JP3976831B2 - Method for producing N, N-dimethylacrylamide - Google Patents

Method for producing N, N-dimethylacrylamide Download PDF

Info

Publication number
JP3976831B2
JP3976831B2 JP09444397A JP9444397A JP3976831B2 JP 3976831 B2 JP3976831 B2 JP 3976831B2 JP 09444397 A JP09444397 A JP 09444397A JP 9444397 A JP9444397 A JP 9444397A JP 3976831 B2 JP3976831 B2 JP 3976831B2
Authority
JP
Japan
Prior art keywords
dimethylamine
chemical formula
adduct
reaction
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09444397A
Other languages
Japanese (ja)
Other versions
JPH10279545A (en
Inventor
裕一 高尾
明元 永本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Original Assignee
Kohjin Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohjin Holdings Co Ltd filed Critical Kohjin Holdings Co Ltd
Priority to JP09444397A priority Critical patent/JP3976831B2/en
Publication of JPH10279545A publication Critical patent/JPH10279545A/en
Application granted granted Critical
Publication of JP3976831B2 publication Critical patent/JP3976831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、重合して石油採掘剤、糊剤等に使用される有用なモノマーであるN,N−ジメチルアクリルアミドの工業的に有利な製造法に関する。
【0002】
【従来の技術】
N,N,−ジメチルアクリルアミドの工業的に製造する方法として、例えばUS2451436号、特開平4−208258号、特開平6−199752号等に示されるアミンアダクト法が公知である。
該方法は、原料として安価なアクリル酸メチルを用い、以下の方法でN,N−ジメチルアクリルアミドが製造される。
(1)二重結合の保護(アダクト化)
アクリル酸メチルとジメチルアミンを反応させ、化3で表される化合物(以下エステルアダクトという。)に変換する。
【0003】
【化3】
(CH32N−CH2CH2−COOCH3
【0004】
(2)アミド化
エステルアダクトにジメチルアミンを反応させ、化4で表される化合物(以下アミドアダクトという。)に変換する。
【0005】
【化4】
(CH32N−CH2CH2−CON(CH32
【0006】
(3)熱分解
アミドアダクトを熱分解し、N,N−ジメチルアクリルアミドを得る。
【0007】
これら反応の内、アミド化反応では、エステルアダクトとジメチルアミンとを等モルで反応させると反応終期の反応速度が非常に遅くなるため、通常、どちらかを過剰モル用い未反応物を回収する方法がとられており、その際も、ジメチルアミンは沸点が低く回収に多大な装置等を要するため、エステルアダクトを過剰に用い、これの未反応物を回収する方法が一般的である。
【0008】
【発明が解決しようとする課題】
しかしながら、このようにして回収したエステルアダクトをアミド化反応に再使用する場合、しばしば反応液中にゲル状物質が生成して増粘し、液の取り出し等の作業が困難になり、安定した運転が困難であるという欠点があった。
【0009】
【課題を解決するための手段】
本発明者らは、かかる課題を解決すべく鋭意研究の結果、ゲル化を起こす物質が主としてアミド化反応で水分により強塩基触媒存在下エステルアダクトから副成するジメチルβ−アラニンであること、エステルアダクト中の水分が300ppm以下であるとゲル化を起こさないこと、中和に99〜100%硫酸を用いることによりこの条件が満足され回収率を低下させることなく安定した運転が可能であることを見いだし、本発明を完成するにいたった。すなわち本発明は、(1)二重結合の保護:アクリル酸メチルとジメチルアミンとを反応し化3で表されるエステルアダクトに変換し、(2)アミド化:これを強塩基性触媒存在下、化3で表される化合物の0.4〜0.9倍モルのジメチルアミンと反応し化4で表されるアミドアダクトとし、(3)中和・回収:中和・化3で表される未反応物の回収ののち、(4)熱分解:熱分解してN,N−ジメチルアクリルアミドを製造する方法において、中和を濃度99〜100%の硫酸で行うことにより、回収した未反応物中の水分を300ppm以下とし、ジメチルアミンとの反応に再利用することとするN,N−ジメチルアクリルアミドの製造法を提供するものである。また、ジメチルアミンと反応する化3で表される化合物が回収されたものである、前記のN,N−ジメチルアクリルアミドの製造法を提供するものである。
【0010】
【化3】
(CH32N−CH2CH2−COOCH3
【0011】
【化4】
(CH32N−CH2CH2−CON(CH32
【0012】
以下、本発明を詳細に説明する。
本発明の(1)アクリル酸の二重結合へのジメチルアミンの付加は、両者を混ぜ合わせるだけで無触媒で容易に進行する。反応温度は室温から若干高められた温度、好ましくは30〜40℃である。反応は等モルの使用でも5〜6時間程度で完結するが、予めアミド化に必要なジメチルアミンを過剰に使用した方が反応速度も速く、反応終了後も反応液をそのまま次のアミド化に供することができるので好ましい。
【0013】
本発明の(2)アミド化も公知の方法が使用できるが、以下の方法が望ましい。
すなわち、エステルアダクト1モルに対してジメチルアミン0.4〜0.9倍モル、好ましくは0.7〜0.8倍モルを強塩基性触媒存在下反応させることにより実施される。
使用できる強塩基性触媒としてはアルコラート類、中でもソジウムメトキシドが最も好ましい。使用量は、エステルアダクトに対して0.01〜0.015モル程度で十分である。
反応は常圧で若干高められた温度、好ましくは40〜60℃で実施され、反応時間は条件にもよるが2〜8時間程度で完結する。
【0014】
アミド化反応終了後、アミドアダクト、メタノール、未反応のエステルアダクトの混合物が生成する。本発明においては、該混合液を(3)中和後減圧下蒸留することにより未反応のエステルアダクトを回収する。
該混合物を中和することなくそのまま蒸留分離すると、釜液に強塩基性触媒が濃縮され、二量体化その他の副反応を起こすので好ましくない。
中和に使用される酸は、99〜100%の硫酸である。硫酸の濃度が低いと回収エステルアダクトを再利用した場合、ゲル化をおこし、一方、硫酸濃度が100%を越える場合は、すなわちフリーのSO3 ガスが存在すると、装置の腐食等の問題が生じるので好ましくない。
99〜100%の硫酸は、濃硫酸と発煙硫酸から容易に製造されるが、濃硫酸と発煙硫酸とを一定量比で中和工程に同時に添加することもできる。発煙硫酸は、発煙の程度が少ないSO3 20%程度のものが取扱い易く好ましい。
エステルアダクトの回収は、通常、1塔もしくは2塔で分離される。例えば1塔の場合、塔頂よりメタノール、塔低よりアミドアダクト、中段サイドでエステルアダクトが取り出され、メタノールは廃棄される。
【0015】
アミドアダクトは、(4)熱分解工程に導かれ、公知の方法で熱分解することによりN,N−ジメチルアクリルアミドを得ることができる。
【0016】
本発明の特徴は、中和に99〜100%硫酸を用いることにより、回収された未反応のエステルアダクトの水分含量を300ppm以下とし、ジメチルアミンとの反応に再利用する点にある。本発明者らは、ゲル化を起こす物質について検討を重ねたところ、アミド化反応で水分により強塩基性触媒存在下、エステルアダクトが加水分解されたジメチルβ−アラニンであることを見いだした。中和に使用される濃硫酸には通常3%程度の水分が含まれており、未反応のエステルアダクトを回収するとともに水もリサイクルされている。水を除去する方法の一つは蒸留であり、沸点はメタノール<水<エステルアダクト<アミドアダクトの順であるので理論的には分離可能である。しかしながら、例えば蒸留塔の中段温度を高めにすれば水はメタノール側に完全に排出されるもののエステルアダクトもメタノール中に多く排出されロスが多く、一方、低めにすればエステルアダクトのロスはないものの回収エステルアダクト中に含まれる水分も増加し、アミド化反応に再使用した場合にゲル化を起こす。特に連続蒸留においては、フィード液の組成も変化しそれに伴い中段温度も変化することからロスあるいはゲル化を起こすことなく運転することは現実的には不可能である。
【0017】
本発明者らは、更にエステルアダクト中の水分が300ppm以下、あるいは中和反応後の水分が75ppm以下であると再利用してもゲル化を起こさないことを見いだした。
かかる知見をもとに99〜100%の硫酸を中和剤として使用することにより、蒸留塔の運転条件に左右されることなく、またエステルアダクトをロスすることもなくゲル化することもなく、安定的に運転できるという、工業的に極めて優れたものである。
【0018】
【実施例】
以下実施例を挙げて本発明を詳細に説明する。
実施例1〜2、比較例1〜4
エステル化槽で、アクリル酸メチル160kg/hrとジメチルアミン167kg/hrとを40℃2時間反応させて得られた仕込液及び回収エステルアダクトを使用し、種々の中和剤を用いアミド化反応を実施した。
反応条件は以下の通りである。
◎アミド化槽…常圧、40℃
・仕込液:330kg/hr
(ジメチルアミン51%、エステルアダクト49%)
・回収エステルアダクト:75kg/hr
・ソジウムメトキシド28%メタノール溶液:5.3kg/hr
・中和剤:1.38kg/hr
◎蒸留塔
蒸留塔は1塔で、塔頂よりメタノール、塔低よりアミドアダクト、中段サイドカットでエステルアダクトを取りだした。
・塔低液(主としてアミドアダクト):265kg/hr
・廃メタノール:65kg/hr
・中段サイドカット(回収エステルアダクト):75kg/hr
結果を表1に示す。
【0019】
【表1】

Figure 0003976831
* リサイクリした場合のアミド化槽
【0020】
【発明の効果】
以上説明してきたように、本発明によると、簡便な方法で、エステルアダクトをロスすることもなくゲル化することもなく、安定的に運転できるという、工業的に極めて優れた製法が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an industrially advantageous process for producing N, N-dimethylacrylamide, which is a useful monomer that is polymerized and used in petroleum mining agents, pastes and the like.
[0002]
[Prior art]
As an industrial method for producing N, N, -dimethylacrylamide, for example, the amine adduct method shown in US Pat. No. 2,451,436, JP-A-4-208258, JP-A-6-199752 and the like is known.
In this method, inexpensive methyl acrylate is used as a raw material, and N, N-dimethylacrylamide is produced by the following method.
(1) Double bond protection (adducting)
Methyl acrylate and dimethylamine are reacted to convert to a compound represented by Chemical Formula 3 (hereinafter referred to as ester adduct).
[0003]
[Chemical 3]
(CH 3 ) 2 N—CH 2 CH 2 —COOCH 3
[0004]
(2) Amidated ester adduct is reacted with dimethylamine to convert it into a compound represented by chemical formula 4 (hereinafter referred to as amide adduct).
[0005]
[Formula 4]
(CH 3) 2 N-CH 2 CH 2 -CON (CH 3) 2
[0006]
(3) Pyrolysis The amide adduct is pyrolyzed to obtain N, N-dimethylacrylamide.
[0007]
Among these reactions, in the amidation reaction, when the ester adduct and dimethylamine are reacted in equimolar amounts, the reaction rate at the end of the reaction becomes very slow. In this case, since dimethylamine has a low boiling point and requires a large amount of equipment for recovery, a method of recovering the unreacted product using an ester adduct in excess is generally used.
[0008]
[Problems to be solved by the invention]
However, when the ester adduct recovered in this way is reused in the amidation reaction, a gel-like substance is often generated in the reaction liquid to thicken it, making it difficult to take out the liquid, etc., and stable operation. There was a drawback that it was difficult.
[0009]
[Means for Solving the Problems]
As a result of diligent research to solve such problems, the present inventors have determined that the substance that causes gelation is dimethyl β-alanine, which is a by-product of ester adducts in the presence of a strong base catalyst due to moisture in an amidation reaction. When the water content in the adduct is 300 ppm or less, gelation does not occur, and by using 99 to 100% sulfuric acid for neutralization, this condition is satisfied and stable operation is possible without reducing the recovery rate. As a result, the present invention has been completed. That is, the present invention provides (1) protection of double bond: conversion of methyl acrylate and dimethylamine to ester adduct represented by Chemical Formula 3, and (2) amidation: in the presence of a strongly basic catalyst. The amide adduct represented by the chemical formula 4 is reacted with 0.4 to 0.9 times moles of dimethylamine of the compound represented by the chemical formula 3, and (3) neutralization / recovery: represented by the neutralization / chemical formula 3 (4) Thermal decomposition: In the method for producing N, N-dimethylacrylamide by thermal decomposition, neutralization is performed with sulfuric acid having a concentration of 99 to 100%. The present invention provides a method for producing N, N-dimethylacrylamide, wherein the water content in the product is 300 ppm or less and is reused for the reaction with dimethylamine. The present invention also provides a method for producing the above N, N-dimethylacrylamide, wherein the compound represented by Chemical Formula 3 that reacts with dimethylamine is recovered.
[0010]
[Chemical 3]
(CH 3 ) 2 N—CH 2 CH 2 —COOCH 3
[0011]
[Formula 4]
(CH 3) 2 N-CH 2 CH 2 -CON (CH 3) 2
[0012]
Hereinafter, the present invention will be described in detail.
The addition of dimethylamine to the double bond of (1) acrylic acid of the present invention proceeds easily without catalyst simply by mixing the two. The reaction temperature is a temperature slightly increased from room temperature, preferably 30 to 40 ° C. The reaction is completed in about 5 to 6 hours even if equimolar use is used, but the reaction rate is faster if the dimethylamine necessary for amidation in advance is used excessively, and the reaction solution is used for the next amidation as it is after completion of the reaction. Since it can provide, it is preferable.
[0013]
Although (2) amidation of the present invention can be used by a known method, the following method is desirable.
That is, it is carried out by reacting 0.4 to 0.9 times mol, preferably 0.7 to 0.8 times mol of dimethylamine in the presence of a strongly basic catalyst with respect to 1 mol of the ester adduct.
As strongly basic catalysts that can be used, alcoholates, most preferably sodium methoxide are preferred. About 0.01-0.015 mol is sufficient for the usage-amount with respect to ester adduct.
The reaction is carried out at a slightly elevated temperature at normal pressure, preferably 40 to 60 ° C., and the reaction time is about 2 to 8 hours depending on the conditions.
[0014]
After completion of the amidation reaction, a mixture of an amide adduct, methanol, and an unreacted ester adduct is formed. In the present invention, the unreacted ester adduct is recovered by (3) neutralizing and then distilling under reduced pressure.
If the mixture is separated by distillation without neutralization, the strongly basic catalyst is concentrated in the kettle and is not preferable because dimerization and other side reactions occur.
The acid used for neutralization is 99-100% sulfuric acid. If the recovered ester adduct is reused when the concentration of sulfuric acid is low, gelation occurs. On the other hand, if the sulfuric acid concentration exceeds 100%, that is, if free SO 3 gas is present, problems such as corrosion of the apparatus occur. Therefore, it is not preferable.
99-100% sulfuric acid is easily produced from concentrated sulfuric acid and fuming sulfuric acid, but concentrated sulfuric acid and fuming sulfuric acid can be simultaneously added to the neutralization step in a certain ratio. The fuming sulfuric acid is preferably about 20% SO 3 with a low degree of fuming because it is easy to handle.
The recovery of the ester adduct is usually separated in one or two towers. For example, in the case of one column, methanol is taken out from the top of the column, an amide adduct is taken out from the bottom of the column, and an ester adduct is taken out from the middle side, and methanol is discarded.
[0015]
The amide adduct is led to a (4) pyrolysis step, and N, N-dimethylacrylamide can be obtained by pyrolysis by a known method.
[0016]
The feature of the present invention is that the water content of the recovered unreacted ester adduct is reduced to 300 ppm or less by using 99 to 100% sulfuric acid for neutralization and reused for the reaction with dimethylamine. As a result of repeated studies on substances that cause gelation, the present inventors have found that the ester adduct is dimethyl β-alanine hydrolyzed in the presence of a strong basic catalyst by moisture in the amidation reaction. Concentrated sulfuric acid used for neutralization usually contains about 3% of water, and unreacted ester adducts are recovered and water is also recycled. One method of removing water is distillation, and the boiling point is in the order of methanol <water <ester adduct <amide adduct, so that separation is theoretically possible. However, for example, if the middle temperature of the distillation column is increased, water is completely discharged to the methanol side, but the ester adduct is also discharged to a large amount in the methanol, and on the other hand, if it is lower, there is no loss of the ester adduct. The water content in the recovered ester adduct also increases, causing gelation when reused in the amidation reaction. In particular, in continuous distillation, since the composition of the feed liquid changes and the middle stage temperature changes accordingly, it is practically impossible to operate without loss or gelation.
[0017]
The present inventors have further found that gelation does not occur even when reused when the water content in the ester adduct is 300 ppm or less or the water content after the neutralization reaction is 75 ppm or less.
By using 99 to 100% sulfuric acid as a neutralizing agent based on such knowledge, without depending on the operating conditions of the distillation column, without losing the ester adduct and without gelling, It is extremely industrially superior in that it can be stably operated.
[0018]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
Examples 1-2 and Comparative Examples 1-4
In the esterification tank, the amidation reaction was carried out using various neutralizing agents using the charged solution and the recovered ester adduct obtained by reacting 160 kg / hr of methyl acrylate with 167 kg / hr of dimethylamine for 2 hours at 40 ° C. Carried out.
The reaction conditions are as follows.
◎ Amidation tank: normal pressure, 40 ℃
-Feed liquid: 330 kg / hr
(Dimethylamine 51%, ester adduct 49%)
・ Recovered ester adduct: 75 kg / hr
Sodium methoxide 28% methanol solution: 5.3 kg / hr
・ Neutralizer: 1.38 kg / hr
◎ Distillation tower There was one distillation tower, methanol from the top, amide adduct from the bottom, and ester adduct from the middle side cut.
・ Tower low liquid (mainly amide adduct): 265 kg / hr
-Waste methanol: 65 kg / hr
-Middle stage side cut (recovered ester adduct): 75 kg / hr
The results are shown in Table 1.
[0019]
[Table 1]
Figure 0003976831
* Amidation tank when recycled [0020]
【The invention's effect】
As described above, according to the present invention, an industrially excellent production method is provided that can be stably operated by a simple method without losing the ester adduct or gelling. .

Claims (2)

アクリル酸メチルとジメチルアミンとを反応し化1で表される化合物に変換し、これを強塩基性触媒存在下、化1で表される化合物の0.4〜0.9倍モルのジメチルアミンと反応し化2で表される化合物とし、中和・化1で表される未反応物の回収ののち、熱分解してN,N−ジメチルアクリルアミドを製造する方法において、中和を濃度99〜100%の硫酸で行うことにより、回収された化1で表される化合物中の水分を300ppm以下とし、ジメチルアミンとの反応に再利用することを特徴とする、N,N−ジメチルアクリルアミドの製造法。
Figure 0003976831
Figure 0003976831
Methyl acrylate and dimethylamine are reacted to convert to a compound represented by Chemical Formula 1, and in the presence of a strong basic catalyst, 0.4 to 0.9 moles of dimethylamine compared to the compound represented by Chemical Formula 1 In the method of producing N, N-dimethylacrylamide by thermal decomposition after recovering the unreacted product represented by neutralization and chemical formula 1 by reacting with the compound represented by chemical formula 2, neutralization is performed at a concentration of 99. By using 100% sulfuric acid, the water content in the recovered compound represented by Chemical Formula 1 is reduced to 300 ppm or less and reused for the reaction with dimethylamine. Manufacturing method.
Figure 0003976831
Figure 0003976831
ジメチルアミンと反応する化1で表される化合物が回収されたものであることを特徴とする、請求項1記載のN,N−ジメチルアクリルアミドの製造法。The method for producing N, N-dimethylacrylamide according to claim 1, wherein the compound represented by Chemical Formula 1 that reacts with dimethylamine is recovered.
JP09444397A 1997-03-31 1997-03-31 Method for producing N, N-dimethylacrylamide Expired - Lifetime JP3976831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09444397A JP3976831B2 (en) 1997-03-31 1997-03-31 Method for producing N, N-dimethylacrylamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09444397A JP3976831B2 (en) 1997-03-31 1997-03-31 Method for producing N, N-dimethylacrylamide

Publications (2)

Publication Number Publication Date
JPH10279545A JPH10279545A (en) 1998-10-20
JP3976831B2 true JP3976831B2 (en) 2007-09-19

Family

ID=14110413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09444397A Expired - Lifetime JP3976831B2 (en) 1997-03-31 1997-03-31 Method for producing N, N-dimethylacrylamide

Country Status (1)

Country Link
JP (1) JP3976831B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1140797A1 (en) * 1999-01-16 2001-10-10 Ciba Specialty Chemicals Water Treatments Limited Production of acrylic monomers
JP2000273072A (en) * 1999-03-24 2000-10-03 Kohjin Co Ltd Production of (meth)acrylamide derivative
CN101616889B (en) 2007-02-20 2013-08-21 出光兴产株式会社 Preparation method of β-alkoxy propionamides
JP5331469B2 (en) 2008-12-10 2013-10-30 出光興産株式会社 Process for producing β-alkoxypropionamides
JP2012025675A (en) * 2010-07-21 2012-02-09 Kohjin Co Ltd Acrylamide derivative with little yellowing
JP5649049B2 (en) * 2010-10-29 2015-01-07 Kjケミカルズ株式会社 Process for producing hydroxyalkyl (meth) acrylamide
CN103111171A (en) * 2012-12-27 2013-05-22 山东瑞博龙化工科技股份有限公司 Cracking tail gas absorption and treatment device for production device of dimethyl acrylamide
JP5992463B2 (en) * 2013-02-28 2016-09-14 富士フイルム株式会社 Method for producing polyfunctional (meth) acrylamide compound
JP2015214547A (en) * 2015-05-22 2015-12-03 Kjケミカルズ株式会社 Less yellowing acrylamide derivative
JP6869529B2 (en) * 2016-03-30 2021-05-12 Kjケミカルズ株式会社 Method for Producing β-Substituted Propionic Acid Amide and N-Substituted (Meta) Acrylamide
CN107673985B (en) * 2017-12-05 2020-10-02 淄博齐塑环保科技有限公司 Preparation process of high-yield N, N-dimethylacrylamide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145122A (en) * 1993-11-24 1995-06-06 Mitsui Toatsu Chem Inc Process for producing N-alkyl-α, β-unsaturated carboxylic acid amide
JPH07316111A (en) * 1994-05-23 1995-12-05 Mitsubishi Rayon Co Ltd Process for producing N, N-disubstituted (meth) acrylamide derivative

Also Published As

Publication number Publication date
JPH10279545A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
JP3976831B2 (en) Method for producing N, N-dimethylacrylamide
JPH069456A (en) Production of 2-perfluoroalkylethyl alcohols
US6770783B1 (en) Method for producing acid chlorides
JP2911626B2 (en) Preparation of carboxylic acid chloride
JP3495541B2 (en) Preparation of alkyl chloride
JPH03106848A (en) Preparation of derivative of alpha-fluoroacryloyl
US3102139A (en) Oxidation process for preparing carboxylic acid anhydrides
FR2617836A1 (en) SYNTHESIS OF PERFLUOROALKYL BROMIDES
JP3502523B2 (en) Continuous production of alkyl halides.
US4400325A (en) Process for the preparation of pure, saturated perfluoroalkane-1-carboxylic acids from 1-iodoperfluoroalkanes
JPS59204149A (en) Method for purifying hexafluoroacetone hydrate
KR101284659B1 (en) Process for production of 1,2,2,2-tetrafluoro ethyl difluoro methyl ether
JPH0751526B2 (en) Method for producing hemiacetal compound
JPH08231462A (en) Process for producing perfluoroalkylcarboxylic acid fluoride and its derivative
WO1994008946A1 (en) Process for producing n-monosubstituted (meth)acrylamyde
KR830002449B1 (en) Process for preparation of 4-trichloromethoxy-benzoyl chloride
JPH06263715A (en) Production of high-purity methanesulfonyl chloride
JP3865577B2 (en) Method for producing trifluoromethanesulfonic anhydride
KR890005062B1 (en) Process for the preparation of pure hydrates of fluoral and of hemiacetals
US6455739B1 (en) Production of 4-fluorobenzaldehyde
US4944931A (en) Process for producing nitrosyl fluoride
JP2523936B2 (en) Method for producing dicarbonyl fluoride
JP3998766B2 (en) Method for producing bromodifluoroacetic acid ester
CA2373437A1 (en) Production of 1,1,1,2,3,3,3-heptafluoropropane
JPS6154021B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150