JP3975560B2 - Method for recovering nickel from nitric hydrofluoric acid pickling waste liquor - Google Patents

Method for recovering nickel from nitric hydrofluoric acid pickling waste liquor Download PDF

Info

Publication number
JP3975560B2
JP3975560B2 JP17467298A JP17467298A JP3975560B2 JP 3975560 B2 JP3975560 B2 JP 3975560B2 JP 17467298 A JP17467298 A JP 17467298A JP 17467298 A JP17467298 A JP 17467298A JP 3975560 B2 JP3975560 B2 JP 3975560B2
Authority
JP
Japan
Prior art keywords
nickel
separation step
precipitate
hydrofluoric acid
pickling waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17467298A
Other languages
Japanese (ja)
Other versions
JP2000008129A (en
Inventor
滋 木谷
勉 福村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17467298A priority Critical patent/JP3975560B2/en
Publication of JP2000008129A publication Critical patent/JP2000008129A/en
Application granted granted Critical
Publication of JP3975560B2 publication Critical patent/JP3975560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硝ふっ酸酸洗廃液からのニッケルの回収方法に関する。
【0002】
【従来の技術】
ステンレス鋼や鉄ニッケル合金(Fe−42%Ni、Fe−36%Ni)の板等の製造工程において、焼鈍等の熱処理によって生成したスケールを除去する目的で、硝ふっ酸(硝酸とふっ化水素酸の混酸)による酸洗が工業的に行われている。酸洗により鉄等の金属が酸洗液に溶け込んで酸洗能力が低下した場合、新しい酸を追加すればある程度酸洗能力は回復するが、金属濃度が高くなると回復能力が低下し十分な酸洗能力が得られなくなり、系外排出し廃液処理をすることになる。硝ふっ酸酸洗廃液の処理方法としては、水酸化カルシウム等のアルカリを添加して残存する遊離酸を中和し、生じた鉄等の水酸化物を沈降・ろ過分離する方法が一般的に行われている。この方法で、アルカリとして水酸化カルシウムを用いれば、鉄等が水酸化物として沈殿すると同時に液中のふっ素がふっ化カルシウムとして沈殿するので、金属とふっ素の両方を除去できる利点がある。
【0003】
このような水酸化物による沈殿分離法の問題点は、沈殿を分離した後の液に酸を添加して過剰のアルカリを中和する必要があることである。分離した水酸化物等の沈殿物(通常、廃酸スラジと呼ばれる)は多量のふっ素を含むため再利用ができず、産業廃棄物として埋め立て処分する必要がある。このため、環境汚染の危険性や処分場の確保が必要となる。このように、硝ふっ酸酸洗廃液をアルカリ処理する方法は有用資源の浪費が大きいばかりでなく、地球環境を汚染する原因となるので、廃酸中の遊離酸を回収して再利用する技術が研究されている。例えば、特開昭48−45491にはイオン交換樹脂を用いて酸洗廃液から酸を回収する方法および装置が開示され、特開昭52−76296には有機溶媒を用いて廃酸から酸を回収する方法が開示されている。さらに、特開昭52−101690にはイオン交換膜を用いた電気透析法と電解法を併用することにより、廃酸から酸と金属を回収する方法が開示されている。
【0004】
【発明が解決しようとする課題】
しかし、前記イオン交換樹脂法、有機溶媒法およびイオン交換膜法は、いずれも高コストな方法であり、実用的な方法とは言い難いのが実状である。
【0005】
本発明の目的は硝ふっ酸酸洗廃液中のニッケルを再利用可能な金属として低コストで回収する方法を提供することにある。
【0006】
【課題を解決するための手段】
電解槽などの高価な設備や有機溶媒などの特殊な溶媒を使用しない方法として、水素化ほう素ナトリウムによるニッケル還元法に注目した。しかし、高純度の金属ニッケルを硝ふっ酸酸洗廃液から得るには、以下の課題を解決する必要があった。すなわち、(1)共存する鉄やクロム等の分離をどのように効率よく行うか、(2)共存する硝酸イオン(NO3-)による水素化ほう素ナトリウムの酸化分解による劣化をどのように抑えるのか、(3)ニッケルの還元析出の効率をどのように実用レベルまで高められるか、という課題があった。
【0007】
本発明者等は、種々の方法を試験した結果、水酸化カルシウム等のアルカリを添加してpHを4.5〜6.5に調整し、生じた鉄およびクロム等の水酸化物の沈殿を除去した後、水素化ほう素ナトリウムを加えてpHを6.5〜10.5に調整し、析出したニッケルを分離することで、上記の(1)〜(3)の課題を解決できることを見い出した。
【0008】
本発明は、以上の知見に基づいてなされたもので、その要旨は「硝ふっ酸酸洗廃液にアルカリを添加してpHを4.5〜6.5に調整し、生じた水酸化物の沈殿を除去した後、水素化ほう素ナトリウムを加えてpHを6.5〜10.5としてニッケルを析出分離することを特徴とするニッケル、並びに、鉄、クロム、及びマンガンからなる群から選ばれる1種以上を含有する硝ふっ酸酸洗廃液からのニッケルの回収方法。」である。
【0009】
【発明の実施の形態】
本発明は、(1) 硝ふっ酸酸洗廃液にアルカリを添加してpHを4.5〜6.5に調整し、生成した沈殿物を沈降・ろ過分離する工程、(2) 沈殿物を分離した溶液のpHを水素化ほう素ナトリウムを添加して6.5〜10.5に調整する工程、(3) 生成したニッケルの析出物を分離する工程を順次行うことによって実施できる。
【0010】
上記(1) の工程のpHの調整は、水酸化カルシウムの水溶液を添加してpHを4.5〜6.5に調整する。
【0011】
pHを4.5〜6.5にする理由は、pHが4.5未満であると廃液中のクロムの一部が水酸化物として沈殿せず、二次分離工程で沈殿するために回収したニッケルの純度が低下するためであり、pHが6.5を超えるとニッケルの一部が水酸化物として沈殿し、ニッケルの回収率が低下するからである。好ましい範囲は5.0 〜6.0である。
【0012】
使用する水酸化カルシウムの濃度は特に限定されるものではないが、濃度が薄いほど処理液の量が多くなって容量の大きい反応槽が必要となり、逆に濃度が濃すぎると水酸化物やふっ化物の沈殿が細かくなって濾過しにくくなるので、10〜30重量%程度が適当である。また、水酸化カルシウム以外の水酸化ナトリウム等のアルカリを使用することも可能であるが、廃液中のふっ素をふっ化物として沈降分離するためには塩化カルシウム等のカルシウムの塩を同時に添加することが望ましい。
【0013】
上記(2) 工程の水素化ほう素ナトリウムを添加する際の溶液のpHを6.5〜10.5に調整する理由は、pHが6.5未満の場合には、ニッケルの析出に要する水素化ほう素ナトリウムの量が多くなるからであり、溶液のpHが10.5を超えると廃液中のマンガンが水酸化物として沈殿するので、回収した金属ニッケルの純度が低下するからである。好ましい範囲は8.0〜10.0である。
【0014】
上記(3) の工程は反応槽の底部より抜き出したスラリー状の金属ニッケルの沈降物をフィルタープレス等を用いて濾過・脱水し、濾液および上澄み液は工場にリサイクルされる。濾別した金属ニッケルの沈降物は乾燥後、金属ニッケルとしてステンレス鋼や鉄・ニッケル合金の製造に使用される。
【0015】
【実施例】
表1に示す組成のニッケル含有硝ふっ酸酸洗廃液50ccを数個のプラスチック製容器(容量200cc)に入れ、電磁攪拌装置を用いて攪拌し、同時にpHメータを用いてpHを測定しながら、20%水酸化カルシウム溶液を添加して、pHを4.5〜6.5の範囲に調整した。これに凝集剤20mgを加えて混合し、1時間静置した後、濾紙(NO.5B)を用いて濾過した。
【0016】
【表1】

Figure 0003975560
【0017】
濾液を別のプラスチック製容器(容量300cc)に取り、電磁攪拌装置を用いて攪拌しつつ、1.0mol /lの水素化ほう素ナトリウム溶液(NaOH含有濃度約4mol /l)10ml、および2mol /lのHClを少しずつ添加してpHを6.5〜10.5の範囲に調整した。攪拌を止め、1時間静置した後、金属ニッケルを含む沈殿を濾紙(NO.5B)を用いて濾過した。沈殿を濾紙ごと乾燥器に入れ、恒量に達するまで110℃で加熱した。
【0018】
乾燥後の沈殿の全体の重量を測定し、沈殿の一部を採取して塩酸と硝酸の混酸で溶解し、通常の湿式分析法でクロム、ニッケルおよびマンガン含有率を調べた。混酸で溶解しても不溶解残査が生じる場合には、濾紙を用いて濾別し、水洗、乾燥、灼熱、灰化してピロ硫酸ナトリウムと共に加熱して溶融し、純水で溶かした後、同様に湿式分析法でクロム、ニッケルおよびマンガン含有率を調べた。前記乾燥後の沈殿の一部をアルゴン気流中で高周波加熱炉を用いて加熱した黒鉛るつぼの中で少量の金属すずと共に溶融し、放出される一酸化炭素の量を測定して酸素含有率を求めた。
【0019】
比較のために、上記の最初の20%水酸化カルシウム添加によるpH調整において、pHを4.5未満、あるいは6.5を超えるもの、および2回目の水素化ほう素ナトリウム添加時のpH調整においてpHが6.5未満あるいは10.5を超えるものについても同じ手順による試験をおこなった。
【0020】
表2に試験結果を示す。表2に記載の一次分離工程とは、前記20%水酸化カルシウム溶液のアルカリ添加をする工程であり、二次分離工程とは、前記水素化ほう素ナトリウム溶液を添加する工程である。
【0021】
【表2】
Figure 0003975560
【0022】
同表に示すように、本発明法の通り、一次分離工程のpHを4.5〜6.5とし、二次分離工程のpHを6.5〜10.5とした場合(NO.1〜4)には、二次分離工程で得られた金属ニッケルの純度は98%以上であり、廃液中のニッケルの回収率も98%以上であった。
【0023】
これに対して、NO.5に示す一次分離工程のpHを3.7、二次分離工程のpHを3.8とした条件では、得られた沈殿のニッケル含有率は98%と高いが、二次分離工程におけるpHが低すぎるため、約34%のニッケルしか沈殿せず、Niの回収率は34%であった。
【0024】
NO.6に示す、一次分離工程のpHを3.5、二次分離工程のpHを8.0とした条件では、Ni回収率は100%であるが、一次分離工程のpHが低すぎてクロムが水酸化物として分離できずに、二次分離工程で沈殿中に混入したため、乾燥後の沈殿中のクロムおよび酸素含有率がそれぞれ34%および16%と高くなった。
【0025】
NO.7に示す一次分離工程のpHを3.2、二次分離のpHを11.3とした条件では、Ni回収率は100%であるが、一次分離工程のpHが低すぎてクロムが水酸化物として分離できずに、二次分離工程で沈殿中に混入すると同時に、二次分離工程のpHが高すぎてマンガンが水酸化物として沈殿に混入したため、乾燥後の沈殿中のクロム、マンガンおよび酸素含有率がそれぞれ28%、13%および16%と高くなった。
【0026】
NO.8に示す一次分離工程のpHを5.6、二次分離工程のpHを3.1とした条件では、得られた沈殿のニッケル含有率は100%であるが、二次分離におけるpHが低すぎるため、28%のニッケル回収率しか得られなかった。
【0027】
NO.9に示す一次分離工程のpHを6.3、二次分離工程のpHを11.3とした条件では、Ni回収率は100%であるが、二次分離工程のpHが高すぎてマンガンが水酸化物として沈殿に混入したため、乾燥後の沈殿中のマンガンおよび酸素含有率がそれぞれ22%および6.5%と高くなった。
【0028】
NO.10に示す一次分離工程のpHを9.3、二次分離のpHを4.8とした条件では、得られた沈殿のニッケル含有率は99%であるが、一次分離工程のpHが高すぎてニッケルの一部が水酸化物として沈殿除去されると同時に、二次分離工程におけるpHが低すぎてニッケルの析出が不十分となったため、約25%のニッケルしか回収できなかった。
【0029】
NO.11に示す一次分離工程のpHを10.2、二次分離工程のpHを7.0とした条件では、得られた沈殿のニッケル含有率は99%であるが、一次分離工程のpHが高すぎてニッケルの大部分が水酸化物として沈殿除去されたため、18%のニッケルしか回収できなかった。
【0030】
NO.12に示す一次分離工程のpHを10.1、二次分離工程のpHを11.2とした条件では、一次分離工程のpHが高すぎてニッケルの大部分が水酸化物として沈殿除去されると同時に、二次分離工程におけるpHも高すぎてマンガンが水酸化物として沈殿に混入したため、乾燥後の沈殿中のマンガンおよび酸素含有率がそれぞれ44%および13%と高くなり、ニッケルの回収率も約18%と低かった。
【0031】
【発明の効果】
本発明によれば、硝ふっ酸酸洗廃液中のニッケルを低コストで再利用可能な金属として回収することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering nickel from a nitric hydrofluoric acid pickling waste liquid.
[0002]
[Prior art]
In the production process of stainless steel and iron-nickel alloy (Fe-42% Ni, Fe-36% Ni) plates, etc., nitric hydrofluoric acid (nitric acid and hydrogen fluoride for the purpose of removing scales generated by heat treatment such as annealing. Pickling with a mixed acid) is carried out industrially. When a metal such as iron dissolves in the pickling solution due to pickling and the pickling ability decreases, the pickling ability recovers to some extent by adding a new acid. The washing ability can no longer be obtained, and the waste liquid is discharged from the system. As a processing method of nitric hydrofluoric acid pickling waste liquid, a method of neutralizing residual free acid by adding an alkali such as calcium hydroxide, and precipitating and separating the generated hydroxide such as iron by filtration is generally used. Has been done. In this method, if calcium hydroxide is used as an alkali, iron and the like are precipitated as hydroxides, and at the same time, fluorine in the liquid is precipitated as calcium fluoride. Therefore, there is an advantage that both metal and fluorine can be removed.
[0003]
The problem with such a precipitation separation method using hydroxide is that it is necessary to neutralize excess alkali by adding an acid to the liquid after separating the precipitate. The separated precipitate such as hydroxide (usually called waste acid sludge) contains a large amount of fluorine and cannot be reused, and must be disposed of as industrial waste. For this reason, it is necessary to secure the risk of environmental pollution and a disposal site. As described above, the method of alkali treatment of the nitric hydrofluoric acid pickling waste liquid not only wastes valuable resources but also causes pollution of the global environment. Therefore, the technology for recovering and reusing free acid in the waste acid. Has been studied. For example, Japanese Patent Laid-Open No. 48-45491 discloses a method and apparatus for recovering acid from pickling waste using an ion exchange resin, and Japanese Patent Laid-Open No. 52-76296 recovers acid from waste acid using an organic solvent. A method is disclosed. Furthermore, Japanese Patent Application Laid-Open No. 52-101690 discloses a method for recovering acid and metal from waste acid by using both electrodialysis using an ion exchange membrane and electrolysis.
[0004]
[Problems to be solved by the invention]
However, the ion exchange resin method, the organic solvent method, and the ion exchange membrane method are all costly methods, and it is difficult to say that they are practical methods.
[0005]
It is an object of the present invention to provide a method for recovering nickel in a nitric hydrofluoric acid pickling waste liquid as a reusable metal at a low cost.
[0006]
[Means for Solving the Problems]
We focused on the nickel reduction method using sodium borohydride as a method that does not use expensive equipment such as electrolytic cells and special solvents such as organic solvents. However, in order to obtain high-purity metallic nickel from the nitric hydrofluoric acid pickling waste liquid, it was necessary to solve the following problems. (1) How to efficiently separate coexisting iron and chromium, etc. (2) How to suppress deterioration due to oxidative decomposition of sodium borohydride by coexisting nitrate ions (NO 3− ) (3) The problem was how to improve the efficiency of nickel reduction precipitation to a practical level.
[0007]
As a result of testing various methods, the present inventors have adjusted the pH to 4.5 to 6.5 by adding an alkali such as calcium hydroxide, and the resulting precipitation of hydroxides such as iron and chromium. After removal, sodium borohydride was added to adjust the pH to 6.5 to 10.5, and by separating the deposited nickel, it was found that the above problems (1) to (3) could be solved. It was.
[0008]
The present invention has been made on the basis of the above knowledge, and the gist of the present invention is that "the pH of the resulting hydrofluoric acid pickling waste liquid is adjusted to 4.5 to 6.5 by adjusting the pH to 4.5 to 6.5. After removing the precipitate, sodium borohydride is added to adjust the pH to 6.5 to 10.5, and nickel is precipitated and separated , and selected from the group consisting of iron, chromium, and manganese This is a method for recovering nickel from a nitric hydrofluoric acid pickling waste solution containing one or more kinds . "
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention includes (1) a step of adding alkali to a nitric hydrofluoric acid pickling waste solution to adjust the pH to 4.5 to 6.5, and sedimenting and separating the produced precipitate, (2) The step of adjusting the pH of the separated solution to 6.5 to 10.5 by adding sodium borohydride and (3) the step of separating the formed nickel precipitate can be carried out sequentially.
[0010]
The pH of the step (1) is adjusted by adding an aqueous solution of calcium hydroxide to adjust the pH to 4.5 to 6.5.
[0011]
The reason for adjusting the pH to 4.5 to 6.5 is that when the pH is less than 4.5, a part of chromium in the waste liquid does not precipitate as a hydroxide, but is recovered because it precipitates in the secondary separation step. This is because the purity of nickel is lowered, and when the pH exceeds 6.5, a part of nickel is precipitated as a hydroxide and the recovery rate of nickel is lowered. A preferred range is from 5.0 to 6.0.
[0012]
The concentration of calcium hydroxide to be used is not particularly limited. However, the lower the concentration, the larger the amount of the treatment solution and the larger the capacity of the reaction tank is. On the contrary, if the concentration is too high, hydroxide and fluoride are used. Since the precipitate of the compound becomes fine and difficult to filter, about 10 to 30% by weight is appropriate. It is also possible to use an alkali such as sodium hydroxide other than calcium hydroxide, but in order to precipitate and separate the fluorine in the waste liquid as a fluoride, it is possible to add a calcium salt such as calcium chloride at the same time. desirable.
[0013]
The reason for adjusting the pH of the solution when adding sodium borohydride in the above step (2) to 6.5 to 10.5 is that the hydrogen required for nickel precipitation when the pH is less than 6.5. This is because the amount of sodium borohydride increases, and when the pH of the solution exceeds 10.5, manganese in the waste liquid is precipitated as a hydroxide, so that the purity of the recovered metallic nickel is lowered. A preferred range is 8.0 to 10.0.
[0014]
In the step (3), the slurry-like metallic nickel sediment extracted from the bottom of the reaction vessel is filtered and dehydrated using a filter press or the like, and the filtrate and supernatant are recycled to the factory. The precipitate of nickel metal filtered out is dried and used as metal nickel in the production of stainless steel and iron / nickel alloys.
[0015]
【Example】
While putting 50 cc of nickel-containing fluoric acid pickling waste liquid of the composition shown in Table 1 into several plastic containers (capacity 200 cc), stirring with an electromagnetic stirrer, and simultaneously measuring pH with a pH meter, A 20% calcium hydroxide solution was added to adjust the pH to a range of 4.5 to 6.5. To this was added 20 mg of a flocculant, mixed, allowed to stand for 1 hour, and then filtered using filter paper (NO. 5B).
[0016]
[Table 1]
Figure 0003975560
[0017]
The filtrate is taken in another plastic container (capacity 300 cc) and stirred with an electromagnetic stirrer, 10 ml of a 1.0 mol / l sodium borohydride solution (NaOH-containing concentration of about 4 mol / l), and 2 mol / l. l HCl was added in portions to adjust the pH to a range of 6.5 to 10.5. Stirring was stopped and the mixture was allowed to stand for 1 hour, and then a precipitate containing metallic nickel was filtered using a filter paper (NO. 5B). The precipitate was put together with the filter paper in a drier and heated at 110 ° C. until a constant weight was reached.
[0018]
The total weight of the precipitate after drying was measured, a part of the precipitate was collected and dissolved in a mixed acid of hydrochloric acid and nitric acid, and the chromium, nickel and manganese contents were examined by a normal wet analysis method. If undissolved residue occurs even after dissolving with mixed acid, it is filtered using filter paper, washed with water, dried, heated, incinerated, heated with sodium pyrosulfate and melted, dissolved in pure water, Similarly, the chromium, nickel and manganese contents were examined by wet analysis. A portion of the dried precipitate is melted together with a small amount of metal tin in a graphite crucible heated using a high-frequency heating furnace in an argon stream, and the amount of carbon monoxide released is measured to determine the oxygen content. Asked.
[0019]
For comparison, in the above pH adjustment by the addition of 20% calcium hydroxide, the pH is less than 4.5 or more than 6.5, and the pH adjustment at the second sodium borohydride addition. Tests with the same procedure were performed for samples having a pH of less than 6.5 or more than 10.5.
[0020]
Table 2 shows the test results. The primary separation step described in Table 2 is a step of adding an alkali of the 20% calcium hydroxide solution, and the secondary separation step is a step of adding the sodium borohydride solution.
[0021]
[Table 2]
Figure 0003975560
[0022]
As shown in the table, when the pH of the primary separation step is 4.5 to 6.5 and the pH of the secondary separation step is 6.5 to 10.5 as in the method of the present invention (NO.1 to In 4), the purity of the metallic nickel obtained in the secondary separation step was 98% or more, and the recovery rate of nickel in the waste liquid was 98% or more.
[0023]
In contrast, NO. 5, the nickel content of the resulting precipitate is as high as 98% under the conditions where the pH of the primary separation step is 3.7 and the pH of the secondary separation step is 3.8. However, the pH in the secondary separation step is high. Since it was too low, only about 34% nickel was precipitated, and the Ni recovery was 34%.
[0024]
NO. 6, the Ni recovery rate is 100% under the conditions where the pH of the primary separation step is 3.5 and the pH of the secondary separation step is 8.0, but the pH of the primary separation step is too low and chromium is removed. Since it could not be separated as a hydroxide and was mixed in the precipitate in the secondary separation step, the chromium and oxygen contents in the precipitate after drying increased to 34% and 16%, respectively.
[0025]
NO. Under the conditions where the pH of the primary separation step shown in Fig. 7 is 3.2 and the pH of the secondary separation is 11.3, the Ni recovery rate is 100%, but the pH of the primary separation step is too low and chromium is hydroxylated. In addition to being mixed in the precipitate in the secondary separation step at the same time, the pH of the secondary separation step was too high and manganese was mixed into the precipitate as a hydroxide, so that chromium, manganese and The oxygen content increased to 28%, 13% and 16%, respectively.
[0026]
NO. Under the conditions where the pH of the primary separation step shown in Fig. 8 is 5.6 and the pH of the secondary separation step is 3.1, the nickel content of the resulting precipitate is 100%, but the pH in the secondary separation is low. Therefore, only a nickel recovery rate of 28% was obtained.
[0027]
NO. Under the conditions where the pH of the primary separation step shown in 9 is 6.3 and the pH of the secondary separation step is 11.3, the Ni recovery rate is 100%, but the pH of the secondary separation step is too high and manganese is Since it was mixed in the precipitate as a hydroxide, the manganese and oxygen contents in the precipitate after drying were as high as 22% and 6.5%, respectively.
[0028]
NO. Under the conditions where the pH of the primary separation step shown in 10 is 9.3 and the pH of the secondary separation is 4.8, the nickel content of the resulting precipitate is 99%, but the pH of the primary separation step is too high. At the same time, a part of nickel was precipitated and removed as a hydroxide, and at the same time, the pH in the secondary separation step was too low to cause insufficient nickel precipitation, so that only about 25% of nickel could be recovered.
[0029]
NO. In the condition where the pH of the primary separation step shown in Fig. 11 is 10.2 and the pH of the secondary separation step is 7.0, the nickel content of the obtained precipitate is 99%, but the pH of the primary separation step is high. Too much of the nickel was precipitated and removed as hydroxide, so only 18% nickel could be recovered.
[0030]
NO. Under the conditions where the pH of the primary separation step shown in 12 is 10.1 and the pH of the secondary separation step is 11.2, the pH of the primary separation step is too high and most of the nickel is precipitated and removed as hydroxide. At the same time, since the pH in the secondary separation process was too high and manganese was mixed into the precipitate as a hydroxide, the manganese and oxygen contents in the precipitate after drying were as high as 44% and 13%, respectively, and the nickel recovery rate Was as low as about 18%.
[0031]
【The invention's effect】
According to the present invention, nickel in a nitric hydrofluoric acid pickling waste liquid can be recovered as a reusable metal at low cost.

Claims (1)

硝ふっ酸酸洗廃液にアルカリを添加してpHを4.5〜6.5に調整し、生じた水酸化物の沈殿を除去した後、水素化ほう素ナトリウムを加えてpHを6.5〜10.5としてニッケルを析出分離することを特徴とするニッケル、並びに、鉄、クロム、及びマンガンからなる群から選ばれる1種以上を含有する硝ふっ酸酸洗廃液からのニッケルの回収方法。An alkali is added to the nitric hydrofluoric acid pickling waste solution to adjust the pH to 4.5 to 6.5, and after the resulting hydroxide precipitate is removed, sodium borohydride is added to adjust the pH to 6.5. A method for recovering nickel from a nitric hydrofluoric acid pickling waste liquid containing nickel and one or more selected from the group consisting of iron, chromium, and manganese, wherein nickel is precipitated and separated as ˜10.5.
JP17467298A 1998-06-22 1998-06-22 Method for recovering nickel from nitric hydrofluoric acid pickling waste liquor Expired - Fee Related JP3975560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17467298A JP3975560B2 (en) 1998-06-22 1998-06-22 Method for recovering nickel from nitric hydrofluoric acid pickling waste liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17467298A JP3975560B2 (en) 1998-06-22 1998-06-22 Method for recovering nickel from nitric hydrofluoric acid pickling waste liquor

Publications (2)

Publication Number Publication Date
JP2000008129A JP2000008129A (en) 2000-01-11
JP3975560B2 true JP3975560B2 (en) 2007-09-12

Family

ID=15982685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17467298A Expired - Fee Related JP3975560B2 (en) 1998-06-22 1998-06-22 Method for recovering nickel from nitric hydrofluoric acid pickling waste liquor

Country Status (1)

Country Link
JP (1) JP3975560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101440550B1 (en) * 2007-12-21 2014-09-17 재단법인 포항산업과학연구원 Method for Leaching of Precious Metal from Manganese Nodules

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384628B1 (en) * 1998-08-07 2003-08-19 주식회사 포스코 A method for recovering valuable metallic elements of wasted acid solution for stainless steed
JP4461225B2 (en) * 2005-01-13 2010-05-12 独立行政法人産業技術総合研究所 Separation and recovery of valuable resources from stainless steel pickling waste liquid
JP5005225B2 (en) * 2006-01-30 2012-08-22 新日鐵住金ステンレス株式会社 Treatment method of fluorine-containing waste liquid
KR101570795B1 (en) * 2014-12-23 2015-11-23 인천화학 주식회사 Manufacturing method of pure nickel from fluorine containing nickel slime

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101440550B1 (en) * 2007-12-21 2014-09-17 재단법인 포항산업과학연구원 Method for Leaching of Precious Metal from Manganese Nodules

Also Published As

Publication number Publication date
JP2000008129A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
TWI392745B (en) A method for recovering a valuable metal from a lithium battery residue containing Co, Ni, and Mn
US6338748B1 (en) Hydrometallurgical method for recovery of zinc from electric arc furnace dust
RU2591903C2 (en) Method of extracting zinc oxide
CN110669933A (en) Method for removing fluorine in nickel-cobalt-manganese solution
JP3975560B2 (en) Method for recovering nickel from nitric hydrofluoric acid pickling waste liquor
CN114634189B (en) Recovery method and system for aluminum electrolysis overhaul slag
CA1106613A (en) Process for removing mercury from brine sludges
JP5568977B2 (en) Method for recovering manganese from batteries
CN113636672A (en) Method for recovering nickel-containing wastewater
CN114349079A (en) Recycling treatment method for nickel slag solid waste in nitrogen trifluoride gas electrolysis production
CN104152701B (en) The method that tin is reclaimed from tin refinement slag
JP6593084B2 (en) Method of recovering phosphate from steel slag
KR20180085307A (en) Method for recovering nickel and cardmium from waste battery
TWI625882B (en) Method for recovering positive electrode material resources in waste lithium iron battery
CA1328352C (en) Process for the removal of mercury from precious metal-cyanide liquors
KR100686985B1 (en) The nickel collecting method from waste nickel fluid and oxidic acid nickel sludge
CN114024057A (en) Method for recycling waste nickel cobalt lithium manganate-lithium titanate battery
KR20040079948A (en) Method for the separation of zinc and a second metal which does not form an anionic complex in the presence of chloride ions
CN112795785A (en) Simple substance nickel cobalt recovery method and separation equipment for ternary lithium ion battery anode material
JPS6318026A (en) Production of silicon, titanium, zirconium or uranium
JP4087196B2 (en) Method for recovering ruthenium and / or iridium
CN110627106A (en) Method for producing zinc carbonate by using blast furnace cloth bag ash dechlorination wastewater
CN112875730B (en) Purification method of nuclear pure lithium fluoride
JPH04504882A (en) How to recover silver from photographic processing solutions
JPS59121123A (en) Reclamation of solution of ferric chloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees