JP3977065B2 - Clutch unit - Google Patents

Clutch unit Download PDF

Info

Publication number
JP3977065B2
JP3977065B2 JP2001367173A JP2001367173A JP3977065B2 JP 3977065 B2 JP3977065 B2 JP 3977065B2 JP 2001367173 A JP2001367173 A JP 2001367173A JP 2001367173 A JP2001367173 A JP 2001367173A JP 3977065 B2 JP3977065 B2 JP 3977065B2
Authority
JP
Japan
Prior art keywords
input
torque
elastic
side member
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001367173A
Other languages
Japanese (ja)
Other versions
JP2003166555A (en
Inventor
昌弘 栗田
正浩 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2001367173A priority Critical patent/JP3977065B2/en
Publication of JP2003166555A publication Critical patent/JP2003166555A/en
Application granted granted Critical
Publication of JP3977065B2 publication Critical patent/JP3977065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Braking Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、入力側の部材の入力トルクを他部材に伝達するためのクラッチユニットに関するものである。
【0002】
【従来の技術】
一般に、ローラやボール等の係合子を用いるクラッチユニットにおいては、入力側の部材と出力側の部材との間に形成される隙間にローラやボール等の係合子を係合・離脱させることによって入力トルクの伝達・遮断を制御する構成になっている。
【0003】
【発明が解決しようとする課題】
上記クラッチユニットの実際の機構として、操作レバー等の操作部材を繰り返し回動操作することにより、入力側の部材を間欠的に回転させて入力トルクを出力側の部材に伝達し、出力側の部材に一操作ごとの回転量を重畳的に蓄積させるようなものがある。
【0004】
このクラッチユニットでは、操作レバーを一回操作する度に、出力側の部材の追従回転を規制しつつ、適当な復帰手段で操作レバーを中立位置に復帰させる必要がある。
【0005】
この復帰手段としては、ばねの弾性力を利用するものが考えられる。この場合、操作レバーを確実に中立位置に復帰させるために、ばねには大きな弾性力が必要とされるが、ばねの設置スペースが制限されている等の条件下では、必要なばね定数を確保することが難しく、それ故に操作レバーや入力側の部材の中立位置への復帰が不十分となるおそれがある。
【0006】
そこで、本発明は、ばねの設置スペースが制限されている条件下でも、操作部材や入力側の部材を確実に中立位置に復帰させることのできるクラッチユニットの提供を目的とする。
【0007】
【課題を解決するための手段】
上記目的の達成のため、本発明では、トルクが入力される入力側部材と、トルクが出力される回転部材と、回転が拘束される静止側部材と、入力側部材からの入力トルクで回転部材を回転させるトルク伝達部とを具備し、入力側部材の中立位置からの繰り返し回転により、トルク伝達部を介して、回転部材に入力側部材の各回転動作ごとの回転量を蓄積するクラッチユニットにおいて、トルク伝達部として、入力側部材と回転部材の間の隙間に配置され、トルク入力時に上記隙間に噛み込んで入力トルクを回転部材に伝達し、入力トルクの開放時に上記隙間への噛み込みを解除する係合子を備え、入力側部材と静止側部材の間に、入力トルクで弾性力を蓄積すると共に、この蓄積した弾性力で入力トルクの開放時に入力側部材を中立位置に復帰させる第一の弾性部材を配置し、かつ係合子を保持する保持器と静止側部材との間に第二の弾性部材を配置し、入力トルクの作用時に第一および第二の弾性部材に弾性力を蓄積すると共に、入力トルクの開放時に両弾性部材の弾性力で係合子の上記隙間への噛み込みを解除することとした。
【0008】
トルク伝達部として係合子を使用することで、構造的にシンプルで低コストであり、かつ動作安定性や信頼性の高いクラッチユニットを提供することが可能となる。入力トルクの作用時には第一および第二の弾性部材に弾性力を蓄積すると共に、入力トルクの開放時に両弾性部材の弾性力で係合子の上記隙間への噛み込みを解除することができる。入力側部材には、トルク開放時に第一の弾性部材から直接弾性力が作用し、この弾性力は、入力側部材と回転部材の間のロック/アンロックを行う機構とは無関係に入力側部材にのみ作用するから、入力側部材に十分な復帰力を作用させることができ、これより入力側部材を確実に中立位置に復帰させることが可能となる。
【0009】
第一の弾性部材を有端リング状の板ばねで形成すれば、コイルばね等の他の弾性部材を使用する場合に比べ、構造の簡素化、省スペース化を図ることができる。この場合、第一の弾性部材の一端を入力側部材に、他端を静止側部材にそれぞれ係合させることにより、入力側部材の回転に伴って第一の弾性部材を弾性変形させて弾性力を蓄積する一方、トルクの開放時は蓄積した弾性力が直接入力側部材に伝達されるため、確実に入力側部材を中立位置に復帰させることが可能となる。
【0011】
第一および第二の弾性部材を有端リング状の板ばねで形成すれば、何れか一方の弾性部材を他方の弾性部材の内径側に配置することが可能となり、コンパクトな構造で上記機能を得ることができる。
【0012】
内径側の弾性部材のうち、トルク入力時の弾性変形で外径側の弾性部材と干渉する部分には、当該干渉を回避するための逃げ部を形成するのが好ましい。内径側の弾性部材と外径側の弾性部材の干渉は機能の安定上避けるべきであり、このような逃げ部を形成することにより、弾性部材間の半径方向隙間を拡大させることなく、両部材の干渉を回避することができる。
【0013】
外径側の弾性部材の両端を外径側に、内径側の弾性部材の両端を内径側にそれぞれ延ばせば、両弾性部材の各端部と他方の弾性部材との干渉を回避できる。従って、内径側の弾性部材を外径側の弾性部材と同程度まで大径化することが可能となり、内径側の弾性部材についても十分な弾性力を確保することができる。
【0014】
第一の弾性部材の一端を入力側部材に、他端を静止側部材にそれぞれ係合させ、かつ第二の弾性部材の一端を保持器に、他端を静止側部材にそれぞれ係合させれば、トルク入力時には入力側部材および保持器の回転で両弾性部材に弾性力を蓄積する一方、トルク開放時には、主として第一の弾性部材の弾性力で外輪を中立位置に復帰させ、第二の弾性部材の弾性力で保持器および係合子を中立位置に復帰させることが可能となる。
【0015】
以上の各構成を有するクラッチユニットと、トルクが出力される出力側部材と、上記クラッチユニットの回転部材と出力側部材との間に配置され、入力側部材の入力トルクを回転部材を介して出力側部材に伝達し、出力側部材からの逆入力トルクの回転部材への伝達を遮断する逆入力トルク遮断機構とを組み合わせることにより、入力側部材の繰り返し回転で出力側部材を間欠回転させる一方、出力側部材からの逆入力トルクの入力側への還流を遮断する回転駆動装置を提供することができる。この装置は、例えば、操作部材の回動操作による入力トルクを出力側機構に伝達して所要部位の位置調整を行う装置において、操作部材の非操作時、出力側機構の位置が変動しないようこれを保持する機能が求められる用途に好適である。
【0016】
【発明の実施の形態】
以下、本発明に係るクラッチユニットの一実施形態を図面に従って説明する。
【0017】
図1(a)(b)に示すように、この実施形態のクラッチユニットは、入力側部材としての外輪1と、回転部材としての内輪2と、トルク伝達部としての係合子、例えば複数のローラ3と、ローラ3を保持する保持器4と、二種類の弾性部材5A,5Bとを有する。
【0018】
外輪1は、第1薄肉部材1Aと、第2薄肉部材1Bとから構成される。本実施形態において、第2薄肉部材1Bの端部内周1Beは、第1薄肉部材1Aの外周、より詳細には内径フランジ部1Acの外周に配置されており、両部材1A,1Bの端面1Ag,1Bgは半径方向で同一平面上にある。両薄肉部材1A,1Bは、鋼板をプレス加工することにより製作することができるが、その他にも例えば、第2薄肉部材1Bを樹脂等の成型品で構成することもできる。
【0019】
第1薄肉部材1Aは、内周に複数のカム面1Aaが円周方向等間隔に形成されたドラム部1Abと、ドラム部1Abの一端部より内径側に延出された内径フランジ部1Acと、ドラム部1Abの他端部より外径側に延出された外径フランジ部1Adとを備える。
【0020】
各カム面1Aaは、円周方向中央部が深く、その中央部から円周方向両側に向って傾斜状に浅くなっている。内径フランジ部1Acは、保持器4を軸方向の一方に抜け止め規制すると共に、外輪1の内輪2に対する同軸性を保持する役割を果たすものである。
【0021】
外径フランジ部1Adには、第2薄肉部材1Bとの結合に供せられる複数(図例では6つ)の嵌合溝1Aeが形成されると共に、外径端より軸方向に沿ってドラム部1Abと反対側に延出された1または複数のストッパ爪1Afが形成されている。このストッパ爪1Afが、第1薄肉部材1Aの一側方(図1(a)の右側方)にあって回転が拘束される静止側部材の図示しないストッパ部と回転方向に係合することにより、外輪1の回動が所定範囲に規制される。
【0022】
第1薄肉部材1Aの全部又はカム面1Aaに対しては、例えば、浸炭焼入れ焼戻し、浸炭窒化焼入れ焼戻し、高周波焼入れ焼戻し、ずぶ焼入れ焼戻し等の熱処理(表面硬化処理)が施される。
【0023】
第2薄肉部材1Bには、外径端より軸方向に沿って第1薄肉部材1A側に延出された複数(図例では6つ)の嵌合爪1Baが形成されており、これらの嵌合爪1Baが図1(a)(b)に示すように第1薄肉部材1Aの嵌合溝1Aeに嵌合圧入または加締め固定されることにより、両薄肉部材1A,1Bの相対回転及び軸方向相対移動が規制されている。そして、この状態の下で、嵌合爪1Baが、その外周に装着される操作部材としての操作レバー6の凹凸部と回転方向に係合することにより、操作レバー6の外輪1に対する相対回転が規制されるようになっている。従って、操作レバー6を回動操作することにより、第1薄肉部材1Aと第2薄肉部材1Bとが一体回転し、これにより操作レバー6からの入力トルクが外輪1に入力される。
【0024】
図示例の内輪2は円筒状をなし、外周に外輪1(第1薄肉部材1A)のカム面1Aaとの間に楔隙間を形成する円周面2aを備えている。
【0025】
保持器4は円筒状をなし、図2に示すように、ローラ3を収容する複数(例えば10個)の窓形のポケット4aと、円周方向に離隔した一対の切欠き部4bを備える。両切欠き部4bには後述する第二の弾性部材5Bの係合部5B1,5B2がそれぞれ挿入される(図3参照)。保持器4の材質は特に問わないが、この実施形態では、保持器4を合成樹脂材料、例えばポリアミド66(PA66)にグラスファイバーを25重量%配合した合成樹脂材料の射出成形品としている。
【0026】
弾性部材5A,5Bは、図1(b)および図3に示すように、何れも帯板材(例えばステンレス鋼等の金属製とする)を丸めて形成した有端リング状の板ばねで形成することができる。一方の弾性部材5Bは他方の弾性部材5Aの内径側に配置されている。
【0027】
図3に示すように、外径側の第一の弾性部材5Aの両端部には、外径側に屈曲させた係合部5A1,5A2が形成される。この係合部5A1,5A2は、入力トルクの作用時および開放時において、一方が外輪1と係合し、他方が上記静止側部材(図示省略)と係合する。具体的には、図示のように外輪1に係止部1aを形成すると共に、静止側部材7に係止部7aを形成し、さらに図示のように外輪1が中立状態にある時に係止部1a,7aの円周方向の位相を一致させ、この係止部1a,7aの円周方向両側に両係合部5A1,5A2を弾性的に当接させる。これにより、外輪1が正逆何れの方向に回転した場合でも、一方の係合部が外輪1に、他方の係合部が静止側部材7にそれぞれ係合するので、外輪1の回転に伴って係合部5A1,5A2間の円周方向の間隔を押し広げ、第一の弾性部材5Aに弾性力を蓄積することができる。外輪1に作用する回動力(入力トルク)が解除されると、第一の弾性部材5Aの弾性力により、外輪1が中立状態に復帰する。
【0028】
内径側の第二の弾性部材5Bの両端部には、内径側に屈曲させた係合部5B1,5B2が形成される。この係合部5B1,5B2は、第一の弾性部材5Aの係合部5A1,5A2に対して円周方向の位相をずらせて(例えば90°程度の位相差を持たせて)配置するのが望ましい。両係合部5B1,5B2は、それぞれ保持器4の切欠き部4bに挿入される。保持器4が中立状態にある時、両係合部5B1,5B2は、それぞれ切欠き部4bの側面4b1,4b2(円周方向で対向する側面)とそれぞれ弾性的に係合し、かつ静止側部材に形成された係止部7bとそれぞれ弾性的に係合している。この状態から、保持器4が正逆何れの方向に回転した場合でも、第二の弾性部材5Bの一方の係合部が保持器4に、他方の係合部が静止側部材7にそれぞれ係合するため、保持器4の回転に伴って係合部5B1,5B2間の円周方向の間隔が押し広げられ、第二の弾性部材5Bに弾性力が蓄積される。保持器4に作用する回動力が解除されると、第二の弾性部材5の弾性力によって、保持器4が復帰力を受けて中立状態に復帰する。
【0029】
第二の弾性部材5Bの係合部5B1,5B2が押し広げられた場合、係合部5B1,5B2の近傍では弾性部材5Bの変形量が大きくなるため、この変形部が外径側の第一の弾性部材5Aと干渉するおそれがある。これを回避するため、図3に示すように、第二の弾性部材5Bのうち、係合部5B1,5B2の近傍には、例えば図示のように円弧に対して弦を描くような直線状とした逃げ部5B3を形成するのが望ましい。
【0030】
以上の組付けにより、図4に示すように、外輪1および保持器4が弾性部材5A,5Bを介して静止側部材7とそれぞれ連結される。
【0031】
次に、図4〜図6を参照しながら、この実施形態のクラッチユニットの動作について説明する。なお、図4〜図6において、第一および第二の弾性部材5A,5B、並びに静止側部材7は模式化され、概念的に示されている。また、操作レバー6も記載が省略されている。図面では、第一の弾性部材5Aに比べて第二の弾性部材5Bを大きく描いているが、これは図面作成上の都合によるもので、弾性力の強弱等のばね特性とは無関係である。
【0032】
図4は、クラッチユニットの中立状態を示している。この中立状態において、ローラ3はカム面1Aaの中央部に位置し、カム面1Aaと円周面2aとの間に形成される正逆両方向の楔隙間からそれぞれ離脱する。ローラ3の直径は、カム面1Aaの中央部と円周面2aとの間の半径方向距離よりも若干小さく設定されており、ローラ3とカム面1Aaの中央部および円周面2aとの間には半径方向隙間がある。
【0033】
図5は、操作レバー6を回動操作して、外輪1に入力トルクを入力した時の状態を示している。例えば、同図において、外輪1に反時計方向の入力トルクが入力されると、外輪1の回動に伴い、カム面1Aaがローラ3に対して反時計方向に相対移動して、ローラ3が楔隙間に係合する(噛み込む)。保持器4は、第二の弾性部材5Bにより静止側部材7と共に静止しようとするので、上記外輪1の相対移動が可能となる。これにより、外輪1と内輪2がロックされるので、外輪1からの入力トルクがローラ3を介して内輪2に伝達され、外輪1、ローラ3、保持器4、および内輪2が一体となって反時計方向に回動する。なお、この回動の最大量は、静止側部材7のストッパ部と外輪1のストッパ爪1Afとの当接によって規制される。そして、上述のように外輪1および保持器4の回動に伴って両弾性部材5A,5Bが撓み、その撓み量に応じた弾性力がそれぞれに蓄積される。
【0034】
図6は、操作レバー6(外輪1)を開放した時の状態を示している。この場合、第一の弾性部材5Aに蓄積された弾性力によって外輪1に時計方向の弾性力が働き、外輪1が時計方向に回転して図4に示す中立位置に復帰する。同時に第二の弾性部材5Bに蓄積された弾性力によって、保持器4に時計方向の回動力が働き、ローラ3が保持器4に押されて保持器4と共に中立位置に復帰する。この際、ローラ3がカム面1Aaを押圧するため、外輪1は第一の弾性部材5Aの弾性力のみならず、第二の弾性部材5Bからの弾性力fによっても中立位置に復帰する。一方、内輪2は、図5の回動操作によって与えられた回動位置をそのまま維持する。従って、操作レバー6の回動操作を繰り返し行った場合では、内輪2に各回動操作ごとの回動量が重畳的に蓄積される。以上から、このクラッチユニットは、例えば操作レバー6の回動操作による入力トルクを出力側機構に伝達し、所要部位の位置調整を行うような用途に好適である。
【0035】
なお、図4〜図6において、外輪1に時計方向の入力トルクが入力された場合も、上記と同様の動作を行う(動作の向きは逆)。また、内輪側から入力トルクを入力する構成とすることもでき、その場合、内輪の外周にカム面を設け、外輪の内周に円周面を設ける。
【0036】
ところで、上述のように入力トルクの開放時には、外輪1には第一の弾性部材5Aのみならず、第二の弾性部材5Bからも復帰方向の弾性力が作用する。従って、原理的には第二の弾性部材5Bからの弾性力のみをもって外輪1の復帰動作を行うことも可能である。すなわち、図3において、第一の弾性部材5A、およびこれと係合する係止部1a,7aを省略した構成でも、外輪1の中立位置への復帰を行い得ると考えられる。
【0037】
しかしながら、この構造では、入力トルクの開放時における外輪1の復帰力が不足し、外輪1が完全に中立位置に復帰できない事態が起こり得る。すなわち、外輪1の復帰力を大きくするためには、図7に示すように、弾性部材5Bの弾性力Fが保持器4→ローラ3→外輪1の経路のみに作用するのが理想的であるが、本発明者らの検討によれば、実際には弾性力Fの多くは内輪2とローラ3の間の摩擦損失μF’で失われることが判明した。具体的には、μ×F/tan2αの力がロスとなり、外輪1には、F(1−μ×F/tan2α)の力のみが復帰力として作用するのである(μは内輪2とローラ3の摩擦係数、αはストラト角である)。通常のクラッチユニットにおいては、αの値は4°程度であるから、μを0.1と仮定すると有効な復帰力は弾性力Fの30%程度となり、復帰力不足が懸念される。十分な復帰力を確保するには、弾性部材5Bの弾性力Fを大きくすれば良いのであるが、弾性部材5Bの設置スペースの拡大が難しいこと、および弾性部材5Bの許容応力を考慮する必要があることから、弾性部材5Bの大型化や厚肉化だけでは復帰力不足の対策としても不十分である。
【0038】
これに対し、上述のように外輪1と静止側部材7との間に第一の弾性部材5Aを配置し、この弾性部材5Aの弾性力で外輪1を直接復帰させる構造、すなわち弾性部材を、外輪1の復帰専用となる第一の弾性部材5Aと、外輪1と内輪2の間のロック/アンロック状態の切替え専用となる第二の弾性部材5Bとに分離した構造とすることにより、外輪1の復帰動作を確実に行い、クラッチユニットの作動安定性を高めることが可能となる。
【0039】
以上の効果を確認するため、図4に図示するクラッチユニット(本発明品)と図7に図示するクラッチユニット(比較品)とについて、操作レバー6の25°開き時とスタンバイ時のそれぞれについて外輪1の復帰力を計測した。従来品では、25°開き時で44.1〜53.9[×10-2N・m](以下、単位は同じ)、スタンバイ時で24.5〜29.4の復帰力であるのに対し、本発明品では、25°開き時で117.6〜127.4、スタンバイ時で58.8〜69.6の復帰力が得られ、何れの場合でも比較品に比べ2倍程度の大きな外輪復帰力を得られることが明らかになった。
【0040】
上記クラッチユニットは、種々の装置の動力伝達部に組み込むことができる。以下の説明では、一例として上記クラッチユニットを使用した回転駆動装置の一実施形態を説明する。
【0041】
図8に示すように、この回転駆動装置は、入力側部材としての外輪1と、出力側部材としての出力軸12と、回転部材としての内輪13と、静止側部材としての外輪14と、入力側に設けられた第一クラッチ部15と、出力側に設けられた逆入力遮断機構としての第2クラッチ部16とを主要な要素として構成される。
【0042】
入力側部材としての外輪1は、図1に示すクラッチユニットの外輪と同様に、第1薄肉部材1Aと第2薄肉部材1Bとで構成される。外輪1には操作レバー23が結合され(図14参照)、操作レバー23から外輪1に正方向又は逆方向の入力トルクが入力される。なお、この実施形態では、ワッシャ28と第1薄肉部材1Aの端面1Agとの間に、波型ばねや皿ばねからなる弾性体29を介在させることにより、外輪1に軸方向の予圧を付与する構成を付加している。
【0043】
図9は、出力側部材としての出力軸12を示している。出力軸12は、一端側にジャーナル部12a、中央側に大径部12b、他端側に連結部12cを備えている。ジャーナル部12aは、後述する内輪(13:図10参照)のラジアル軸受面13a1に挿入される。大径部12bの外周には、複数(例えば8つ)のカム面12b1が円周方向に等間隔で形成される。各カム面12b1は、出力軸12の軸心を中心とする円に対して弦をなす平坦面状に形成される。また、大径部12bの一端側部分には軸方向の複数(例えば8つ)のピン孔12b3が円周所定間隔に形成される。これらピン孔12b3には内輪13のピン13b1が挿入される。また、大径部12bの他端側部分には環状凹部12b4が形成される。この環状凹部12b4には後述する摩擦部材(19:図13参照)が圧入され、また、環状凹部12b4の内周壁12b5は、後述する固定側板(17:図12参照)のラジアル軸受面17e2に挿入されるジャーナル面になる。連結部12cには、他の回動部材を連結するための歯型12c1が形成される。
【0044】
出力軸12は、例えば、肌焼鋼、機械構造用炭素鋼、軸受鋼等の鋼材から鍛造加工によって成形され、浸炭焼入れ焼戻し、浸炭窒化焼入れ焼戻し、高周波焼入れ焼戻し、ずぶ焼入れ焼戻し等の適宜の熱処理が施される。この実施形態では、出力軸12を形成する鋼材として肌焼鋼(例えばクロムモリブデン鋼SCM420)を使用し、これに熱処理として浸炭焼入れ焼戻しを行って、表層部の表面硬さを57〜62HRCに調整している。なお、出力軸12は、鋼材の削出し品とすることもできる。
【0045】
図10は、回転部材としての内輪13を示している。内輪13は、筒状部13aと、筒状部13aの一端から外径側に延びたフランジ部13bと、フランジ部13bの外径端から軸方向の一方に延びた複数(例えば8本)の柱部13cとを主体として構成される。筒状部13aは、出力軸12のジャーナル部12aに外挿され、かつ、外輪1の内部に内挿される。筒状部13aの他端側部分の内周には、出力軸12のジャーナル部12aをラジアル方向に支持するラジアル軸受面13a1が形成され、筒状部13aの他端側部分の外周には、外輪1のカム面1Aaとの間に正逆両回転方向に楔隙間を形成する円周面13a2が形成される。フランジ部13bには、軸方向の一方に突出した複数(例えば8つ)のピン13b1が円周方向に所定間隔で形成される。これらピン13b1は、出力軸12のピン孔12b3にそれぞれ挿入される。また、円周方向に隣接した柱部13c間には、軸方向の一方に向かって開口したポケット13c1が形成され、これらポケット13c1に後述する第2クラッチ部(16:図15参照)のローラ30と板ばね31が収容される。ローラ30と板ばね31を、ポケット13c1の軸方向の開口部から該ポケット13c1内に組み入れることができるので、組立作業が容易である。
【0046】
内輪13は、例えば、肌焼鋼、機械構造用炭素鋼、軸受鋼等の鋼材から鍛造加工によって成形され、浸炭焼入れ焼戻し、浸炭窒化焼入れ焼戻し、高周波焼入れ焼戻し、ずぶ焼入れ焼戻し等の適宜の熱処理が施される。この実施形態では、内輪13を形成する鋼材として肌焼鋼(例えばクロムモリブデン鋼SCM420)を使用し、これに熱処理として浸炭焼入れ焼戻しを行って、表層部の表面硬さを57〜62HRCに調整している。なお、内輪13は、鋼材の削出し品、鋼鈑(例えば冷間圧延鋼鈑)のプレス成形品とすることもできる。
【0047】
図11は、静止側部材としての外輪14を示している。外輪14は、半径方向内径側に延びたフランジ部14aと、フランジ部14aの外径端から軸方向の一方に延びた筒状部14cと、筒状部14cの一端から外径側に突出した鍔部14dとを主体として構成される。フランジ部14aには、軸方向の他方に突出した複数(例えば2つ)のストッパ部14a1が円周方向に所定間隔で配列形成される。これらストッパ部14a1は、外輪1のストッパ爪1Af(図1(a)参照)と回転方向に係合して、外輪1の回動範囲を規制する。また、フランジ部14aには、軸方向の他方に突出した一対の係止部14a2が形成され、一対の係止部14a2の円周方向外側面には、第1クラッチ部15の第二の弾性部材5Bの係合部5B1、5B2がそれぞれ係止される(図3参照)。さらにフランジ部14aの外周近傍には係止部14a4が形成され、この係止部14a4の円周方向両側面には、第一クラッチ部15の第一の弾性部材5Aの係合部5A1,5A2がそれぞれ係止される。
【0048】
筒状部14cの内周には、出力軸12のカム面12b1との間に正逆両回転方向に楔隙間を形成する円周面14c1が形成される。鍔部14dには、複数(例えば6つ)の切欠き部14d1が円周方向に所定間隔で形成される。切欠き部14d1は、後述する固定側板17の加締部17c(図12参照)と適合する。
【0049】
外輪14は、例えば、肌焼鋼、機械構造用炭素鋼、軸受鋼等の鋼材から鍛造加工によって成形され、浸炭焼入れ焼戻し、浸炭窒化焼入れ焼戻し、高周波焼入れ焼戻し、ずぶ焼入れ焼戻し等の適宜の熱処理が施される。この実施形態では、外輪14を形成する鋼材として肌焼鋼(例えばクロムモリブデン鋼SCM420)を使用し、これに熱処理として浸炭焼入れ焼戻しを行って、表層部の表面硬さを57〜62HRCに調整している。なお、外輪14は、鋼材の削出し品、鋼鈑(例えば冷間圧延鋼鈑)のプレス成形品とすることもできる。
【0050】
図12は、外輪14に固定される固定側板17を示している。固定側板17は、半径方向に延びたフランジ部17aと、フランジ部17aの外径端から外径側に突出した複数(例えば4つ)のブラケット部17bと、フランジ部17aの外径端から軸方向の一方に突出した複数(例えば6つ)の加締部17cと、フランジ部17aに穿設された複数(例えば8つ)の係合孔17a1と、フランジ部17aの内径端から軸方向の一方に突出したボス部17eとを主体として構成される。4つのブラケット部17bは円周方向に所定間隔で形成され、それぞれに中空ピン状の加締部17b1が一体(又は別体)に形成される。6つの加締部17cは円周方向に所定間隔で形成され、それぞれ、二股状に分岐した一対の爪部17c1を備えている。この加締部17cを外輪14の切欠き部14d1に装着し、一対の爪部17c1を円周方向の相反する方向に加締めて鍔部14dに当接させることにより、外輪14の固定側板17に対する軸方向相対移動および回転方向相対移動を防止することができる。加締部17b1は、相手側部材の取付け穴に加締固定される。
【0051】
ボス部17eの内周には、ラジアル軸受面17e2が形成される。ボス部17eは出力軸12の環状凹部12b4に挿入され、ボス部17eの外周と環状凹部12b4の外周壁との間に後述する摩擦部材(19:図13参照)が装着される。係合孔17a1は摩擦部材19の凸部19aと回転方向に係合して、摩擦部材(19)の固定側板17に対する相対回転を防止する。ボス部17eのラジアル軸受面17e2は、環状凹部12b4のジャーナル面12b5に外挿され、ジャーナル面12b5をラジアル方向に支持する。
【0052】
固定側板17は、例えば、冷間圧延鋼鈑等の鋼鈑材からプレス加工によって成形される。この実施形態では、固定側板17を形成する鋼板材として冷間圧延鋼鈑(例えばSPCE)を使用している。また、加締部17c及び17b1を加締加工する際の加工性等に配慮して、熱処理は施していない。なお、加締部17c及び17b1等の加締加工を行う部位に防炭処理(又は防炭防窒処理)を施して、浸炭焼入れ焼戻し(又は浸炭窒化焼入れ焼戻し)を行っても良い。
【0053】
図13は、制動手段としての摩擦部材19を示している。この実施形態において、摩擦部材19はリング状のもので、その一方の端面には複数(例えば8つ)の凸部19aが円周方向に所定間隔で形成される。凸部19aは、固定側板17の係合孔17a1と回転方向に係合して、摩擦部材19の固定側板17に対する相対回転を防止する。
【0054】
摩擦部材19は、ゴムや合成樹脂等の弾性材料で形成され、例えば出力軸12の環状凹部12b4の外周壁に締代をもって圧入される。摩擦部材19の外周と環状凹部12b4の外周壁との間に生じる摩擦力によって、出力軸12に回転方向の制動力(摩擦制動力)が与えられる。この制動力(制動トルク)の大きさは、出力軸12に入力される逆入力トルクの大きさを勘案して適宜設定すれば良いが、逆入力トルクの還流現象を効果的に防止する観点から、想定される逆入力トルクと同程度の大きさに設定するのが好ましい。この実施形態のように、制動手段として摩擦部材19を用いると、制動力を摩擦部材19の締代調整によって設定し、また変更できるという利点がある。
【0055】
摩擦部材19の材質は特に問わないが、この実施形態では、摩擦部材19を合成樹脂材料、例えばポリアセタール(POM)にグラスファイバーを25重量%配合した合成樹脂材料の射出成形品としている。
【0056】
第1クラッチ部15の構成は、既述の図1〜図6に示すクラッチユニットと比較すると、内輪13が出力側部材としての出力軸12の外周側に配置されている回転部材である点のみが相違しており、その他の構成は同一である。従って、第1クラッチ部15の作用については、既述の図1〜図6に基づく説明事項と実質的に同一であるため、その説明を省略する。
【0057】
図15(図8のA−A断面図)は、第2クラッチ部16を示している。第2クラッチ部16は、外輪14に設けられた円周面14c1と、出力軸12に設けられた複数(例えば8つ)のカム面12b1と、各カム面12b1と円周面14c1との間に介在する係合子としての一対(例えば総数8対)のローラ30と、一対のローラ30間に介在する弾性部材、例えば断面N字形の板ばね31と、内輪13の柱部13cと、内輪13のピン13b1および出力軸12のピン孔12b3とを主要な要素として構成される。なお、この実施形態において、板ばね31はステンレス鋼(例えばSUS301CPS−H)で形成し、熱処理としてテンパー処理を施している。
【0058】
図16に拡大して示すように、中立位置において、一対のローラ30は板ばね31によって、それぞれ、カム面12b1と円周面14c1との間に形成される正逆両回転方向の楔隙間の方向に押圧される。この時、内輪13の各柱部13cと各ローラ30との間にはそれぞれ回転方向隙間δ1が存在する。また、内輪13のピン13b1と出力軸12のピン孔12b3との間には正逆両回転方向にそれぞれ回転方向隙間δ2が存在する。回転方向隙間δ1と回転方向隙間δ2とは、δ1<δ2の関係を有する。回転方向隙間δ1の大きさは、例えば0〜0.4mm(第2クラッチ部16の軸心を中心として0〜1.5°)程度、回転方向隙間δ2の大きさは、例えば0.5〜0.8mm(第2クラッチ部16の軸心を中心として1.8〜3.7°)程度である。
【0059】
同図に示す状態で、例えば、出力軸12に時計方向の逆入力トルクが入力されると、反時計方向(回転方向後方)のローラ30がその方向の楔隙間と楔係合して、出力軸12が外輪14に対して時計方向にロックされる。出力軸12に反時計方向の逆入力トルクが入力されると、時計方向(回転方向後方)のローラ30がその方向の楔隙間と楔係合して、出力軸12が外輪14に対して反時計方向にロックされる。従って、出力軸12からの逆入力トルクは、第2クラッチ部16によって正逆両回転方向にロックされ、第1クラッチ部15への逆入力トルクの還流が遮断される。
【0060】
図17は、外輪1からの入力トルク(同図で時計方向)が第1クラッチ部15を介して内輪13に入力され、内輪13が同図で時計方向に回動を始めた初期状態を示している。回転方向隙間がδ1<δ2に設定されているため、先ず、内輪13の反時計方向(回転方向後方)の柱部13cがその方向(回転方向後方)のローラ30と係合して、これを板ばね31の弾性力に抗して時計方向(回転方向前方)に押圧する。これにより、反時計方向(回転方向後方)のローラ30がその方向の楔隙間から離脱して、出力軸12のロック状態が解除される。従って、出力軸12は時計方向に回動可能となる。
【0061】
内輪13がさらに時計方向に回動すると、図18に示すように、内輪13のピン13b1が出力軸12のピン孔12b3と時計方向に係合する。これにより、内輪13からの時計方向の入力トルクがピン13b1およびピン孔12b3を介して出力軸12に伝達され、出力軸12が時計方向に回動する。外輪1に反時計方向の入力トルクが入力された場合は、上記とは逆の動作で出力軸12が反時計方向に回動する。従って、外輪1からの正逆両回転方向の入力トルクは、第1クラッチ部15、内輪13、およびトルク伝達手段としてのピン13b1およびピン孔12b3を介して出力軸12に伝達され、出力軸12が正逆両回転方向に回動する。なお、内輪13からの入力トルクがなくなると、板ばね31の弾性復元力によって図16に示す中立位置に復帰する。
【0062】
このように第2クラッチ部16は、外輪1の正逆両方向の入力トルクを内輪13を介して出力軸12に伝達する一方、出力軸12からの逆入力トルクの内輪13や外輪1への伝達を遮断する逆入力トルク遮断機構として機能する。
【0063】
上述した外輪1、出力軸12、内輪13、外輪14、第1クラッチ部15、第2クラッチ部16、固定側板17および摩擦部材19を図8に示す態様でアッセンブリすると、この実施形態の回転駆動装置が完成する。外輪1には例えば樹脂製の操作レバー23が結合され、出力軸12は図示されていない出力側機構の回動部材に連結される。また、固定側板17は図示されていないケーシング等の固定部材に加締部17b1で加締固定される。この装置は、例えば、操作部材の回動操作による入力トルクを出力側機構に伝達して所要部位の位置調整を行う装置において、操作部材の非操作時、出力側機構の位置が変動しないようこれを保持する機能が求められる用途に好適である。
【0064】
【発明の効果】
このように本発明によれば、入力側部材と静止側部材の間に、入力側部材を中立位置に復帰させる第一の弾性部材を配置し、入力側部材と回転部材との間のロック/アンロック切り替え用の機構とは無関係に直接弾性力を入力側部材に作用させている。従って、入力側部材には大きな弾性力を作用させることができ、これより入力トルクの開放時には入力側部材を確実に中立位置に復帰させることが可能となって、クラッチユニット、さらにはこれを含む回転駆動装置の作動安定性を高めることができる。
【図面の簡単な説明】
【図1】本発明にかかるクラッチユニットの全体構成を示す縦断面図(a図)、および(a)図中のB−B断面図である。
【図2】上記クラッチユニットの保持器を示す斜視図である。
【図3】第一および第二の弾性部材の装着状態を概略図示する正面図である。
【図4】クラッチユニットの動作を概念的に説明する断面図である。
【図5】クラッチユニットの動作を概念的に説明する断面図である。
【図6】クラッチユニットの動作を概念的に説明する断面図である。
【図7】比較品の動作を概念的に説明する断面図である。
【図8】上記クラッチユニットを含む回転駆動装置の断面図である。
【図9】回転駆動装置の出力軸を示す正面図(a)、図9(a)のB−B線断面図(b)である。
【図10】回転駆動装置の内輪(回転部材)を示す正面図(a)、図10(a)のB−B線断面図である(b)、要部拡大図(c)である。
【図11】回転駆動装置の外輪(静止側部材)を示す正面図(a)、図11(a)のB−B線断面図(b)である。
【図12】回転駆動装置の固定側板を示す正面図(a)、図12(a)のB−B線断面図である。
【図13】回転駆動装置の摩擦部材(制動手段)を示す正面図(a)、縦断面図(b)である。
【図14】回転駆動装置の第1クラッチ部を示す図8B−B断面図である。
【図15】回転駆動装置の第2クラッチ部を示す図8A−A断面図である。
【図16】上記第クラッチ部の作用を示す部分拡大正面図である(中立位置)。
【図17】上記第クラッチ部の作用を示す部分拡大正面図である(ロック解除時)。
【図18】上記第クラッチ部の作用を示す部分拡大正面図である(トルク伝達時)。
【符号の説明】
1 外輪(入力側部材)
1a 係止部
1A 第1薄肉部材
1Aa カム面
1B 第2薄肉部材
2 内輪(回転部材)
2a 円周面
3 ローラ(係合子)
4 保持器
4b 切欠き部
5A 第一の弾性部材
5A1 係合部
5A2 係合部
5B 第二の弾性部材
5B1 係合部
5B2 係合部
5B3 逃げ部
6 操作レバー(操作部材)
7 静止側部材
7a 係止部
7b 係止部
12 出力軸(出力側部材)
13 内輪(回転部材)
14 外輪(静止側部材)
14a2 係止部
14a4 係止部
15 第1クラッチ部(クラッチユニット)
16 第2クラッチ部(逆入力遮断機構)
23 操作レバー(操作部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a clutch unit for transmitting input torque of an input side member to another member.
[0002]
[Prior art]
In general, in a clutch unit using an engagement element such as a roller or a ball, the input is performed by engaging or disengaging the engagement element such as a roller or a ball in a gap formed between the input side member and the output side member. It is configured to control transmission / cutoff of torque.
[0003]
[Problems to be solved by the invention]
As an actual mechanism of the clutch unit, by repeatedly rotating an operation member such as an operation lever, the input side member is intermittently rotated to transmit the input torque to the output side member. In some cases, the rotation amount for each operation is accumulated in a superimposed manner.
[0004]
In this clutch unit, each time the operating lever is operated once, it is necessary to return the operating lever to the neutral position by appropriate returning means while restricting the follow-up rotation of the output side member.
[0005]
As this returning means, one utilizing an elastic force of a spring can be considered. In this case, a large elastic force is required for the spring to reliably return the operating lever to the neutral position, but the necessary spring constant is secured under conditions such as a limited spring installation space. Therefore, there is a possibility that the return to the neutral position of the operation lever or the input side member may be insufficient.
[0006]
Therefore, an object of the present invention is to provide a clutch unit that can reliably return the operation member and the input side member to the neutral position even under a condition where the installation space of the spring is limited.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, an input side member to which torque is input, a rotating member to which torque is output, a stationary side member to which rotation is constrained, and a rotating member using input torque from the input side member A clutch unit that accumulates the amount of rotation for each rotational operation of the input side member via the torque transmission unit by repeated rotation from the neutral position of the input side member. , As a torque transmission part, it is arranged in the gap between the input side member and the rotating member, and when the torque is input, it engages in the gap and transmits the input torque to the rotating member, and when the input torque is released, the engagement in the gap is released. With an engaging element, A first elastic member is arranged between the input side member and the stationary side member to accumulate an elastic force with the input torque and to return the input side member to the neutral position when the input torque is released with the accumulated elastic force. And the second elastic member is disposed between the retainer for holding the engagement element and the stationary member, and the elastic force is accumulated in the first and second elastic members when the input torque is applied, and the input torque Release the engagement of the engaging element into the gap by the elastic force of both elastic members It was decided.
[0008]
By using the engagement element as the torque transmission part, it is possible to provide a clutch unit that is structurally simple and low in cost, and has high operational stability and reliability. When the input torque is applied, elastic force is accumulated in the first and second elastic members, and when the input torque is released, the engagement of the engaging element into the gap can be released by the elastic force of both elastic members. An elastic force acts directly on the input side member from the first elastic member when the torque is released, and this elastic force is independent of the mechanism for locking / unlocking between the input side member and the rotating member. Therefore, a sufficient return force can be applied to the input side member, thereby making it possible to reliably return the input side member to the neutral position.
[0009]
If the first elastic member is formed of an end ring-shaped leaf spring, the structure can be simplified and the space can be saved as compared with the case where another elastic member such as a coil spring is used. In this case, by engaging one end of the first elastic member with the input side member and the other end with the stationary side member, the first elastic member is elastically deformed with the rotation of the input side member, and the elastic force On the other hand, when the torque is released, the accumulated elastic force is directly transmitted to the input side member, so that the input side member can be reliably returned to the neutral position.
[0011]
If the first and second elastic members are formed of end-plate-shaped leaf springs, one of the elastic members can be arranged on the inner diameter side of the other elastic member, and the above functions can be achieved with a compact structure. Obtainable.
[0012]
Of the elastic member on the inner diameter side, it is preferable to form a relief portion for avoiding the interference in a portion that interferes with the elastic member on the outer diameter side due to elastic deformation at the time of torque input. Interference between the elastic member on the inner diameter side and the elastic member on the outer diameter side should be avoided for functional stability. By forming such a relief portion, both members can be formed without enlarging the radial gap between the elastic members. Interference can be avoided.
[0013]
If both ends of the outer diameter side elastic member are extended to the outer diameter side and both ends of the inner diameter side elastic member are extended to the inner diameter side, interference between each end portion of both elastic members and the other elastic member can be avoided. Therefore, it is possible to increase the diameter of the elastic member on the inner diameter side to the same extent as the elastic member on the outer diameter side, and a sufficient elastic force can be ensured for the elastic member on the inner diameter side.
[0014]
One end of the first elastic member is engaged with the input side member, the other end is engaged with the stationary side member, one end of the second elastic member is engaged with the cage, and the other end is engaged with the stationary side member. For example, when torque is input, the elastic force is accumulated in both elastic members by rotation of the input side member and the cage, while when the torque is released, the outer ring is returned to the neutral position mainly by the elastic force of the first elastic member. It becomes possible to return the cage and the engagement element to the neutral position by the elastic force of the elastic member.
[0015]
The clutch unit having the above-described configurations, an output side member to which torque is output, and the rotary member and the output side member of the clutch unit are arranged to output the input torque of the input side member through the rotary member. In combination with a reverse input torque blocking mechanism that transmits to the side member and blocks transmission of the reverse input torque from the output side member to the rotating member, the output side member is intermittently rotated by repeated rotation of the input side member, It is possible to provide a rotary drive device that blocks the return input torque from the output side member to the input side. In this apparatus, for example, in an apparatus that adjusts the position of a required part by transmitting an input torque generated by a rotation operation of the operation member to the output side mechanism, the position of the output side mechanism is not changed when the operation member is not operated. It is suitable for applications that require a function to hold
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a clutch unit according to the present invention will be described with reference to the drawings.
[0017]
As shown in FIGS. 1 (a) and 1 (b), the clutch unit of this embodiment includes an outer ring 1 as an input side member, an inner ring 2 as a rotating member, and an engagement element as a torque transmission unit, such as a plurality of rollers. 3, a cage 4 that holds the roller 3, and two types of elastic members 5 </ b> A and 5 </ b> B.
[0018]
The outer ring 1 includes a first thin member 1A and a second thin member 1B. In the present embodiment, the end inner periphery 1Be of the second thin member 1B is disposed on the outer periphery of the first thin member 1A, more specifically, on the outer periphery of the inner diameter flange portion 1Ac, and the end faces 1Ag of both members 1A, 1B, 1Bg is on the same plane in the radial direction. Although both the thin members 1A and 1B can be manufactured by pressing a steel plate, for example, the second thin member 1B can be formed of a molded product such as a resin.
[0019]
The first thin member 1A includes a drum portion 1Ab in which a plurality of cam surfaces 1Aa are formed on the inner periphery at equal intervals in the circumferential direction, an inner diameter flange portion 1Ac extending from the one end portion of the drum portion 1Ab to the inner diameter side, An outer-diameter flange portion 1Ad extending from the other end of the drum portion 1Ab to the outer-diameter side.
[0020]
Each cam surface 1Aa has a deep central portion in the circumferential direction and is shallow in an inclined manner from the central portion toward both sides in the circumferential direction. The inner diameter flange portion 1Ac serves to prevent the retainer 4 from coming off in one axial direction and to maintain the coaxiality of the outer ring 1 with respect to the inner ring 2.
[0021]
The outer diameter flange portion 1Ad is formed with a plurality of (six in the illustrated example) fitting grooves 1Ae used for coupling with the second thin member 1B, and the drum portion along the axial direction from the outer diameter end. One or a plurality of stopper claws 1Af extending to the opposite side to 1Ab are formed. This stopper claw 1Af is in one side of the first thin member 1A (on the right side in FIG. 1 (a)) and engages with a stopper (not shown) of a stationary side member whose rotation is restricted in the rotational direction. The rotation of the outer ring 1 is restricted to a predetermined range.
[0022]
The entire first thin member 1A or the cam surface 1Aa is subjected to heat treatment (surface hardening treatment) such as carburizing quenching tempering, carbonitriding quenching tempering, induction quenching tempering, and submerged quenching tempering.
[0023]
The second thin member 1B is formed with a plurality of (six in the illustrated example) fitting claws 1Ba extending from the outer diameter end to the first thin member 1A side along the axial direction. As shown in FIGS. 1 (a) and 1 (b), the joint claw 1Ba is fitted into the fitting groove 1Ae of the first thin member 1A and press-fitted or swaged to fix the relative rotation and shaft of the thin members 1A and 1B. Directional relative movement is restricted. Under this state, the fitting claw 1Ba engages with the concavo-convex portion of the operating lever 6 as an operating member mounted on the outer periphery thereof, so that the relative rotation of the operating lever 6 with respect to the outer ring 1 is performed. Being regulated. Accordingly, by rotating the operation lever 6, the first thin member 1 </ b> A and the second thin member 1 </ b> B rotate integrally, whereby the input torque from the operation lever 6 is input to the outer ring 1.
[0024]
The illustrated inner ring 2 has a cylindrical shape and includes a circumferential surface 2a that forms a wedge gap between the outer ring 1 and the cam surface 1Aa of the outer ring 1 (first thin member 1A).
[0025]
As shown in FIG. 2, the cage 4 has a cylindrical shape, and includes a plurality of (for example, ten) window-shaped pockets 4a for accommodating the rollers 3, and a pair of notch portions 4b spaced apart in the circumferential direction. Engaging portions 5B1 and 5B2 of a second elastic member 5B, which will be described later, are inserted into both cutout portions 4b (see FIG. 3). Although the material of the cage 4 is not particularly limited, in this embodiment, the cage 4 is an injection-molded product of a synthetic resin material, for example, a synthetic resin material in which 25% by weight of glass fiber is blended with polyamide 66 (PA66).
[0026]
As shown in FIGS. 1B and 3, the elastic members 5A and 5B are each formed of an end ring-shaped leaf spring formed by rolling a strip plate material (for example, made of metal such as stainless steel). be able to. One elastic member 5B is disposed on the inner diameter side of the other elastic member 5A.
[0027]
As shown in FIG. 3, engaging portions 5A1, 5A2 bent to the outer diameter side are formed at both ends of the first elastic member 5A on the outer diameter side. One of the engaging portions 5A1 and 5A2 engages with the outer ring 1 and the other engages with the stationary member (not shown) when the input torque is applied and released. Specifically, the locking portion 1a is formed on the outer ring 1 as shown, the locking portion 7a is formed on the stationary member 7, and the locking portion when the outer ring 1 is in the neutral state as shown in the drawing. The phases of 1a and 7a in the circumferential direction are matched, and both engaging portions 5A1 and 5A2 are elastically brought into contact with both sides of the engaging portions 1a and 7a in the circumferential direction. As a result, even when the outer ring 1 rotates in either forward or reverse direction, one engaging portion engages with the outer ring 1 and the other engaging portion engages with the stationary member 7. Thus, the circumferential distance between the engaging portions 5A1 and 5A2 can be expanded and the elastic force can be accumulated in the first elastic member 5A. When the rotational force (input torque) acting on the outer ring 1 is released, the outer ring 1 returns to the neutral state by the elastic force of the first elastic member 5A.
[0028]
Engagement portions 5B1 and 5B2 bent toward the inner diameter side are formed at both ends of the second inner diameter side elastic member 5B. The engaging portions 5B1 and 5B2 are arranged with a phase shift in the circumferential direction with respect to the engaging portions 5A1 and 5A2 of the first elastic member 5A (for example, having a phase difference of about 90 °). desirable. Both the engaging portions 5B1 and 5B2 are inserted into the notch portions 4b of the retainer 4, respectively. When the cage 4 is in a neutral state, the engaging portions 5B1 and 5B2 are elastically engaged with the side surfaces 4b1 and 4b2 (side surfaces facing in the circumferential direction) of the notch portion 4b, respectively, and are stationary. The engaging portions 7b formed on the member are elastically engaged with each other. From this state, when the cage 4 rotates in either the forward or reverse direction, one engaging portion of the second elastic member 5B is engaged with the cage 4, and the other engaging portion is engaged with the stationary member 7. Accordingly, the circumferential distance between the engaging portions 5B1 and 5B2 is expanded with the rotation of the cage 4, and an elastic force is accumulated in the second elastic member 5B. When the rotational force acting on the cage 4 is released, the cage 4 receives a restoring force by the elastic force of the second elastic member 5 and returns to the neutral state.
[0029]
When the engaging portions 5B1 and 5B2 of the second elastic member 5B are pushed and spread, the deformation amount of the elastic member 5B increases in the vicinity of the engaging portions 5B1 and 5B2, so that this deforming portion becomes the first on the outer diameter side. May interfere with the elastic member 5A. In order to avoid this, as shown in FIG. 3, in the second elastic member 5B, in the vicinity of the engaging portions 5B1 and 5B2, for example, a linear shape that draws a chord with respect to an arc as shown in the figure. It is desirable to form the escape portion 5B3.
[0030]
With the above assembly, as shown in FIG. 4, the outer ring 1 and the cage 4 are connected to the stationary member 7 via the elastic members 5A and 5B, respectively.
[0031]
Next, the operation of the clutch unit of this embodiment will be described with reference to FIGS. 4 to 6, the first and second elastic members 5 </ b> A and 5 </ b> B and the stationary member 7 are schematically illustrated and conceptually illustrated. Further, the operation lever 6 is not shown. In the drawing, the second elastic member 5B is drawn larger than the first elastic member 5A, but this is for the convenience of drawing and is not related to the spring characteristics such as the strength of the elastic force.
[0032]
FIG. 4 shows a neutral state of the clutch unit. In this neutral state, the roller 3 is positioned at the center of the cam surface 1Aa, and is separated from the wedge gaps in both the forward and reverse directions formed between the cam surface 1Aa and the circumferential surface 2a. The diameter of the roller 3 is set to be slightly smaller than the radial distance between the central portion of the cam surface 1Aa and the circumferential surface 2a, and between the roller 3 and the central portion of the cam surface 1Aa and the circumferential surface 2a. Has a radial gap.
[0033]
FIG. 5 shows a state in which the operating lever 6 is rotated and input torque is input to the outer ring 1. For example, in the figure, when an input torque in the counterclockwise direction is input to the outer ring 1, the cam surface 1Aa moves relative to the roller 3 in the counterclockwise direction as the outer ring 1 rotates, so that the roller 3 Engage (bite) the wedge gap. Since the retainer 4 tries to stop together with the stationary side member 7 by the second elastic member 5B, the outer ring 1 can be relatively moved. Thereby, since the outer ring 1 and the inner ring 2 are locked, the input torque from the outer ring 1 is transmitted to the inner ring 2 through the roller 3, and the outer ring 1, the roller 3, the cage 4, and the inner ring 2 are integrated. It rotates counterclockwise. The maximum amount of this rotation is regulated by the contact between the stopper portion of the stationary member 7 and the stopper claw 1Af of the outer ring 1. Then, as described above, the elastic members 5A and 5B are bent as the outer ring 1 and the retainer 4 are rotated, and elastic forces corresponding to the amount of the bending are accumulated.
[0034]
FIG. 6 shows a state when the operation lever 6 (outer ring 1) is opened. In this case, the elastic force in the clockwise direction acts on the outer ring 1 by the elastic force accumulated in the first elastic member 5A, and the outer ring 1 rotates in the clockwise direction to return to the neutral position shown in FIG. At the same time, the rotational force in the clockwise direction acts on the cage 4 by the elastic force accumulated in the second elastic member 5B, and the roller 3 is pushed by the cage 4 and returns to the neutral position together with the cage 4. At this time, since the roller 3 presses the cam surface 1Aa, the outer ring 1 returns to the neutral position not only by the elastic force of the first elastic member 5A but also by the elastic force f from the second elastic member 5B. On the other hand, the inner ring 2 maintains the rotation position given by the rotation operation of FIG. Therefore, when the rotation operation of the operation lever 6 is repeatedly performed, the rotation amount for each rotation operation is accumulated in the inner ring 2 in a superimposed manner. From the above, this clutch unit is suitable for an application in which, for example, the input torque generated by the turning operation of the operation lever 6 is transmitted to the output side mechanism and the position of the required part is adjusted.
[0035]
4 to 6, the same operation as described above is performed when the clockwise input torque is input to the outer ring 1 (the direction of the operation is reversed). Alternatively, the input torque can be input from the inner ring side. In this case, a cam surface is provided on the outer periphery of the inner ring and a circumferential surface is provided on the inner periphery of the outer ring.
[0036]
By the way, when the input torque is released as described above, the elastic force in the returning direction acts on the outer ring 1 not only from the first elastic member 5A but also from the second elastic member 5B. Therefore, in principle, the return operation of the outer ring 1 can be performed only with the elastic force from the second elastic member 5B. That is, in FIG. 3, even if the first elastic member 5A and the engaging portions 1a and 7a engaged therewith are omitted, it is considered that the outer ring 1 can be returned to the neutral position.
[0037]
However, with this structure, the return force of the outer ring 1 when the input torque is released may be insufficient, and the outer ring 1 may not return to the neutral position completely. That is, in order to increase the restoring force of the outer ring 1, it is ideal that the elastic force F of the elastic member 5B acts only on the path of the cage 4 → the roller 3 → the outer ring 1 as shown in FIG. However, according to the study by the present inventors, it has been found that in practice, most of the elastic force F is lost due to the friction loss μF ′ between the inner ring 2 and the roller 3. Specifically, the force of μ × F / tan 2α is lost, and only the force F (1−μ × F / tan 2α) acts as a return force on the outer ring 1 (μ is the inner ring 2 and the roller 3). The coefficient of friction, α is the Strat angle). In a normal clutch unit, the value of α is about 4 °. Therefore, assuming that μ is 0.1, the effective return force is about 30% of the elastic force F, and there is a concern that the return force is insufficient. In order to secure a sufficient restoring force, it is sufficient to increase the elastic force F of the elastic member 5B. However, it is difficult to expand the installation space of the elastic member 5B, and it is necessary to consider the allowable stress of the elastic member 5B. For this reason, simply increasing the size or thickness of the elastic member 5B is not sufficient as a measure for insufficient restoring force.
[0038]
On the other hand, the structure which arrange | positions the 1st elastic member 5A between the outer ring | wheel 1 and the stationary side member 7 as mentioned above, and returns the outer ring | wheel 1 directly with the elastic force of this elastic member 5A, ie, an elastic member, The outer ring 1 has a structure separated into a first elastic member 5A dedicated to returning the outer ring 1 and a second elastic member 5B dedicated to switching the locked / unlocked state between the outer ring 1 and the inner ring 2. 1 can be reliably performed, and the operation stability of the clutch unit can be improved.
[0039]
In order to confirm the above effects, the outer ring of the clutch unit (present invention) shown in FIG. 4 and the clutch unit (comparative product) shown in FIG. A return force of 1 was measured. In the conventional product, 44.1 to 53.9 [× 10 when opened at 25 ° -2 N · m] (the unit is the same hereinafter), the return force is 24.5 to 29.4 at standby, whereas the product of the present invention is 117.6 to 127.4 at 25 ° open, standby It was clarified that a restoring force of 58.8 to 69.6 was obtained in some cases, and in any case, an outer ring restoring force about twice as large as that of the comparative product could be obtained.
[0040]
The clutch unit can be incorporated in a power transmission unit of various devices. In the following description, an embodiment of a rotary drive device using the clutch unit will be described as an example.
[0041]
As shown in FIG. 8, the rotary drive device includes an outer ring 1 as an input side member, an output shaft 12 as an output side member, an inner ring 13 as a rotating member, an outer ring 14 as a stationary side member, and an input. The first clutch part 15 provided on the side and the second clutch part 16 as a reverse input blocking mechanism provided on the output side are configured as main elements.
[0042]
The outer ring 1 as an input side member is comprised by the 1st thin member 1A and the 2nd thin member 1B similarly to the outer ring of the clutch unit shown in FIG. An operation lever 23 is coupled to the outer ring 1 (see FIG. 14), and input torque in the forward direction or the reverse direction is input from the operation lever 23 to the outer ring 1. In this embodiment, an axial preload is applied to the outer ring 1 by interposing an elastic body 29 made of a wave spring or a disc spring between the washer 28 and the end face 1Ag of the first thin member 1A. A configuration is added.
[0043]
FIG. 9 shows the output shaft 12 as an output side member. The output shaft 12 includes a journal portion 12a on one end side, a large diameter portion 12b on the center side, and a connecting portion 12c on the other end side. The journal portion 12a is inserted into a radial bearing surface 13a1 of an inner ring (13: see FIG. 10) described later. A plurality of (for example, eight) cam surfaces 12b1 are formed at equal intervals in the circumferential direction on the outer periphery of the large diameter portion 12b. Each cam surface 12b1 is formed in a flat surface shape that forms a chord with respect to a circle centered on the axis of the output shaft 12. Further, a plurality of (for example, eight) pin holes 12b3 in the axial direction are formed at predetermined intervals in the one end side portion of the large diameter portion 12b. The pins 13b1 of the inner ring 13 are inserted into these pin holes 12b3. An annular recess 12b4 is formed in the other end portion of the large diameter portion 12b. A friction member (19: see FIG. 13) to be described later is press-fitted into the annular recess 12b4, and an inner peripheral wall 12b5 of the annular recess 12b4 is inserted into a radial bearing surface 17e2 of a fixed side plate (17: see FIG. 12) to be described later. Become a journal surface. The connecting portion 12c is formed with a tooth mold 12c1 for connecting another rotating member.
[0044]
The output shaft 12 is formed by forging from a steel material such as case-hardened steel, carbon steel for machine structural use, bearing steel, and the like, and is subjected to appropriate heat treatment such as carburizing and tempering, carbonitriding and tempering, induction quenching and tempering, and quenching and tempering. Is given. In this embodiment, case-hardened steel (for example, chromium molybdenum steel SCM420) is used as a steel material for forming the output shaft 12, and carburizing and tempering is performed as a heat treatment to adjust the surface hardness of the surface layer portion to 57 to 62HRC. is doing. The output shaft 12 may be a steel cut product.
[0045]
FIG. 10 shows the inner ring 13 as a rotating member. The inner ring 13 includes a cylindrical portion 13a, a flange portion 13b extending from one end of the cylindrical portion 13a to the outer diameter side, and a plurality of (for example, eight) extending from the outer diameter end of the flange portion 13b to one side in the axial direction. The main part is composed of the column part 13c. The cylindrical portion 13 a is extrapolated to the journal portion 12 a of the output shaft 12 and is inserted into the outer ring 1. A radial bearing surface 13a1 that supports the journal portion 12a of the output shaft 12 in the radial direction is formed on the inner periphery of the other end portion of the cylindrical portion 13a, and on the outer periphery of the other end portion of the cylindrical portion 13a, A circumferential surface 13a2 is formed between the outer ring 1 and the cam surface 1Aa to form a wedge gap in both forward and reverse rotation directions. A plurality of (for example, eight) pins 13b1 projecting to one side in the axial direction are formed on the flange portion 13b at predetermined intervals in the circumferential direction. These pins 13b1 are inserted into the pin holes 12b3 of the output shaft 12, respectively. Further, pockets 13c1 that open toward one side in the axial direction are formed between the column portions 13c adjacent to each other in the circumferential direction, and a roller 30 of a second clutch portion (16: see FIG. 15) described later is formed in these pockets 13c1. The leaf spring 31 is accommodated. Since the roller 30 and the leaf spring 31 can be incorporated into the pocket 13c1 from the opening in the axial direction of the pocket 13c1, the assembling work is easy.
[0046]
The inner ring 13 is formed by forging from a steel material such as case hardened steel, machine structural carbon steel, bearing steel, and the like, and subjected to appropriate heat treatment such as carburizing quenching tempering, carbonitriding tempering quenching, induction quenching tempering, and submerged quenching tempering. Applied. In this embodiment, case-hardened steel (for example, chromium molybdenum steel SCM420) is used as the steel material forming the inner ring 13, and carburization quenching and tempering is performed as a heat treatment to adjust the surface hardness of the surface layer portion to 57 to 62HRC. ing. Note that the inner ring 13 can be a steel cut product or a press-formed product of a steel plate (for example, a cold rolled steel plate).
[0047]
FIG. 11 shows the outer ring 14 as a stationary side member. The outer ring 14 protrudes toward the outer diameter side from a flange portion 14a extending toward the radially inner side, a cylindrical portion 14c extending from the outer diameter end of the flange portion 14a to one side in the axial direction, and one end of the cylindrical portion 14c. The main part is composed of the flange 14d. A plurality of (for example, two) stopper portions 14a1 protruding to the other side in the axial direction are arranged and formed at predetermined intervals in the circumferential direction on the flange portion 14a. These stopper portions 14a1 engage with the stopper claws 1Af (see FIG. 1A) of the outer ring 1 in the rotation direction to restrict the rotation range of the outer ring 1. Further, the flange portion 14a is formed with a pair of locking portions 14a2 protruding to the other side in the axial direction, and a second elastic force of the first clutch portion 15 is formed on the outer circumferential surface of the pair of locking portions 14a2. The engaging portions 5B1 and 5B2 of the member 5B are locked (see FIG. 3). Further, a locking portion 14a4 is formed in the vicinity of the outer periphery of the flange portion 14a, and the engaging portions 5A1, 5A2 of the first elastic member 5A of the first clutch portion 15 are formed on both sides in the circumferential direction of the locking portion 14a4. Are respectively locked.
[0048]
A circumferential surface 14c1 is formed on the inner periphery of the cylindrical portion 14c. The circumferential surface 14c1 forms a wedge clearance in both the forward and reverse rotation directions with the cam surface 12b1 of the output shaft 12. A plurality of (for example, six) notches 14d1 are formed in the collar portion 14d at predetermined intervals in the circumferential direction. The cutout portion 14d1 is compatible with a caulking portion 17c (see FIG. 12) of the fixed side plate 17 described later.
[0049]
The outer ring 14 is formed by forging from a steel material such as case-hardened steel, carbon steel for machine structure, bearing steel, etc., and subjected to appropriate heat treatment such as carburizing and tempering, carbonitriding and tempering, induction quenching and tempering, and submerged quenching and tempering. Applied. In this embodiment, case-hardened steel (for example, chromium molybdenum steel SCM420) is used as the steel material forming the outer ring 14, and carburization quenching and tempering is performed as a heat treatment to adjust the surface hardness of the surface layer portion to 57 to 62HRC. ing. The outer ring 14 can also be a cut-out product of a steel material or a press-formed product of a steel plate (for example, a cold rolled steel plate).
[0050]
FIG. 12 shows the fixed side plate 17 fixed to the outer ring 14. The fixed side plate 17 includes a flange portion 17a extending in the radial direction, a plurality of (for example, four) bracket portions 17b protruding from the outer diameter end of the flange portion 17a to the outer diameter side, and a shaft extending from the outer diameter end of the flange portion 17a. A plurality of (for example, six) caulking portions 17c protruding in one direction, a plurality of (for example, eight) engagement holes 17a1 formed in the flange portion 17a, and an axial direction from the inner diameter end of the flange portion 17a. The boss portion 17e protruding to one side is mainly configured. The four bracket portions 17b are formed at a predetermined interval in the circumferential direction, and a hollow pin-like caulking portion 17b1 is formed integrally (or separately) on each of them. The six crimping portions 17c are formed at predetermined intervals in the circumferential direction, and each includes a pair of claw portions 17c1 branched in a bifurcated shape. The fixed side plate 17 of the outer ring 14 is mounted by attaching the crimped portion 17c to the notch portion 14d1 of the outer ring 14 and crimping the pair of claw portions 17c1 in opposite directions in the circumferential direction to contact the flange portion 14d. Relative movement in the axial direction and relative movement in the rotational direction can be prevented. The caulking portion 17b1 is caulked and fixed in the mounting hole of the counterpart member.
[0051]
A radial bearing surface 17e2 is formed on the inner periphery of the boss portion 17e. The boss portion 17e is inserted into the annular recess 12b4 of the output shaft 12, and a friction member (19: see FIG. 13) described later is mounted between the outer periphery of the boss portion 17e and the outer peripheral wall of the annular recess 12b4. The engagement hole 17a1 engages with the convex portion 19a of the friction member 19 in the rotation direction to prevent relative rotation of the friction member (19) with respect to the fixed side plate 17. The radial bearing surface 17e2 of the boss portion 17e is extrapolated to the journal surface 12b5 of the annular recess 12b4, and supports the journal surface 12b5 in the radial direction.
[0052]
The fixed side plate 17 is formed by press working from a steel plate material such as a cold rolled steel plate, for example. In this embodiment, a cold rolled steel plate (for example, SPCE) is used as a steel plate material forming the fixed side plate 17. Further, heat treatment is not performed in consideration of workability and the like when the crimping portions 17c and 17b1 are crimped. It should be noted that the parts to be swaged, such as the swaged portions 17c and 17b1, may be subjected to carburizing treatment (or carbonitriding and nitriding treatment) to perform carburizing and tempering (or carbonitriding and tempering).
[0053]
FIG. 13 shows a friction member 19 as braking means. In this embodiment, the friction member 19 is ring-shaped, and a plurality of (for example, eight) convex portions 19a are formed on one end face thereof at a predetermined interval in the circumferential direction. The convex portion 19 a engages with the engagement hole 17 a 1 of the fixed side plate 17 in the rotation direction, and prevents the friction member 19 from rotating relative to the fixed side plate 17.
[0054]
The friction member 19 is formed of an elastic material such as rubber or synthetic resin, and is press-fitted into the outer peripheral wall of the annular recess 12b4 of the output shaft 12 with a tightening margin, for example. A braking force in the rotational direction (friction braking force) is applied to the output shaft 12 by the frictional force generated between the outer periphery of the friction member 19 and the outer peripheral wall of the annular recess 12b4. The magnitude of the braking force (braking torque) may be appropriately set in consideration of the magnitude of the reverse input torque input to the output shaft 12, but from the viewpoint of effectively preventing the reverse input torque reflux phenomenon. It is preferable to set it to the same magnitude as the assumed reverse input torque. When the friction member 19 is used as the braking means as in this embodiment, there is an advantage that the braking force can be set and changed by adjusting the tightening allowance of the friction member 19.
[0055]
Although the material of the friction member 19 is not particularly limited, in this embodiment, the friction member 19 is an injection molded product of a synthetic resin material, for example, a synthetic resin material in which 25% by weight of glass fiber is blended with polyacetal (POM).
[0056]
The configuration of the first clutch portion 15 is only that the inner ring 13 is a rotating member arranged on the outer peripheral side of the output shaft 12 as an output side member, as compared with the clutch unit shown in FIGS. Are different, and the other configurations are the same. Accordingly, the operation of the first clutch portion 15 is substantially the same as the explanation items based on FIGS. 1 to 6 described above, and the explanation thereof is omitted.
[0057]
FIG. 15 (AA cross-sectional view of FIG. 8) shows the second clutch portion 16. The second clutch portion 16 includes a circumferential surface 14c1 provided on the outer ring 14, a plurality of (for example, eight) cam surfaces 12b1 provided on the output shaft 12, and a space between each cam surface 12b1 and the circumferential surface 14c1. A pair of rollers 30 (for example, a total of 8 pairs) as an intervening member, an elastic member interposed between the pair of rollers 30, for example, a leaf spring 31 having an N-shaped cross section, a column portion 13c of the inner ring 13, and an inner ring 13 The pin 13b1 and the pin hole 12b3 of the output shaft 12 are configured as main elements. In this embodiment, the leaf spring 31 is made of stainless steel (for example, SUS301CPS-H) and subjected to tempering as a heat treatment.
[0058]
As shown in an enlarged view in FIG. 16, in the neutral position, the pair of rollers 30 are formed by wedge springs 31 in the forward and reverse rotational directions formed between the cam surface 12 b 1 and the circumferential surface 14 c 1, respectively. Pressed in the direction. At this time, a rotation direction gap δ1 exists between each column portion 13c of the inner ring 13 and each roller 30. Further, between the pin 13b1 of the inner ring 13 and the pin hole 12b3 of the output shaft 12, there are rotational direction gaps δ2 in both forward and reverse rotational directions. The rotation direction gap δ1 and the rotation direction gap δ2 have a relationship of δ1 <δ2. The size of the rotation direction gap δ1 is, for example, about 0 to 0.4 mm (0 to 1.5 ° about the axis of the second clutch portion 16), and the size of the rotation direction gap δ2 is, for example, 0.5 to It is about 0.8 mm (1.8 to 3.7 ° centering on the axis of the second clutch portion 16).
[0059]
In the state shown in the figure, for example, when a reverse input torque in the clockwise direction is input to the output shaft 12, the roller 30 in the counterclockwise direction (backward in the rotational direction) engages with the wedge clearance in that direction and outputs. The shaft 12 is locked clockwise with respect to the outer ring 14. When counterclockwise reverse input torque is input to the output shaft 12, the roller 30 in the clockwise direction (backward in the rotational direction) engages with the wedge clearance in that direction, and the output shaft 12 counteracts against the outer ring 14. Locked clockwise. Therefore, the reverse input torque from the output shaft 12 is locked in both forward and reverse rotation directions by the second clutch portion 16, and the reverse input torque to the first clutch portion 15 is interrupted.
[0060]
FIG. 17 shows an initial state in which the input torque (clockwise in the figure) from the outer ring 1 is input to the inner ring 13 via the first clutch portion 15 and the inner ring 13 starts to turn clockwise in the figure. ing. Since the rotation direction clearance is set to δ1 <δ2, first, the counterclockwise (backward in the rotation direction) column portion 13c of the inner ring 13 is engaged with the roller 30 in that direction (backward in the rotation direction). It is pressed clockwise (forward in the rotational direction) against the elastic force of the leaf spring 31. As a result, the counterclockwise (backward in the rotation direction) roller 30 is released from the wedge gap in that direction, and the output shaft 12 is unlocked. Therefore, the output shaft 12 can be rotated clockwise.
[0061]
When the inner ring 13 further rotates in the clockwise direction, the pin 13b1 of the inner ring 13 engages with the pin hole 12b3 of the output shaft 12 in the clockwise direction as shown in FIG. Thereby, the clockwise input torque from the inner ring 13 is transmitted to the output shaft 12 via the pin 13b1 and the pin hole 12b3, and the output shaft 12 rotates clockwise. When the counterclockwise input torque is input to the outer ring 1, the output shaft 12 rotates counterclockwise by the reverse operation. Therefore, the input torque in the forward and reverse rotational directions from the outer ring 1 is transmitted to the output shaft 12 via the first clutch portion 15, the inner ring 13, and the pin 13b1 and the pin hole 12b3 as torque transmitting means. Rotates in both forward and reverse rotation directions. When the input torque from the inner ring 13 is lost, the spring returns to the neutral position shown in FIG.
[0062]
As described above, the second clutch portion 16 transmits the input torque in the forward and reverse directions of the outer ring 1 to the output shaft 12 via the inner ring 13, while transmitting the reverse input torque from the output shaft 12 to the inner ring 13 and the outer ring 1. It functions as a reverse input torque shut-off mechanism that shuts off.
[0063]
When the outer ring 1, the output shaft 12, the inner ring 13, the outer ring 14, the first clutch part 15, the second clutch part 16, the fixed side plate 17 and the friction member 19 are assembled in the manner shown in FIG. 8, the rotational drive of this embodiment The device is completed. For example, an operation lever 23 made of resin is coupled to the outer ring 1, and the output shaft 12 is connected to a rotation member of an output side mechanism (not shown). The fixed side plate 17 is swaged and fixed to a fixing member such as a casing (not shown) by a swaged portion 17b1. In this apparatus, for example, in an apparatus that adjusts the position of a required part by transmitting an input torque generated by a rotation operation of the operation member to the output side mechanism, the position of the output side mechanism is not changed when the operation member is not operated. It is suitable for applications that require a function to hold
[0064]
【The invention's effect】
Thus, according to the present invention, the first elastic member for returning the input side member to the neutral position is disposed between the input side member and the stationary side member, and the lock / The elastic force is directly applied to the input side member regardless of the unlock switching mechanism. Accordingly, it is possible to apply a large elastic force to the input side member, and when the input torque is released, the input side member can be surely returned to the neutral position, and includes the clutch unit and further. The operational stability of the rotary drive device can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view (a view) showing an overall configuration of a clutch unit according to the present invention, and a sectional view taken along line BB in FIG.
FIG. 2 is a perspective view showing a retainer of the clutch unit.
FIG. 3 is a front view schematically illustrating a mounting state of first and second elastic members.
FIG. 4 is a sectional view conceptually illustrating the operation of the clutch unit.
FIG. 5 is a cross-sectional view conceptually illustrating the operation of the clutch unit.
FIG. 6 is a sectional view conceptually illustrating the operation of the clutch unit.
FIG. 7 is a sectional view conceptually illustrating the operation of a comparative product.
FIG. 8 is a cross-sectional view of a rotary drive device including the clutch unit.
9A is a front view showing an output shaft of the rotary drive device, and FIG. 9B is a sectional view taken along line BB in FIG. 9A.
10A is a front view showing an inner ring (rotating member) of the rotation drive device, FIG. 10B is a sectional view taken along line BB in FIG. 10A, and FIG.
11A is a front view showing an outer ring (stationary side member) of the rotary drive device, and FIG. 11B is a sectional view taken along line BB in FIG.
FIGS. 12A and 12B are a front view and a cross-sectional view taken along line BB in FIG.
FIG. 13 is a front view (a) and a longitudinal sectional view (b) showing a friction member (braking means) of a rotary drive device.
14 is a cross-sectional view of the first clutch portion of the rotary drive device taken along the line 8B-B in FIG.
15 is a cross-sectional view of FIG. 8A-A showing a second clutch portion of the rotary drive device.
FIG. 16 is a partially enlarged front view showing the operation of the first clutch portion (neutral position).
FIG. 17 is a partially enlarged front view showing the operation of the first clutch portion (when unlocked).
FIG. 18 is a partially enlarged front view showing the operation of the first clutch portion (at the time of torque transmission).
[Explanation of symbols]
1 Outer ring (input side member)
1a Locking part
1A 1st thin member
1Aa Cam surface
1B Second thin member
2 Inner ring (rotating member)
2a Circumference surface
3 Roller (engagement element)
4 Cage
4b Notch
5A First elastic member
5A1 engagement part
5A2 engaging part
5B Second elastic member
5B1 engaging part
5B2 engaging part
5B3 escape section
6 Operation lever (operation member)
7 Static side member
7a Locking part
7b Locking part
12 Output shaft (output side member)
13 Inner ring (rotating member)
14 Outer ring (stationary member)
14a2 Locking part
14a4 Locking part
15 First clutch part (clutch unit)
16 Second clutch part (reverse input blocking mechanism)
23 Operation lever (operation member)

Claims (5)

トルクが入力される入力側部材と、トルクが出力される回転部材と、回転が拘束される静止側部材と、入力側部材からの入力トルクで回転部材を回転させるトルク伝達部とを具備し、入力側部材の中立位置からの繰り返し回転により、トルク伝達部を介して、回転部材に入力側部材の各回転動作ごとの回転量を蓄積するクラッチユニットにおいて、
トルク伝達部として、入力側部材と回転部材の間の隙間に配置され、トルク入力時に上記隙間に噛み込んで入力トルクを回転部材に伝達し、入力トルクの開放時に上記隙間への噛み込みを解除する係合子を備え、入力側部材と静止側部材の間に、入力トルクで弾性力を蓄積すると共に、この蓄積した弾性力で入力トルクの開放時に入力側部材を中立位置に復帰させる第一の弾性部材を配置し、かつ係合子を保持する保持器と静止側部材との間に第二の弾性部材を配置し、入力トルクの作用時に第一および第二の弾性部材に弾性力を蓄積すると共に、入力トルクの開放時に両弾性部材の弾性力で係合子の上記隙間への噛み込みを解除することを特徴とするクラッチユニット。
An input side member to which torque is input, a rotating member to which torque is output, a stationary side member in which rotation is constrained, and a torque transmission unit that rotates the rotating member with input torque from the input side member, In the clutch unit that accumulates the rotation amount for each rotation operation of the input side member in the rotation member via the torque transmission unit by repeated rotation from the neutral position of the input side member.
As a torque transmission part, it is arranged in the gap between the input side member and the rotating member, and when the torque is input, it engages in the gap and transmits the input torque to the rotating member, and when the input torque is released, the engagement in the gap is released. A first engaging member that stores an elastic force with an input torque between the input side member and the stationary side member and that returns the input side member to a neutral position when the input torque is released with the accumulated elastic force. An elastic member is disposed , and a second elastic member is disposed between the cage that holds the engagement element and the stationary member, and elastic force is accumulated in the first and second elastic members when an input torque is applied. In addition , the clutch unit is configured to release the engagement of the engaging element into the gap by the elastic force of both elastic members when the input torque is released .
第一の弾性部材を有端リング状の板ばねで形成した請求項1記載のクラッチユニット。  The clutch unit according to claim 1, wherein the first elastic member is formed of an end ring-shaped leaf spring. 第一および第二の弾性部材を有端リング状の板ばねで形成した請求項記載のクラッチユニット。Clutch unit according to claim 1, wherein the first and second elastic members are formed with end-defined ring-shaped leaf spring. 内径側の弾性部材のうち、トルク入力時の弾性変形で外径側の弾性部材と干渉する部分に当該干渉を回避する逃げ部を形成した請求項または記載のクラッチユニット。The clutch unit according to claim 1 or 3 , wherein a relief portion for avoiding the interference is formed in a portion of the inner diameter side elastic member that interferes with the outer diameter side elastic member due to elastic deformation at the time of torque input. 請求項1〜の何れかに記載したクラッチユニットと、トルクが出力される出力側部材と、上記クラッチユニットの回転部材と出力側部材との間に配置され、入力側部材の入力トルクを回転部材を介して出力側部材に伝達し、出力側部材からの逆入力トルクの回転部材への伝達を遮断する逆入力トルク遮断機構とを有する回転駆動装置。Rotating a clutch unit according to either one of claims 1-4, and an output-side member torque is output, it is arranged between the rotating member and the output side member of the clutch unit, an input torque of the input-side member A rotation drive device comprising: a reverse input torque blocking mechanism that transmits a reverse input torque from an output side member to a rotation member through a member and blocks transmission of a reverse input torque from the output side member to the rotation member.
JP2001367173A 2001-11-30 2001-11-30 Clutch unit Expired - Lifetime JP3977065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001367173A JP3977065B2 (en) 2001-11-30 2001-11-30 Clutch unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001367173A JP3977065B2 (en) 2001-11-30 2001-11-30 Clutch unit

Publications (2)

Publication Number Publication Date
JP2003166555A JP2003166555A (en) 2003-06-13
JP3977065B2 true JP3977065B2 (en) 2007-09-19

Family

ID=19176958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001367173A Expired - Lifetime JP3977065B2 (en) 2001-11-30 2001-11-30 Clutch unit

Country Status (1)

Country Link
JP (1) JP3977065B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3626515A1 (en) 2018-09-14 2020-03-25 TF-Metal Co., Ltd. Brake device for motor vehicle seat

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515146B2 (en) * 2004-05-13 2010-07-28 Ntn株式会社 Clutch unit
JP4518315B2 (en) * 2004-06-22 2010-08-04 Ntn株式会社 Clutch unit
JP2006052838A (en) * 2004-07-15 2006-02-23 Ntn Corp Clutch unit
JP4987337B2 (en) 2006-03-31 2012-07-25 Ntn株式会社 Clutch unit
JP4994701B2 (en) * 2006-04-19 2012-08-08 Ntn株式会社 Clutch unit
WO2009014046A1 (en) 2007-07-24 2009-01-29 Ntn Corporation Clutch unit
JP5248055B2 (en) * 2007-07-24 2013-07-31 Ntn株式会社 Clutch unit
JP5329056B2 (en) * 2007-07-24 2013-10-30 シロキ工業株式会社 Clutch unit
JP5207778B2 (en) * 2008-03-06 2013-06-12 Ntn株式会社 Clutch unit
JP5207779B2 (en) * 2008-03-06 2013-06-12 Ntn株式会社 Clutch unit
EP2264328B1 (en) 2008-03-06 2014-05-14 NTN Corporation Clutch unit
FR2931796B1 (en) * 2008-05-29 2010-07-30 Snecma SIMPLIFIED SYSTEM FOR CONTROLLING THE SETTING OF A PROPELLER BLADE OF A TURBOMOTEUR FOR AN AIRCRAFT
JP5095515B2 (en) * 2008-06-17 2012-12-12 Ntn株式会社 Clutch unit
JP2010100187A (en) * 2008-10-24 2010-05-06 Showa Corp Power steering apparatus of watercraft with propeller
EP2538103B1 (en) * 2010-02-18 2017-11-22 NTN Corporation Clutch unit
JP5894788B2 (en) * 2011-12-26 2016-03-30 テイ・エス テック株式会社 Clutch unit
JP5894789B2 (en) * 2011-12-26 2016-03-30 テイ・エス テック株式会社 Brake mechanism and clutch unit
US9360072B2 (en) 2011-12-26 2016-06-07 Ts Tech Co., Ltd. Brake mechanism and clutch unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3626515A1 (en) 2018-09-14 2020-03-25 TF-Metal Co., Ltd. Brake device for motor vehicle seat
US11325506B2 (en) 2018-09-14 2022-05-10 Tf-Metal Co., Ltd. Brake device for motor vehicle seat

Also Published As

Publication number Publication date
JP2003166555A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP3977065B2 (en) Clutch unit
EP1308643B1 (en) Clutch unit
US10711851B2 (en) Clutch unit
JP4994701B2 (en) Clutch unit
US20150300435A1 (en) Clutch unit
US8424665B2 (en) Clutch unit
JP4278844B2 (en) Clutch unit
JP3800132B2 (en) Telescopic shaft for vehicle steering
JP2006052838A (en) Clutch unit
US7617677B2 (en) Stator unit for a torque converter
JP4233779B2 (en) Clutch unit
JP4819019B2 (en) Clutch unit
JP2001159429A (en) Electric power steering device
JP4541109B2 (en) Reverse input prevention clutch
JP4282889B2 (en) Clutch unit
JP4162878B2 (en) Seat seat
JP4223207B2 (en) Seat seat
JP3989702B2 (en) One-way clutch
JP4286444B2 (en) Clutch unit
JP4071927B2 (en) Clutch unit
JP2022126361A (en) Electric motor with reverse input cutoff clutch
JP4394299B2 (en) Clutch unit
JP2004197846A (en) Clutch and clutch unit
JP2004196130A (en) Seat
JP2007247674A (en) Reverse input cutoff clutch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3977065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term