JP3976813B2 - Liquid mixing apparatus and method - Google Patents

Liquid mixing apparatus and method Download PDF

Info

Publication number
JP3976813B2
JP3976813B2 JP08535896A JP8535896A JP3976813B2 JP 3976813 B2 JP3976813 B2 JP 3976813B2 JP 08535896 A JP08535896 A JP 08535896A JP 8535896 A JP8535896 A JP 8535896A JP 3976813 B2 JP3976813 B2 JP 3976813B2
Authority
JP
Japan
Prior art keywords
transfer
flow rate
ratio
liquid
suction port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08535896A
Other languages
Japanese (ja)
Other versions
JPH09271654A (en
Inventor
雅嗣 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP08535896A priority Critical patent/JP3976813B2/en
Publication of JPH09271654A publication Critical patent/JPH09271654A/en
Application granted granted Critical
Publication of JP3976813B2 publication Critical patent/JP3976813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、食品工業、化学工業、医農薬化粧品工業、石油化学工業等の諸産業において、複数液を所望の比率で連続的に混合・移送する液混合装置及び方法に関するものである。
【0002】
【従来の技術】
従来より、複数液を混合・移送する液混合装置としては、所定の比率で供給された一定量の液体同士を撹拌・混合する撹拌タンクと、該撹拌タンクで処理した混合液を次のプロセスに移送する移送用ポンプとを組み合わせたバッチ処理式のもの、あるいは、供給された液体を撹拌・混合しながら圧送するラインミキサーと、該ラインミキサーに混合すべき液体を所定の比率で供給するための原料供給用ポンプとを組み合わせた連続処理式のもの等が、種々使用されている。
【0003】
しかし、前述の撹拌タンクを使用するバッチ処理式のものは、撹拌タンクの容量単位でしか処理ができず、処理量を任意量に調整することができないという不便があった。
また、撹拌タンクに原料の供給中は、混合・移送処理が中断するため、処理に時間がかかるという問題もあった。
【0004】
一方、ラインミキサーを利用する連続処理式のものは、処理量を任意量に調整することができ、しかも、混合・移送処理を中断することなく実行できるという長所があるが、ラインミキサー自体が液体相互を撹拌・混合するために一定以上の長さ寸法を必要とするため、装置のコンパクト化が難しいという問題があった。
また、液体相互の混合比率が、原料をラインミキサーに供給する各ポンプの吐出量によって設定されるため、混合比率の微調整が難しいという問題もあった。
【0005】
そこで、このような背景から、二つの吸込口及び一つの吐出口を有すると共に、前記各吸込口の開口面積を変更して移送比率を変更可能な調節弁を備えた内接形歯車ポンプを使用した液混合装置が開発された。
この液混合装置は、前記内接形歯車ポンプの各吸込口に、それぞれ、原料液体を貯留した原料タンクを接続したもので、前記内接形歯車ポンプを連続稼働することにより連続的に混合・移送を行うことができ、ラインミキサーを使用した装置と比較してコンパクト化することができる。しかも、前記内接形歯車ポンプに供給される原料液相互の混合比率は、該内接形歯車ポンプに装備された調節弁によって、調整することができる。
【0006】
【発明が解決しようとする課題】
ところが、前述の内接形歯車ポンプを使用した従来の液混合装置は、前記調節弁が前記内接形歯車ポンプに外付けされた操作レバー等によって手動操作されるもので、各原料タンクにおけるサクションヘッドや各原料液の粘度を考慮して所定の混合比率が得られるように、運用前に、前記調節弁を操作することによって内接形歯車ポンプへの各原料液の流入量を調整している。
しかし、前記調節弁が手動操作であるがため、例えば、運用中に、原料タンク中の液面変化によるサクションヘッドの変動や温度等の影響による原料液の粘度変化によって、内接形歯車ポンプの各吸込口への原料液の流入比が変化し、それによって混合比率が変動する場合には、混合比率が不安定になって、混合精度の低下等の問題が生じる虞が有った。
【0007】
そこで、本発明の目的は上記課題を解消することにあり、複数液の混合・移送処理を連続的に実施できると同時に装置のコンパクト化にも適し、しかも、運用中に、原料液の混合比率や粘度に変動が生じた時には、調節弁の位置を自動調整して、混合比率を初期の適性値に修正することができて、混合比率の変動を防止し、高精度の混合・移送を行うことのできる液混合装置及び方法を提供することである。
【0008】
【課題を解決するための手段】
本発明の上記目的は、二つの吸込口及び一つの吐出口を有すると共に、前記各吸込口の開口面積を変更して移送比率を変更可能な調節弁を備えた内接形歯車ポンプと、
前記各吸込口側及び前記吐出口側の少なくとも二箇所に配設された流量検知手段と、
前記流量検知手段の検知信号に基づいて前記調節弁を調節し、複数液の移送比率を変更する制御手段とを備え、
複数液の移送・混合・移送比率の調節を行う液混合装置により達成される。
【0009】
また、本発明の上記目的は、二つの吸込口及び一つの吐出口を有すると共に、前記各吸込口の開口面積を変更して移送比率を変更可能な調節弁を備えた内接形歯車ポンプと、
前記吐出口側に配設された粘度検出手段と、
前記粘度検出手段の検知信号に基づいて前記調節弁を調節し、複数液の移送比率を変更する制御手段とを備え、
複数液の移送・混合・移送比率の調節を行う液混合装置によっても達成することができる。
【0010】
さらに、本発明の上記目的は、二つの吸込口及び一つの吐出口を有すると共に、前記各吸込口の開口面積を変更して移送比率を変更可能な調節弁を備えた内接形歯車ポンプにより、複数液の移送・混合・移送比率の調節を行う液混合方法において、
前記各吸込口側及び前記吐出口側の少なくとも二箇所に配設された流量検知手段の検知信号に基づいて前記調節弁を調節し、複数液の移送比率の調節を行うことを特徴とする液混合方法により達成される。
【0011】
そして、本発明の上記目的は、二つの吸込口及び一つの吐出口を有すると共に、前記各吸込口の開口面積を変更して移送比率を変更可能な調節弁を備えた内接形歯車ポンプにより、複数液の移送・混合・移送比率の調節を行う液混合方法において、
前記吐出口側に配設された粘度検出手段の検知信号に基づいて前記調節弁を調節し、所定粘度の混合液を得ることを特徴とする液混合方法によっても達成することができる。
【0012】
本発明の上記構成によれば、内接形歯車ポンプを利用する方式により該内接形歯車ポンプを連続稼働させることで、複数液の混合・移送処理を連続的に実施でき、前記内接形歯車ポンプの稼働を制御することで、処理量を任意量に調整することができる。
【0013】
そして、運用中に、原料タンク中の液面変化によるサクションヘッドの変動や温度等の影響による原料液の粘度変化によって、内接形歯車ポンプの各吸込口への原料液の流入比が変化した場合には、それらサクションヘッドの変動や原料液の粘度変化に基づく原料液の流入比の変化の発生が直ちに流量検知手段または粘度検出手段によって検知される。そして、これら検知手段の検知信号に基づいて内接形歯車ポンプの調節弁を操作する制御手段が、元の適性な混合比率を維持すべく前記調節弁の位置を自動調整する。
【0014】
【発明の実施の形態】
以下、図示実施形態により、本発明を説明する。
図1は、本発明に係る液混合装置の一実施形態における概略構成を示したものである。
本実施形態の液混合装置1は、図示のように、二つの吸込口3,4及び一つの吐出口6を有した内接形歯車ポンプ10と、原料液体12,13を貯留して前記内接形歯車ポンプ10の各吸込口3,4に接続されて各吸込口3,4に原料液体12,13を供給する二つの原料タンク15,16と、前記吸込口3側及び前記吐出口6側の二箇所に配設された流量検知手段18,19と、前記流量検知手段18,19の検知信号に基づいて前記内接形歯車ポンプ10の調節弁8の位置を調節して前記吸込口3,4からの液流入率(即ち、移送比率)を変更する制御手段21とを備えており、前記吸込口3,4に供給された原料液の移送・混合・移送比率の調節を行う。
【0015】
ここで、前記内接形歯車ポンプ10は、前記吸込口3,4及び吐出口6を有したポンプケーシング23と、リング状に装備される歯25a間に原料液が挿通可能なスリット25bが形成されて前記ポンプケーシング23内に回転自在に支持された外転ギヤ25と、この外転ギヤ25の内側で偏心した位置で外転ギヤ25に噛合するピニオンギヤ27と、前記ポンプケーシング23に固定装備されて前記ピニオンギヤ27を前記外転ギヤ25に対して偏心した位置に保つ断面三日月状の支持板29と、前記外転ギヤ25の外周に沿って移動可能に装備されて吸込口3,4の開口面積S1 ,S2 を変更することで移送比率を変更可能な調節弁8と、前記ピニオンギヤ27を回転駆動するモータ(図示略)とを備えた構成をなしており、前記ピニオンギヤ27の回転に伴って前記ピニオンギヤ27と外転ギヤ25との噛み合い量が変化することを利用して、吸込口3,4に供給された各原料液体12,13の吸引、撹拌・混合、移送を行う。
【0016】
前記原料タンク15内の原料液体12を吸込口3に導く管路31には、前記流量検知手段18よりも上流側に位置して、開閉弁33が装備されている。
また、前記原料タンク16内の原料液体13を吸込口4に導く管路35にも、該管路35を開閉する開閉弁36が装備されている。
そして、前記吐出口6に接続される混合液排出管路37には、前記流量検知手段19と、前記混合液排出管路37を開閉する開閉弁38が装備されている。この混合液排出管路37は、混合液に対して次のプロセス処理を実施する次プロセス装置39に接続されている。
【0017】
前記流量検知手段18,19は、本実施形態の場合は、いずれも、各管路における流量を非接触で検出して前記制御手段21に出力する電磁流量計であるが、流量が液圧に比例することを利用すれば、流量計の代りに圧力計を使用するようにしてもよい。
【0018】
前記制御手段21は、モータやソレノイド等をアクチュエータとして使って、前記調節弁8を無段階に移動調整すると共に、前記ピニオンギヤ27の回転数を制御する。
また、この制御手段21は、図示略の入力手段(制御手段21に接続されているキーボードなど)からの指示で、前記調節弁8の位置を任意位置に初期設定することができる。そして、内接形歯車ポンプ10が稼働されると、その初期に前記流量検知手段18,19における検出値を記憶し、以後の運用中は、前記流量検知手段18,19における検出値が一定値(一定範囲)に維持されるように、前記流量検知手段18,19の検知信号に基づいて、前記調節弁8の位置を自動調節すると同時に、前記外転ギヤ25の回転数を制御する。
【0019】
具体的には、前記制御手段21は、図2に示す如く、調節弁8の位置および外転ギヤ25の回転を調整する。
前記内接形歯車ポンプ10の稼働前に、原料液体12,13の流量A,B(初期設定値)と、前記吐出口6における流量Q(初期設定値)とを記憶する(ステップ101)。
次いで、前述の各流量検知手段18,19からの検出値に基づいて、実際の前記吸込口3への流入量qaと前記吐出口6からの吐出量qを検知し、これらの検出値から、A/Bと、q/(q−qa)との大小関係を比較し(ステップ102)、その判断結果に応じて、A/Bがq/(q−qa)よりも小さければ前記調節弁8を吸込口3側に移動させて、吸込口3の開口面積を少なくすることによって、相対的に、前記吸込口4からの流入量を増大させて、流量比率の変動を修正する(ステップ103,104)。
同様に、A/Bがq/(q−qa)よりも大きい時には、前記調節弁8を吸込口4側に移動させて、吸込口4の開口面積を少なくすることによって、相対的に、前記吸込口4からの流入量を減少させて、流量比率の変動を修正する(ステップ110,111)。
また、A/Bがq/(q−qa)に等しい時には、前記調節弁8の位置は、そのままに保って、現状の維持を図る(ステップ120)。
【0020】
次いで、前記初期設定による吐出量Qと、稼働後の流量検知手段19によって検出された実際の吐出量qとの大小を比較して(ステップ130)、Q<qであれば前記外転ギヤ25の回転を下げることで増大した流量を低減させ(ステップ131,132)、一方、Q>qであれば前記外転ギヤ25の回転を上げることで減少した流量の回復を図り(ステップ140,141)、Q=qであれば吐出量の変化がないため前記外転ギヤ25の回転をそのままに保って、現状の維持を図る(ステップ150)。
【0021】
そして、以上の流量比率の修正及び吐出量の修正が終了したら、ステップ102に戻って、再び同様の処理を繰り返す。
【0022】
上述の液混合装置1では、内接形歯車ポンプ10を利用する方式により該内接形歯車ポンプ10を連続稼働させることで、複数液の混合・移送処理を連続的に実施でき、前記内接形歯車ポンプ10の稼働を制御することで、処理量を任意量に調整することができる。
また、内接形歯車ポンプ10を利用する方式のため、従来のラインミキサーを利用する方式のものと比較すると、装置をコンパクト化することができる。
【0023】
そして、運用中に、原料タンク15,16中の液面変化によるサクションヘッドの変動や温度等の影響による原料液12,13の粘度変化によって、内接形歯車ポンプ10の各吸込口3,4への原料液12,13の流入比が変化した場合には、それらの原料液12,13の流入比の変化の発生が直ちに流量検知手段18,19によって検知され、これら検知手段18,19の検知信号に基づいて内接形歯車ポンプ10の調節弁8を操作する制御手段21が、元の適性な混合比率を維持すべく前記調節弁8の位置を自動調整する。
したがって、運用中の混合比率の変動を防止し、高精度の混合・移送を行うことができる。
【0024】
なお、前記流量検知手段18,19の装備位置は、上述の実施形態の場合に限定するものではない。前記二つの吸込口3,4側及び吐出口6側の内の少なくとも二箇所の流量を検知することができれば、混合比率の変動を検知することができ、その検知信号に基づく前記調節弁8の制御や外転ギヤ25の回転数の制御によって、混合比率や吐出量を初期の設定値に戻すことが可能である。
したがって、図3(a)に示すように、内接形歯車ポンプ10の吸込口4側と吐出口6側との二箇所に流量検知手段41を装備するようにしてもよく、また、図3(b)に示すように、内接形歯車ポンプ10の二つの吸込口3,4側のそれぞれに流量検知手段41を装備するようにしてもよく、また、図3(c)に示すように、二つの吸込口3,4側および吐出口6側の全てに流量検知手段41を装備するようにしてもよい。
【0025】
図3(a)の構成とした場合の制御手段21における処理を図4に、図3(b)の構成とした場合の制御手段21における処理を図5に、図3(c)の構成とした場合の制御手段21における処理を図6に、それぞれ示す。
【0026】
図3(a)のように、吸込口4側と吐出口6側とに流量検知手段41を装備した場合には、上記実施形態の場合と同様であるが図4に示すように、前記内接形歯車ポンプ10の稼働前に、原料液体12,13の流量A,B(初期設定値)と、前記吐出口6における流量Q(初期設定値)とを記憶する(ステップ201)。
次いで、前述の各流量検知手段41,41からの検出値に基づいて、実際の前記吸込口4への流入量qbと前記吐出口6からの吐出量qを検知し、これらの検出値から、A/Bと、(q−qb)/qとの大小関係を比較し(ステップ202)、その判断結果に応じて、A/Bが(q−qb)/qよりも小さければ前記調節弁8を吸込口3側に移動させて、吸込口3の開口面積を少なくすることによって、相対的に、前記吸込口4からの流入量を増大させて、流量比率の変動を修正する(ステップ203,204)。
同様に、A/Bが(q−qb)/qよりも大きい時には、前記調節弁8を吸込口4側に移動させて、吸込口4の開口面積を少なくすることによって、相対的に、前記吸込口4からの流入量を減少させて、流量比率の変動を修正する(ステップ210,211)。
また、A/Bが(q−qb)/qに等しい時には、前記調節弁8の位置は、そのままに保って、現状の維持を図る(ステップ220)。
【0027】
次いで、前記初期設定による吐出量Qと、稼働後の吐出口6側の流量検知手段41によって検出された実際の吐出量qとの大小を比較して(ステップ230)、Q<qであれば前記外転ギヤ25の回転を下げることで増大した流量を低減させ(ステップ231,232)、一方、Q>qであれば前記外転ギヤ25の回転を上げることで減少した流量の回復を図り(ステップ240,241)、Q=qであれば吐出量の変化がないため前記外転ギヤ25の回転をそのままに保って、現状の維持を図る(ステップ250)。
そして、以上の流量比率の修正及び吐出量の修正が終了したら、ステップ202に戻って、再び同様の処理を繰り返す。
【0028】
図3(b)のように、二つの吸込口3,4のそれぞれに流量検知手段41を装備した場合には、図5に示すように、前記内接形歯車ポンプ10の稼働前に、原料液体12,13の流量A,B(初期設定値)と、前記吐出口6における流量Q(初期設定値)とを記憶する(ステップ301)。
次いで、前述の各流量検知手段41,41からの検出値に基づいて、二つの吸込口3,4への実際の流入量qa,qb及び吐出量qを検知し、これらの検出値から、A/Bと、qa/qbとの大小関係を比較し(ステップ302)、その判断結果に応じて、A/Bがqa/qbよりも小さければ前記調節弁8を吸込口3側に移動させて、吸込口3の開口面積を少なくすることによって、相対的に、前記吸込口4からの流入量を増大させて、流量比率の変動を修正する(ステップ303,304)。
同様に、A/Bがqa/qbよりも大きい時には、前記調節弁8を吸込口4側に移動させて、吸込口4の開口面積を少なくすることによって、相対的に、前記吸込口4からの流入量を減少させて、流量比率の変動を修正する(ステップ310,311)。
また、A/Bがqa/qbに等しい時には、前記調節弁8の位置は、そのままに保って、現状の維持を図る(ステップ320)。
【0029】
次いで、前記初期設定による吐出量Qと、稼働後の吐出口6側の流量検知手段41によって検出された実際の吐出量qとの大小を比較して(ステップ330)、Q<qであれば前記外転ギヤ25の回転を下げることで増大した流量を低減させ(ステップ331,332)、一方、Q>qであれば前記外転ギヤ25の回転を上げることで減少した流量の回復を図り(ステップ340,341)、Q=qであれば吐出量の変化がないため前記外転ギヤ25の回転をそのままに保って、現状の維持を図る(ステップ350)。
そして、以上の流量比率の修正及び吐出量の修正が終了したら、ステップ302に戻って、再び同様の処理を繰り返す。
【0030】
図3(c)のように、二つの吸込口3,4と吐出口6とのそれぞれに流量検知手段41を装備した場合には、制御手段21における処理としては、図3(b)の場合と同様でよい。ただし、吐出口6からの吐出量qが41によって直接検出されるため、吸込口3側に配置した流量検知手段41の検出値qaと吸込口4側に配置した流量検知手段41の検出値qbとの和を演算処理することで吐出量qを求める必要がなくなる。
【0031】
また、混合させるべき原料液体12,13が、互いに粘度の異なる液体の場合、混合比率が変動した場合には、それによって吐出される混合液の粘度が変化する。従って、図6に示すように、前述の流量検知手段の代りに粘度検知手段43を吐出口6側に装備し、該粘度検知手段43の検知信号に基づいて前記制御手段21が調節弁8の位置や外転ギヤ25の回転数を制御する構成とすることで、運用中の混合比率の変動を防止し、高精度の混合・移送を行うことができる。
なお、粘度検知手段43としては、吐出口6から吐出される混合液の粘度を直接測定可能なインライン粘度計を用いることが好ましい。
【0032】
なお、前述の図6のように内接形歯車ポンプ10の吐出口6側に粘度検知手段43を装備した場合には、前記制御手段21における制御処理は、図7のようになる。ただし、この例では、吸込口3に流入する原料液体12の方が、吸込口4に流入される原料液体13よりも粘度が大きいものとする。
前記内接形歯車ポンプ10の稼働前に、所望する混合液の粘度ηを初期値として記憶する(ステップ401)。
次いで、稼働後に粘度検知手段43が逐次検知する粘度ηcと、初期値ηとの大小関係を比較し(ステップ402)、その判断結果に応じて、ηがηcよりも小さければ、粘度の高い原料液体12の流入割合が増えたことを意味しているため、前記調節弁8を吸込口3側に移動させて吸込口3の開口面積を少なくすることによって、相対的に、前記吸込口4からの流入量を増大させて、粘度の変動を修正する(ステップ403,404)。
一方、ηがηcよりも大きい時には、吸込口4側の流入量が増えたことを意味するため、前記調節弁8を吸込口4側に移動させて、吸込口4の開口面積を少なくすることによって、相対的に、前記吸込口4からの流入量を減少させて、粘度の変動を修正する(ステップ410,411)。
また、ηがηcに等しい時には、前記調節弁8の位置は、そのままに保って、現状の維持を図り(ステップ420)、ステータ402に戻って以上の処理を繰り返す。
【0033】
このように、前記内接形歯車ポンプ10の調節弁8の位置を自動制御することで、混合液の粘度の変動をも防止することができる。
【0034】
なお、上述の実施形態は、いずれも、内接形歯車ポンプ10が一つで、二つの原料液を混合する場合を示したが、本発明の液混合装置及び方法は、前述の実施形態の液混合装置1を多段に接続して、三種以上の原料液を所望の比率で混合・移送するようにしてもよい。
【0035】
【発明の効果】
本発明の液混合装置及び方法によれば、内接形歯車ポンプを利用する方式で、該内接形歯車ポンプを連続稼働させることにより、複数液の混合・移送処理を連続的に実施でき、前記内接形歯車ポンプの稼働を制御することで、処理量を任意量に調整することができる。
また、内接形歯車ポンプを利用する方式のため、従来のラインミキサーを利用する方式のものと比較すると、装置をコンパクト化することができる。
そして、運用中に、原料タンク中の液面変化によるサクションヘッドの変動や温度等の影響による原料液の粘度変化によって、内接形歯車ポンプの各吸込口への原料液の流入比が変化した場合には、それらのサクションヘッドの変動や原料液の粘度変化に基づく原料液の流入比の変化の発生は直ちに流量検知手段または粘度検出手段によって検知され、これらの検知手段の検知信号に基づいて内接形歯車ポンプの調節弁を操作する制御手段が、元の適性な混合比率を維持すべく前記調節弁の位置を自動調整する。
したがって、運用中の混合比率の変動を防止し、高精度の混合・移送を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に基づく液混合装置の概略構成図である。
【図2】図1に示した液混合装置の動作説明図である。
【図3】本発明に係る液混合装置における流量検知手段の装備位置例の説明図である。
【図4】図3(a)に示した構成の場合の動作説明図である。
【図5】図3(b)に示した構成の場合の動作説明図である。
【図6】本発明の他の実施形態に基づく液混合装置の概略構成図である。
【図7】図6に示した構成の場合の動作説明図である。
【符号の説明】
1 液混合装置
3,4 吸込口
6 吐出口
8 調節弁
10 内接形歯車ポンプ
12,13 原料液体
15,16 原料タンク
18,19,41 流量検知手段
21 制御手段
43 粘度検知手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid mixing apparatus and method for continuously mixing and transferring a plurality of liquids at a desired ratio in various industries such as food industry, chemical industry, medical and agrochemical industry, and petrochemical industry.
[0002]
[Prior art]
Conventionally, as a liquid mixing apparatus for mixing and transferring a plurality of liquids, a stirring tank that stirs and mixes a certain amount of liquids supplied at a predetermined ratio, and a liquid mixture processed in the stirring tank is used in the next process. A batch processing type combined with a transfer pump for transfer, or a line mixer that pumps the supplied liquid while stirring and mixing, and for supplying the liquid to be mixed to the line mixer at a predetermined ratio A continuous processing type combined with a raw material supply pump is used in various ways.
[0003]
However, the batch processing type using the agitation tank described above can be processed only in units of the capacity of the agitation tank, and there is an inconvenience that the processing amount cannot be adjusted to an arbitrary amount.
In addition, the mixing / transfer process is interrupted while the raw material is being supplied to the agitation tank.
[0004]
On the other hand, the continuous processing type using a line mixer has the advantage that the processing amount can be adjusted to an arbitrary amount and can be executed without interruption of the mixing / transfer processing. However, the line mixer itself is liquid. There is a problem that it is difficult to make the apparatus compact because it requires a certain length or more in order to stir and mix each other.
In addition, since the mixing ratio between the liquids is set by the discharge amount of each pump that supplies the raw material to the line mixer, there is also a problem that fine adjustment of the mixing ratio is difficult.
[0005]
Therefore, from such a background, an internal gear pump having two suction ports and one discharge port and having a control valve capable of changing the transfer ratio by changing the opening area of each suction port is used. A liquid mixing device was developed.
In this liquid mixing device, a raw material tank storing raw material liquid is connected to each suction port of the inscribed gear pump, and continuously mixed and mixed by continuously operating the inscribed gear pump. Transfer can be performed, and the apparatus can be made compact as compared with an apparatus using a line mixer. Moreover, the mixing ratio of the raw material liquids supplied to the inscribed gear pump can be adjusted by a control valve provided in the inscribed gear pump.
[0006]
[Problems to be solved by the invention]
However, in the conventional liquid mixing apparatus using the above-described internal gear pump, the control valve is manually operated by an operation lever or the like externally attached to the internal gear pump. Before operation, adjust the inflow amount of each raw material liquid to the internal gear pump by operating the control valve so that a predetermined mixing ratio can be obtained in consideration of the viscosity of the head and each raw material liquid. Yes.
However, since the control valve is manually operated, for example, during operation, the internal gear pump may be affected by changes in the viscosity of the raw material liquid due to fluctuations in the suction head due to changes in the liquid level in the raw material tank or temperature. When the inflow ratio of the raw material liquid to each suction port changes and the mixing ratio fluctuates accordingly, the mixing ratio becomes unstable, and there is a possibility that problems such as a decrease in mixing accuracy may occur.
[0007]
Therefore, an object of the present invention is to eliminate the above-mentioned problems, and it is possible to continuously carry out mixing / transfer processing of a plurality of liquids and at the same time is suitable for downsizing of the apparatus, and further, during operation, the mixing ratio of raw material liquids When the viscosity changes, the position of the control valve can be automatically adjusted to correct the mixing ratio to the initial appropriate value, preventing the mixing ratio from changing and performing high-precision mixing / transfer. It is an object to provide a liquid mixing apparatus and method capable of performing the above.
[0008]
[Means for Solving the Problems]
The above-mentioned object of the present invention has two suction ports and one discharge port, and an internal gear pump provided with an adjustment valve capable of changing the transfer ratio by changing the opening area of each suction port,
Flow rate detection means disposed in at least two places on each of the suction port side and the discharge port side;
A control means for adjusting the control valve based on a detection signal of the flow rate detection means and changing a transfer ratio of a plurality of liquids;
This is achieved by a liquid mixing apparatus that controls the transfer, mixing, and transfer ratio of a plurality of liquids.
[0009]
Further, the above object of the present invention is to provide an internal gear pump having two suction ports and one discharge port, and having an adjustment valve capable of changing the transfer ratio by changing the opening area of each suction port. ,
Viscosity detection means disposed on the discharge port side;
A control means for adjusting the control valve based on a detection signal of the viscosity detection means and changing a transfer ratio of a plurality of liquids;
It can also be achieved by a liquid mixing apparatus that adjusts the transfer / mixing / transfer ratio of a plurality of liquids.
[0010]
Furthermore, the above object of the present invention is to provide an internal gear pump having two suction ports and one discharge port, and having an adjustment valve capable of changing the transfer ratio by changing the opening area of each suction port. In the liquid mixing method that adjusts the transfer / mixing / transfer ratio of multiple liquids,
A liquid characterized in that the control valve is adjusted based on detection signals of flow rate detection means disposed at least at two locations on each of the suction port side and the discharge port side to adjust a transfer ratio of a plurality of liquids. This is achieved by a mixing method.
[0011]
The above object of the present invention is to provide an internal gear pump having two suction ports and one discharge port, and having an adjustment valve capable of changing the transfer ratio by changing the opening area of each suction port. In the liquid mixing method that adjusts the transfer / mixing / transfer ratio of multiple liquids,
This can also be achieved by a liquid mixing method characterized in that the control valve is adjusted based on a detection signal from a viscosity detecting means disposed on the discharge port side to obtain a liquid mixture having a predetermined viscosity.
[0012]
According to the above configuration of the present invention, by continuously operating the inscribed gear pump by a method using the inscribed gear pump, the mixing / transfer process of a plurality of liquids can be continuously performed. By controlling the operation of the gear pump, the processing amount can be adjusted to an arbitrary amount.
[0013]
During operation, the flow rate of the raw material liquid into each suction port of the internal gear pump changed due to the change of the viscosity of the raw material liquid due to the fluctuation of the suction head due to the liquid level change in the raw material tank and the temperature. In such a case, the occurrence of a change in the inflow ratio of the raw material liquid based on the variation of the suction heads or the change in the viscosity of the raw material liquid is immediately detected by the flow rate detecting means or the viscosity detecting means. Based on the detection signals of these detection means, the control means for operating the adjustment valve of the internal gear pump automatically adjusts the position of the adjustment valve so as to maintain the original appropriate mixing ratio.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to illustrated embodiments.
FIG. 1 shows a schematic configuration in an embodiment of a liquid mixing apparatus according to the present invention.
As shown in the figure, the liquid mixing apparatus 1 of the present embodiment stores an internal gear pump 10 having two suction ports 3 and 4 and one discharge port 6, and raw material liquids 12 and 13, and stores the internal liquid pump 12. Two raw material tanks 15 and 16 connected to the suction ports 3 and 4 of the contact gear pump 10 to supply the raw material liquids 12 and 13 to the suction ports 3 and 4, and the suction port 3 side and the discharge port 6. Flow rate detection means 18, 19 disposed at two locations on the side, and the position of the control valve 8 of the internal gear pump 10 based on the detection signals of the flow rate detection means 18, 19 to adjust the suction port And a control means 21 for changing the liquid inflow rate (that is, the transfer ratio) from 3 and 4, and adjusts the transfer / mixing / transfer ratio of the raw material liquid supplied to the suction ports 3 and 4.
[0015]
Here, in the inscribed gear pump 10, a slit 25b through which the raw material liquid can be inserted is formed between the pump casing 23 having the suction ports 3 and 4 and the discharge port 6 and the teeth 25a equipped in a ring shape. An abduction gear 25 that is rotatably supported in the pump casing 23, a pinion gear 27 that meshes with the abduction gear 25 at an eccentric position inside the abduction gear 25, and a fixed attachment to the pump casing 23. And a support plate 29 having a crescent cross section that keeps the pinion gear 27 in an eccentric position with respect to the outer rotation gear 25, and movably mounted along the outer periphery of the outer rotation gear 25. the opening area S 1, S 2 regulating valve 8 capable of changing a transfer ratio by changing the, and forms a structure in which a motor (not shown) for rotating the pinion gear 27, the pinion Utilizing the fact that the meshing amount of the pinion gear 27 and the outer rotation gear 25 changes with the rotation of the gear 27, the raw material liquids 12 and 13 supplied to the suction ports 3 and 4 are sucked, stirred and mixed, Transport.
[0016]
The conduit 31 that guides the raw material liquid 12 in the raw material tank 15 to the suction port 3 is provided with an opening / closing valve 33 located upstream of the flow rate detection means 18.
An opening / closing valve 36 for opening and closing the pipe 35 is also provided in the pipe 35 for guiding the raw material liquid 13 in the raw material tank 16 to the suction port 4.
The mixed liquid discharge pipe 37 connected to the discharge port 6 is equipped with the flow rate detecting means 19 and an opening / closing valve 38 for opening and closing the mixed liquid discharge pipe 37. The mixed solution discharge pipe 37 is connected to a next process device 39 that performs the next process on the mixed solution.
[0017]
In the case of this embodiment, the flow rate detection means 18 and 19 are both electromagnetic flowmeters that detect the flow rate in each pipe line in a non-contact manner and output the flow rate to the control means 21. If proportionality is used, a pressure gauge may be used instead of the flow meter.
[0018]
The control means 21 uses a motor, a solenoid, or the like as an actuator to move and adjust the adjusting valve 8 steplessly and to control the rotation speed of the pinion gear 27.
Further, the control means 21 can initialize the position of the control valve 8 to an arbitrary position by an instruction from an input means (not shown) (a keyboard connected to the control means 21). When the internal gear pump 10 is operated, the detection values in the flow rate detection means 18 and 19 are stored in the initial stage, and the detection values in the flow rate detection means 18 and 19 are constant during the subsequent operation. The position of the control valve 8 is automatically adjusted based on the detection signals of the flow rate detection means 18 and 19 so as to be maintained within a certain range, and at the same time, the rotational speed of the outer rotation gear 25 is controlled.
[0019]
Specifically, the control means 21 adjusts the position of the control valve 8 and the rotation of the outer rotation gear 25 as shown in FIG.
Before the operation of the internal gear pump 10, the flow rates A and B (initial setting values) of the raw material liquids 12 and 13 and the flow rate Q (initial setting value) at the discharge port 6 are stored (step 101).
Next, based on the detection values from the flow rate detection means 18 and 19, the actual inflow amount qa to the suction port 3 and the discharge amount q from the discharge port 6 are detected. From these detection values, The magnitude relationship between A / B and q / (q-qa) is compared (step 102). If A / B is smaller than q / (q-qa) according to the determination result, the control valve 8 Is moved to the suction port 3 side to reduce the opening area of the suction port 3, thereby relatively increasing the amount of inflow from the suction port 4 and correcting the fluctuation of the flow rate ratio (step 103, 104).
Similarly, when A / B is larger than q / (q-qa), the control valve 8 is moved to the suction port 4 side to reduce the opening area of the suction port 4, thereby relatively The flow rate ratio fluctuation is corrected by reducing the amount of inflow from the suction port 4 (steps 110 and 111).
When A / B is equal to q / (q-qa), the position of the control valve 8 is kept as it is to maintain the current state (step 120).
[0020]
Next, a comparison is made between the initial discharge amount Q and the actual discharge amount q detected by the flow rate detector 19 after operation (step 130). If Q <q, the outer rotation gear 25 is compared. The increased flow rate is reduced by lowering the rotation (steps 131 and 132). On the other hand, if Q> q, the reduced flow rate is recovered by increasing the rotation of the outer rotation gear 25 (steps 140 and 141). ), If Q = q, there is no change in the discharge amount, so that the rotation of the outer rotation gear 25 is kept as it is to maintain the current state (step 150).
[0021]
When the correction of the flow rate ratio and the correction of the discharge amount are completed, the process returns to step 102 and the same processing is repeated again.
[0022]
In the liquid mixing apparatus 1 described above, the inscribed gear pump 10 can be continuously operated by a method using the inscribed gear pump 10 to continuously perform mixing and transferring processes of a plurality of liquids. By controlling the operation of the shape gear pump 10, the processing amount can be adjusted to an arbitrary amount.
Moreover, since the system using the inscribed gear pump 10 is used, the apparatus can be made compact as compared with the system using the conventional line mixer.
[0023]
During operation, the suction ports 3, 4 of the internal gear pump 10 are affected by the viscosity of the raw material liquids 12, 13 due to fluctuations in the suction head due to changes in the liquid level in the raw material tanks 15, 16 and the influence of temperature. When the inflow ratio of the raw material liquids 12 and 13 changes, the occurrence of the change in the inflow ratio of the raw material liquids 12 and 13 is immediately detected by the flow rate detection means 18 and 19, and the detection means 18 and 19 Based on the detection signal, the control means 21 for operating the adjusting valve 8 of the internal gear pump 10 automatically adjusts the position of the adjusting valve 8 so as to maintain the original appropriate mixing ratio.
Therefore, fluctuation of the mixing ratio during operation can be prevented, and highly accurate mixing / transfer can be performed.
[0024]
In addition, the installation position of the said flow volume detection means 18 and 19 is not limited to the case of the above-mentioned embodiment. If the flow rate of at least two of the two suction ports 3 and 4 and the discharge port 6 can be detected, a change in the mixing ratio can be detected, and the control valve 8 based on the detection signal can be detected. It is possible to return the mixing ratio and the discharge amount to the initial set values by the control and the control of the rotation speed of the outer rotation gear 25.
Therefore, as shown in FIG. 3 (a), the flow rate detecting means 41 may be provided at two locations, that is, the suction port 4 side and the discharge port 6 side of the inscribed gear pump 10, and FIG. As shown in FIG. 3B, the flow rate detecting means 41 may be provided on each of the two suction ports 3 and 4 side of the inscribed gear pump 10, and as shown in FIG. The flow rate detection means 41 may be provided on all of the two suction ports 3 and 4 and the discharge port 6 side.
[0025]
FIG. 4 shows the processing in the control means 21 with the configuration of FIG. 3A, FIG. 5 shows the processing in the control means 21 with the configuration of FIG. 3B, and FIG. FIG. 6 shows the processing in the control means 21 in such a case.
[0026]
As shown in FIG. 3A, when the flow rate detecting means 41 is provided on the suction port 4 side and the discharge port 6 side, it is the same as in the above embodiment, but as shown in FIG. Before the operation of the tangential gear pump 10, the flow rates A and B (initial setting values) of the raw material liquids 12 and 13 and the flow rate Q (initial setting value) at the discharge port 6 are stored (step 201).
Next, based on the detection values from the respective flow rate detection means 41, 41, the actual inflow amount qb to the suction port 4 and the discharge amount q from the discharge port 6 are detected, and from these detection values, The magnitude relationship between A / B and (q−qb) / q is compared (step 202). If A / B is smaller than (q−qb) / q according to the determination result, the control valve 8 Is moved to the suction port 3 side to reduce the opening area of the suction port 3, thereby relatively increasing the amount of inflow from the suction port 4 and correcting the fluctuation of the flow rate ratio (step 203, 204).
Similarly, when A / B is larger than (q−qb) / q, the control valve 8 is moved to the suction port 4 side to reduce the opening area of the suction port 4, thereby relatively The amount of inflow from the suction port 4 is decreased to correct the fluctuation of the flow rate ratio (steps 210 and 211).
When A / B is equal to (q−qb) / q, the position of the control valve 8 is kept as it is to maintain the current state (step 220).
[0027]
Next, a comparison is made between the discharge amount Q by the initial setting and the actual discharge amount q detected by the flow rate detection means 41 on the discharge port 6 side after operation (step 230), and if Q <q. The increased flow rate is reduced by lowering the rotation of the outer rotation gear 25 (steps 231 and 232). On the other hand, if Q> q, the reduced flow rate is recovered by increasing the rotation of the outer rotation gear 25. (Steps 240 and 241) If Q = q, there is no change in the discharge amount, so that the rotation of the outer rotation gear 25 is kept as it is and the current state is maintained (Step 250).
When the correction of the flow rate ratio and the correction of the discharge amount are completed, the process returns to step 202 and the same processing is repeated again.
[0028]
As shown in FIG. 3B, when the flow rate detecting means 41 is provided in each of the two suction ports 3 and 4, as shown in FIG. The flow rates A and B (initial setting values) of the liquids 12 and 13 and the flow rate Q (initial setting value) at the discharge port 6 are stored (step 301).
Next, based on the detection values from the flow rate detection means 41 and 41, the actual inflow amounts qa and qb and the discharge amount q to the two suction ports 3 and 4 are detected. From these detection values, A / B and qa / qb are compared in magnitude (step 302). If A / B is smaller than qa / qb, the control valve 8 is moved to the inlet 3 side according to the determination result. By reducing the opening area of the suction port 3, the amount of inflow from the suction port 4 is relatively increased, and the fluctuation of the flow rate ratio is corrected (steps 303 and 304).
Similarly, when A / B is larger than qa / qb, the control valve 8 is moved to the suction port 4 side to reduce the opening area of the suction port 4, so that the suction port 4 is relatively moved. The flow rate ratio fluctuation is corrected by reducing the inflow amount of the gas (steps 310 and 311).
When A / B is equal to qa / qb, the position of the control valve 8 is kept as it is to maintain the current state (step 320).
[0029]
Next, a comparison is made between the discharge amount Q by the initial setting and the actual discharge amount q detected by the flow rate detection means 41 on the discharge port 6 side after operation (step 330), and if Q <q. By reducing the rotation of the outer rotation gear 25, the increased flow rate is reduced (steps 331 and 332). On the other hand, if Q> q, the rotation of the outer rotation gear 25 is increased to recover the reduced flow rate. (Steps 340 and 341), if Q = q, there is no change in the discharge amount, so the rotation of the outer rotation gear 25 is kept as it is to maintain the current state (Step 350).
When the correction of the flow rate ratio and the correction of the discharge amount are completed, the process returns to step 302 and the same processing is repeated again.
[0030]
As shown in FIG. 3C, when the flow rate detection means 41 is provided in each of the two suction ports 3, 4 and the discharge port 6, the processing in the control means 21 is the case of FIG. Same as above. However, since the discharge amount q from the discharge port 6 is directly detected by 41, the detection value qa of the flow rate detection means 41 arranged on the suction port 3 side and the detection value qb of the flow rate detection means 41 arranged on the suction port 4 side. It is no longer necessary to obtain the discharge amount q by calculating the sum of.
[0031]
Further, when the raw material liquids 12 and 13 to be mixed are liquids having different viscosities, when the mixing ratio varies, the viscosity of the discharged mixed liquid changes accordingly. Therefore, as shown in FIG. 6, instead of the flow rate detecting means described above, a viscosity detecting means 43 is provided on the discharge port 6 side, and the control means 21 controls the control valve 8 based on the detection signal of the viscosity detecting means 43. By adopting a configuration in which the position and the rotation speed of the outer rotation gear 25 are controlled, fluctuations in the mixing ratio during operation can be prevented, and high-precision mixing / transfer can be performed.
As the viscosity detecting means 43, it is preferable to use an in-line viscometer that can directly measure the viscosity of the liquid mixture discharged from the discharge port 6.
[0032]
When the viscosity detecting means 43 is provided on the discharge port 6 side of the internal gear pump 10 as shown in FIG. 6, the control processing in the control means 21 is as shown in FIG. However, in this example, it is assumed that the raw material liquid 12 flowing into the suction port 3 has a higher viscosity than the raw material liquid 13 flowing into the suction port 4.
Before operating the internal gear pump 10, the desired viscosity η of the mixed liquid is stored as an initial value (step 401).
Next, the viscosity ηc sequentially detected by the viscosity detecting means 43 after operation and the magnitude relationship between the initial value η are compared (step 402). If η is smaller than ηc according to the determination result, the raw material having a high viscosity is used. This means that the inflow ratio of the liquid 12 has increased, so that the adjustment valve 8 is moved to the suction port 3 side to reduce the opening area of the suction port 3 so that the suction port 4 is relatively The viscosity fluctuation is corrected by increasing the inflow amount (steps 403 and 404).
On the other hand, when η is larger than ηc, it means that the amount of inflow on the suction port 4 side has increased. Therefore, the adjustment valve 8 is moved to the suction port 4 side to reduce the opening area of the suction port 4. Accordingly, the amount of inflow from the suction port 4 is relatively decreased to correct the viscosity variation (steps 410 and 411).
When η is equal to ηc, the position of the control valve 8 is kept as it is, the current state is maintained (step 420), the process returns to the stator 402 and the above processing is repeated.
[0033]
In this way, by automatically controlling the position of the control valve 8 of the inscribed gear pump 10, fluctuations in the viscosity of the mixed liquid can be prevented.
[0034]
In addition, although all the above-mentioned embodiments showed the case where there was one inscribed gear pump 10 and two raw material liquids were mixed, the liquid mixing apparatus and method of the present invention are the same as those in the above-described embodiments. The liquid mixing devices 1 may be connected in multiple stages, and three or more kinds of raw material liquids may be mixed and transferred at a desired ratio.
[0035]
【The invention's effect】
According to the liquid mixing apparatus and method of the present invention, by continuously operating the inscribed gear pump in a system that uses an inscribed gear pump, mixing and transferring processes of a plurality of liquids can be performed continuously. By controlling the operation of the inscribed gear pump, the processing amount can be adjusted to an arbitrary amount.
In addition, since the system uses an inscribed gear pump, the apparatus can be made compact as compared with a system using a conventional line mixer.
During operation, the flow rate of the raw material liquid into each suction port of the internal gear pump changed due to the change of the viscosity of the raw material liquid due to the fluctuation of the suction head due to the liquid level change in the raw material tank and the temperature. In this case, the occurrence of the change in the inflow ratio of the raw material liquid based on the fluctuation of the suction heads or the change in the viscosity of the raw material liquid is immediately detected by the flow rate detecting means or the viscosity detecting means, and based on the detection signals of these detecting means. Control means for operating the control valve of the internal gear pump automatically adjusts the position of the control valve to maintain the original suitable mixing ratio.
Therefore, fluctuation of the mixing ratio during operation can be prevented, and highly accurate mixing / transfer can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a liquid mixing apparatus according to an embodiment of the present invention.
FIG. 2 is an operation explanatory diagram of the liquid mixing apparatus shown in FIG.
FIG. 3 is an explanatory diagram of an example of an installation position of a flow rate detection unit in the liquid mixing apparatus according to the present invention.
4 is an operation explanatory diagram in the case of the configuration shown in FIG.
FIG. 5 is an operation explanatory diagram in the case of the configuration shown in FIG.
FIG. 6 is a schematic configuration diagram of a liquid mixing apparatus according to another embodiment of the present invention.
7 is an operation explanatory diagram for the configuration shown in FIG. 6. FIG.
[Explanation of symbols]
1 Liquid Mixing Device 3, 4 Suction Port 6 Discharge Port 8 Control Valve 10 Inscribed Gear Pump 12, 13 Raw Material Liquid 15, 16 Raw Material Tank 18, 19, 41 Flow Rate Detection Unit 21 Control Unit 43 Viscosity Detection Unit

Claims (4)

二つの吸込口及び一つの吐出口を有すると共に、前記各吸込口の開口面積を変更して移送比率を変更可能な調節弁を備えた内接形歯車ポンプと、
前記各吸込口側及び前記吐出口側の少なくとも二箇所に配設された流量検知手段と、
前記流量検知手段の検知信号に基づいて前記調節弁を調節し、複数液の移送比率を変更する制御手段とを備え、
複数液の移送・混合・移送比率の調節を行う液混合装置。
An internal gear pump having two suction ports and one discharge port, and having an adjustment valve capable of changing the transfer ratio by changing the opening area of each suction port;
Flow rate detection means disposed in at least two places on each of the suction port side and the discharge port side;
A control means for adjusting the control valve based on a detection signal of the flow rate detection means and changing a transfer ratio of a plurality of liquids;
Liquid mixing device that controls the transfer, mixing, and transfer ratio of multiple liquids.
二つの吸込口及び一つの吐出口を有すると共に、前記各吸込口の開口面積を変更して移送比率を変更可能な調節弁を備えた内接形歯車ポンプと、
前記吐出口側に配設された粘度検出手段と、
前記粘度検出手段の検知信号に基づいて前記調節弁を調節し、複数液の移送比率を変更する制御手段とを備え、
複数液の移送・混合・移送比率の調節を行う液混合装置。
An internal gear pump having two suction ports and one discharge port, and having an adjustment valve capable of changing the transfer ratio by changing the opening area of each suction port;
Viscosity detection means disposed on the discharge port side;
A control means for adjusting the control valve based on a detection signal of the viscosity detection means and changing a transfer ratio of a plurality of liquids;
Liquid mixing device that controls the transfer, mixing, and transfer ratio of multiple liquids.
二つの吸込口及び一つの吐出口を有すると共に、前記各吸込口の開口面積を変更して移送比率を変更可能な調節弁を備えた内接形歯車ポンプにより、複数液の移送・混合・移送比率の調節を行う液混合方法において、
前記各吸込口側及び前記吐出口側の少なくとも二箇所に配設された流量検知手段の検知信号に基づいて前記調節弁を調節し、複数液の移送比率の調節を行うことを特徴とする液混合方法。
Transfer, mixing, and transfer of multiple liquids by an internal gear pump that has two suction ports and one discharge port, and has an adjustment valve that can change the transfer ratio by changing the opening area of each suction port. In the liquid mixing method for adjusting the ratio,
A liquid characterized in that the control valve is adjusted based on detection signals of flow rate detection means disposed at least at two locations on each of the suction port side and the discharge port side to adjust a transfer ratio of a plurality of liquids. Mixing method.
二つの吸込口及び一つの吐出口を有すると共に、前記各吸込口の開口面積を変更して移送比率を変更可能な調節弁を備えた内接形歯車ポンプにより、複数液の移送・混合・移送比率の調節を行う液混合方法において、
前記吐出口側に配設された粘度検出手段の検知信号に基づいて前記調節弁を調節し、所定粘度の混合液を得ることを特徴とする液混合方法。
Transfer, mixing, and transfer of multiple liquids by an internal gear pump that has two suction ports and one discharge port, and has an adjustment valve that can change the transfer ratio by changing the opening area of each suction port. In the liquid mixing method for adjusting the ratio,
A liquid mixing method characterized in that the control valve is adjusted based on a detection signal of a viscosity detecting means disposed on the discharge port side to obtain a liquid mixture having a predetermined viscosity.
JP08535896A 1996-04-08 1996-04-08 Liquid mixing apparatus and method Expired - Lifetime JP3976813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08535896A JP3976813B2 (en) 1996-04-08 1996-04-08 Liquid mixing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08535896A JP3976813B2 (en) 1996-04-08 1996-04-08 Liquid mixing apparatus and method

Publications (2)

Publication Number Publication Date
JPH09271654A JPH09271654A (en) 1997-10-21
JP3976813B2 true JP3976813B2 (en) 2007-09-19

Family

ID=13856493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08535896A Expired - Lifetime JP3976813B2 (en) 1996-04-08 1996-04-08 Liquid mixing apparatus and method

Country Status (1)

Country Link
JP (1) JP3976813B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018283A1 (en) * 2004-04-15 2005-11-03 Wacker-Chemie Gmbh Process for the continuous production of silicone emulsions
DE502004006865D1 (en) * 2004-12-23 2008-05-29 Kinematica Ag Device for dispersing a solid, liquid or gaseous substance in a liquid
DE102010046054B4 (en) 2010-09-22 2012-05-31 Heraeus Medical Gmbh Synchronized discharge device

Also Published As

Publication number Publication date
JPH09271654A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
KR100837673B1 (en) Chemical solution feeding apparatus and method for preparing slurry
KR0119116B1 (en) Apparatus for controlling a developing solution
CN101288034A (en) Control system for and method of combining materials
US11396083B2 (en) Polishing liquid supply device
JP3976813B2 (en) Liquid mixing apparatus and method
EP0623842B1 (en) Photographic processing apparatus
JPH10337580A (en) Ozone water generating device
US20030105536A1 (en) Open and closed loop flow control system and method
JPH0929147A (en) Paint feeder
JPH01281133A (en) Control device for mixing ratio
JPH1043572A (en) Raw material mixing device and production of mixed raw material
JPH0230755B2 (en) ENSOYOKYURYOSOKUTEISOCHI
JPH0233898Y2 (en)
JP2004008844A (en) Multiliquid mixing apparatus
KR20040110489A (en) A chemical solution supply apparatus in use the process of fabricating semiconductor device
JPH01199123A (en) Continuous precise weighing and liquid supply apparatus
JPH0679717B2 (en) Return sludge amount control device
JP2022176057A (en) Chemical liquid supply apparatus and chemical liquid supply method
JPH11148294A (en) Sludge regulating device
JPS5843107B2 (en) Dialysate diluter
JPH058620U (en) Blend direct shipment control device
JPS6136579A (en) Control device for mixing hot and cold water
JPH05285436A (en) Apparatus for feeding die coating paint
JPH0787951A (en) Yeast feed system
JPH054699A (en) Oil supply apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150