the spectral width of the multimode laser light, two adjacent wavelengths can be extracted.
[0012]
Specifically, when λ 1 = 649 nm and λ 2 = 651 nm, the outputs from the sensors 12a and 12b are sine wave signals of 649/2 = 324.5 nm. The outputs from the sensors 12c and 12d are 651/2 = 325.5 nm. Since both sine signals have the same phase about ± 105 μm ahead, the above equation is sufficiently satisfied, and it can be seen that a correct position signal can be output even if the signal is restored after dropout.
[0013]
Furthermore, if the temperature of the light source is adjusted by a Peltier element or the like, interference signals that can obtain stable wavelengths λ 1 and λ 2 can be maintained at the same level. Furthermore, if the signal levels of the photoelectric sensors 11a, 11b, 11c, and 11d are monitored and feedback is made to the Peltier elements so that the transmitted light amounts of the bandpass filters 13a and 13b are equal, stable wavelengths λ 1 and λ 2 can be obtained. Interference signals can be stabilized at the same level.
[0014]
The same effect can be obtained even if the light source is an SLED (super luminescence diode).
[0015]
Moreover, the same effect can be obtained even if the interference film filter is a filter using a fiber grating. Regarding the demultiplexing, the wavelength is extracted by a non-polarizing beam splitter and a band pass filter in this embodiment, but light having a wavelength of λ 1 λ 2 is similarly obtained using a well-known AWG (Arrayed Wave Guide). Can be extracted.
[0016]
【The invention's effect】
As described above, the interferometer proposed by the present invention uses a low-coherency light source as a light source, divides a light beam into two light beams in a light transmission member, and uses one light beam (measurement light beam) as an optical head. Irradiate with a fixed reference mirror, irradiate the object to be moved or displaced with the other light beam, combine the reflected light beams in the transmitting member to obtain an interference light beam, and only a specific wavelength light A configuration is adopted in which light of a specific wavelength is extracted by a wavelength selection filter through which light is transmitted and detected by a light receiving element. By adopting this configuration, a multimode semiconductor laser can be used as the light source, so light source means that are not affected by noise caused by so-called mode hops can be used, and even if a dropout occurs due to scratches on the measurement surface, etc. An interferometer that can output a correct position at the time of revival can be realized. Further, by extracting a specific emission line spectrum through a wavelength selection filter, a measurement light beam having characteristics close to that of a single mode laser can be obtained, and the interference distance as an interferometer can be greatly extended. Further, by controlling the temperature of the light source, a plurality of wavelengths can always be output at the same level.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an interferometer of an example embodiment according to the present invention. FIG. 2 is a schematic diagram showing an output signal of the interferometer of the example embodiment according to the present invention. Fig. 4 is a diagram illustrating the emission wavelength spectrum of the light source used. Fig. 4 is a transmission characteristic diagram of a bandpass filter used in the interferometer of the embodiment according to the present invention. Fig. 5 is a schematic diagram of a conventional interferometer. Schematic diagram showing the output signal of the interferometer of the [Sign Explanation]
DESCRIPTION OF SYMBOLS 1a Semiconductor laser 2a, 2b Collimator lens 3b, 4 Polarization beam splitters 5a, 5b, 5c, 9a, 9b 1/4 (lambda) board 6 Condensing lens 7 Measured object 8, 10, 10a, 10b Non-polarization beam splitters 11a, 11b 11c, 11d Polarizing plates 12a, 12b, 12c, 12d Photoelectric sensors 20a, 20b, 20, 21, 22, 23, 24, 25 Luminous flux 30 Multimode fiber

Claims (5)

マルチモード半導体レーザー光源と、該マルチモード半導体レーザー光源発する光束を2つの光束に分割し一方の光束をリファレンスミラーに照射し他方の光束を移動体に照射する第一の光束分割手段と、前記リファレンスミラーからの反射光束と前記移動体からの反射光束とを合波して得られる干渉光束を複数の光束に分割する第二の光束分割手段と、前記第二の光束分割手段によって分割されたそれぞれの光束を受光する受光手段とを有する干渉計であって、
前記干渉光束光路中に設けられ、前記合波して得られる干渉光束のうち特定波長の光束のみを抽出し前記受光素子に導光するためのバンドパスフィルターと、
前記マルチモード半導体レーザー光源からの光束を前記第一の光束分割手段へ導光するマルチモードファイバーと、を有する干渉装置。
And a multimode semiconductor laser light source, a first light beam splitting means for irradiating one of the light beam to divide the light beam into two light beams the multimode semiconductor laser light source is emitted by irradiating the reference mirror and the other light beam to the mobile, the A second light beam splitting unit that splits an interference light beam obtained by combining the reflected light beam from the reference mirror and the reflected light beam from the moving body into a plurality of light beams and the second light beam splitting unit. each of the light flux met interferometer and a light receiving means for receiving,
A bandpass filter provided in the interference light beam path, for extracting only the light beam having a specific wavelength from the interference light beam obtained by combining and guiding the light beam to the light receiving element;
Interference device which have a a multi-mode fiber for guiding the light beam from the multimode semiconductor laser light source into the first beam splitter.
スーパールミネッセンスダイオードと、該スーパールミネッセンスダイオードが発する光束を2つの光束に分割し一方の光束をリファレンスミラーに照射し他方の光束を移動体に照射する第一の光束分割手段と、前記リファレンスミラーからの反射光束と前記移動体からの反射光束とを合波して得られる干渉光束を複数の光束に分割する第二の光束分割手段と、前記第二の光束分割手段によって分割されたそれぞれの光束を受光する受光手段とを有する干渉計であって、
前記干渉光束光路中に設けられ、前記合波して得られる干渉光束のうち特定波長の光束のみを抽出し前記受光素子に導光するためのバンドパスフィルターを有する干渉装置。
A superluminescent diode, and a first beam splitter for irradiating one of the light beam to divide the light beam into two beams said superluminescent diode is emitted by irradiating the reference mirror and the other light beam to the mobile, from the reference mirror A second light beam splitting unit that splits an interference light beam obtained by combining the reflected light beam and the reflected light beam from the moving body into a plurality of light beams; and the respective light beams split by the second light beam splitting unit. met interferometer and a light receiving means for receiving,
The provided interference light beam light path, the multiplexed interferometric device which have a band-pass filter for guiding the light receiving element to extract only the light beam of a specific wavelength of the interference light beams obtained.
前記マルチモード半導体レーザー光源に光源温度調節手段を設けたことを特徴とする請求項記載の干渉装置。Interference device according to claim 1, characterized in that a light source temperature control means to said multi-mode semiconductor laser light source. 前記光源温度調節手段はペルチェ素子であることを特徴とする請求項3記載の干渉装置。The light source temperature adjustment means interference device according to claim 3, characterized in that the Peltier element. 前記バンドパスフィルターは、前記第二の光束分割手段から前記受光手段までの光路中に設けたことを特徴とする請求項1又は2記載の干渉装置。3. The interference apparatus according to claim 1, wherein the band pass filter is provided in an optical path from the second light beam splitting unit to the light receiving unit.
JP2001400298A 2001-10-25 2001-12-28 Interfering device Expired - Fee Related JP3977078B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001400298A JP3977078B2 (en) 2001-12-28 2001-12-28 Interfering device
US10/278,078 US6914682B2 (en) 2001-10-25 2002-10-23 Interferometer and position measuring device
DE10249409A DE10249409B4 (en) 2001-10-25 2002-10-23 Interferometer and position measuring device
GB0224804A GB2386417B (en) 2001-10-25 2002-10-24 Interferometer and position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400298A JP3977078B2 (en) 2001-12-28 2001-12-28 Interfering device

Publications (2)

Publication Number Publication Date
JP2003194512A JP2003194512A (en) 2003-07-09
JP3977078B2 true JP3977078B2 (en) 2007-09-19

Family

ID=27604949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400298A Expired - Fee Related JP3977078B2 (en) 2001-10-25 2001-12-28 Interfering device

Country Status (1)

Country Link
JP (1) JP3977078B2 (en)

Also Published As

Publication number Publication date
JP2003194512A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
US6137565A (en) Bragg grating temperature/strain fiber sensor having combination interferometer/spectrometer output arrangement
US8873066B2 (en) System and method for improved resolution, higher scan speeds and reduced processing time in scans involving swept-wavelength interferometry
US8179534B2 (en) Fixed wavelength absolute distance interferometer
EP1724550A1 (en) Interferometer and shape measuring method
JP4381671B2 (en) Displacement detector
US6914682B2 (en) Interferometer and position measuring device
JP5849231B2 (en) Surface shape measuring apparatus and method
JP2012515892A (en) Optical path length determination device and determination method
JP2007132727A (en) Interference measuring apparatus
KR20060114620A (en) Wave front aberration measuring device
JPH10332355A (en) Interference measuring device
JP5235554B2 (en) Optical displacement measuring device
JP2005515414A (en) Interferometric optical device
US20140160490A1 (en) Interference measuring apparatus and interference measuring method
JP4665290B2 (en) Interval measuring device and surface shape measuring device
KR20180103850A (en) Phase shift amount measuring device
JP3977078B2 (en) Interfering device
JP4023917B2 (en) Optical displacement measuring device
JP2006349382A (en) Phase shift interferometer
JP4404184B2 (en) Displacement detector
JPH06160117A (en) Optical displacement detecting device
JP3439803B2 (en) Method and apparatus for detecting displacement or change in position of an object from the focal point of an objective lens
JPH05264220A (en) Method and equipment for measuring distance optically and application thereof to relative positioning of component
JP3937798B2 (en) Interferometer and position measuring device
JP2003098034A (en) Lens face spacing measuring device and measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees