JP3975381B2 - Epoxy resin molding material for sealing and electronic component device - Google Patents

Epoxy resin molding material for sealing and electronic component device Download PDF

Info

Publication number
JP3975381B2
JP3975381B2 JP33926798A JP33926798A JP3975381B2 JP 3975381 B2 JP3975381 B2 JP 3975381B2 JP 33926798 A JP33926798 A JP 33926798A JP 33926798 A JP33926798 A JP 33926798A JP 3975381 B2 JP3975381 B2 JP 3975381B2
Authority
JP
Japan
Prior art keywords
epoxy resin
molding material
sealing
component
resin molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33926798A
Other languages
Japanese (ja)
Other versions
JP2000164749A (en
Inventor
佳弘 高橋
孝幸 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP33926798A priority Critical patent/JP3975381B2/en
Publication of JP2000164749A publication Critical patent/JP2000164749A/en
Application granted granted Critical
Publication of JP3975381B2 publication Critical patent/JP3975381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、難燃性、硬化性、硬化物特性に優れる封止用エポキシ樹脂成形材料、およびそれを用いて封止した素子を備える、はんだ耐熱性、耐湿信頼性に優れる電子部品装置に関する。
【0002】
【従来の技術】
トランジスタ、IC等の電子部品装置用素子は、生産性、コスト等の観点から樹脂封止が主流となっている。この封止用樹脂には、電気特性、コスト、作業性等に優れるエポキシ樹脂が主に用いられているが、エポキシ樹脂は難燃性が不十分なため、従来より、臭素化エポキシ樹脂等の臭素系難燃剤と酸化アンチモンを併用して添加することにより難燃化が計られている。
【0003】
【発明が解決しようとする課題】
デカブロムをはじめとするハロゲン(臭素)系難燃剤は燃焼時のダイオキシン生成が疑われ、酸化アンチモンは毒性を持つことが知られているため、近年それらを添加したエポキシ樹脂成形材料やその成形材料を用いた電子部品の処分法等について環境、安全面から問題になっており、使用規制の要求が強まっている。また、樹脂封止ICの高温放置特性に臭素イオンが悪影響を及ぼすことが知られており、この観点からも臭素系難燃剤の低減が望まれている。
このような状況から、種々のノンハロゲン、ノンアンチモン系難燃剤が提案されている。例えば水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の金属水和物は、安全性が高く低コストであるという利点があるが、難燃化のためには多量添加が必要で、成形材料の硬化性、硬化物特性を損ねるという問題を持つ。そこで、これら金属水和物をエポキシシランカップリング剤等であらかじめ表面処理してから配合することが行われているが、効果が十分であるとは言えなかった。
【0004】
本発明は、ノンハロゲン、ノンアンチモンで難燃性、硬化性、硬化物特性に優れる封止用エポキシ樹脂成形材料、およびそれを用いて封止した素子を備える、はんだ耐熱性、耐湿信頼性に優れる電子部品装置を提供しようとするものである。
【0005】
【課題を解決するための手段】
発明者らは上記の課題を解決するために鋭意検討を重ねた結果、特定のシリルイソシアネート化合物と金属水和物とを同時に配合するか、あるいは金属水和物を特定のシリルイソシアネート化合物であらかじめ表面処理してから配合することにより、上記の目的を達成し得ることを見い出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、
(1)(A)エポキシ樹脂、(B)硬化剤、(C)無機充填剤、(D)金属水和物、(E)下記一般式(I)で表わされるシリルイソシアネート化合物を必須成分として含有する封止用エポキシ樹脂成形材料、
【化4】

Figure 0003975381
(ここで、nは1〜4の整数を示し、(4−n)個のRは水素及び置換又は非置換の一価の炭化水素基から選ばれ、全て同一でも異なっていてもよい。)
(2)(D)成分の金属水和物が、(E)成分のシリルイソシアネート化合物であらかじめ表面処理されていることを特徴とする上記(1)記載の封止用エポキシ樹脂成形材料、
(3)(D)成分の金属水和物が、水酸化マグネシウム及び/又は水酸化カルシウムを含むことを特徴とする上記(1)又は上記(2)記載の封止用エポキシ樹脂成形材料、
(4)(A)成分が下記一般式(II)で示されるエポキシ樹脂を含むことを特徴とする上記(1)〜(3)記載のいずれかの封止用エポキシ樹脂成形材料、
【化5】
Figure 0003975381
(ここで、R1〜R4は水素及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、全て同一でも異なっていてもよい。nは0〜3を示す。)
(5)(B)成分が下記一般式(III)の硬化剤を含むことを特徴とする上記(1)〜(4)記載のいずれかの封止用エポキシ樹脂成形材料、
【化6】
Figure 0003975381
(ここで、Rは水素、炭素数1〜10の置換又は非置換の一価の炭化水素基及びハロゲン原子から選ばれ、nは0〜8を示す。)
(6)上記(1)〜(5)記載のいずれかの封止用エポキシ樹脂成形材料により封止された素子を備える電子部品装置、
である。
【0007】
【発明の実施の形態】
本発明において用いられる(A)成分のエポキシ樹脂としては、封止用エポキシ樹脂成形材料で一般的に使用されているものであれば特に制限はないが、例えばフェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ビスフェノ−ルAノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの;ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビフェノール等のジグリシジルエーテル;ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物;ナフタレン環を有するエポキシ樹脂;ナフトールアラルキル樹脂のエポキシ化物;トリメチロールプロパン型エポキシ樹脂;テルペン変性エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、および脂環族エポキシ樹脂などが挙げられ、耐リフロー性の面からは下記一般式(II)のエポキシ樹脂が好適である。
【0008】
【化7】
Figure 0003975381
(ここで、R1〜R4は水素及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、全て同一でも異なっていてもよい。nは0〜3を示す。)
これを例示すると、4,4’−ビス(2,3−エポキシプロポキシ)ビフェニルや4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルビフェニルを主成分とするエポキシ樹脂、エピクロルヒドリンと4,4’−ヒドロキシビフェニルや4,4’−ヒドロキシ−3,3’,5,5’−テトラメチルビフェニルとを反応して得られるエポキシ樹脂等が挙げられる。中でも4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルビフェニルを主成分とするエポキシ樹脂が好ましい。このビフェニル型エポキシ樹脂を使用する場合、その配合量はエポキシ樹脂全量に対し60重量%以上とすることが好ましい。60重量%未満では当該エポキシ樹脂の低吸湿性、高接着性の特長が発揮されず、耐リフロー性に対して効果が小さいためである。
これらのエポキシ樹脂は単独で用いても2種類以上併用してもよい。
【0009】
本発明において用いられる(B)成分の硬化剤としては、エポキシ樹脂の硬化剤として働くものであれば特に制限はなく、例えばフェノール系化合物、酸無水物、アミン系化合物等があるが、このうちフェノール系化合物が好ましい。フェノール系化合物としては、例えばフェノール、クレゾール、キシレノール、ハイドロキノン、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類またはα―ナフトール、β―ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド類とを酸性触媒下で縮合または共縮合させて得られる樹脂;フェノール類とジメトキシパラキシレン等から合成されるキシリレン骨格を有するフェノール樹脂;ジシクロペンタジエン骨格を有するフェノール樹脂;シクロペンタジエン骨格を有するフェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;多環芳香族変性フェノール樹脂;キシリレン骨格を有するナフトール樹脂などが挙げられ、これらを単独または2種類以上混合して用いることができる。特に耐リフロー性の面からは下記一般式(III)で表されるフェノール・アラルキル樹脂が好適である。この硬化剤を用いる場合、配合量は、その性能を発揮するために硬化剤全量に対して60重量%以上とすることが好ましい。
【0010】
【化8】
Figure 0003975381
(ここで、Rは水素、炭素数1〜10の置換又は非置換の一価の炭化水素基及びハロゲン原子から選ばれ、nは0〜8を示す。)
中でも下記の式(IV)で示され、nが平均的に0〜8のものが好ましい。
【化9】
Figure 0003975381
【0011】
(A)成分のエポキシ樹脂と(B)成分の硬化剤の化学当量比は特に制限されないが、それぞれの未反応分を少なく抑えるために0.7〜1.3の範囲に設定することが好ましい。より好ましくは0.8〜1.2である。
【0012】
また、エポキシ樹脂と硬化剤の硬化反応を促進する硬化促進剤を必要に応じて使用することができる。この硬化促進剤としては、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、1,5−ジアザ−ビシクロ(4,3,0)ノネン、5、6−ヂブチルアミノ−1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等のシクロアミジン化合物及びこれらの化合物に無水マレイン酸、ベンゾキノン、ジアゾフェニルメタン等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン類およびこれらの誘導体、2―メチルイミダゾール、2―フェニルイミダゾール、2―フェニル―4―メチルイミダゾール、2―ヘプタデシルイミダゾール等のイミダゾール類およびこれらの誘導体 、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類及びこれらのホスフィン類に無水マレイン酸、ベンゾキノン、ジアゾフェニルメタン等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2―エチル―4―メチルイミダゾール・テトラフェニルボレート、N―メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体などが挙げられる。中でも、有機ホスフィン類、シクロアミジン化合物、またはこれらとベンゾキノンとの付加物が好ましい。これらは、単独でも2種以上併用して用いても良い。
【0013】
本発明において用いられる(C)成分の無機充填剤としては特に制限はないが、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化珪素、窒化ほう素、ベリリア、ジルコニア等の粉体、またはこれらを球形化したビーズ、チタン酸カリウム、炭化珪素、窒化珪素、アルミナ等の単結晶繊維、ガラス繊維等を単独で用いても2種類以上併用してもよい。上記無機充填剤の中で、線膨張係数低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましい。無機充填剤の形状については特に制限はないが、成形時の流動性および金型摩耗性から50%以上を球形とすることが好ましく、特に球状溶融シリカ粉末を用いることが好ましい。
【0014】
無機充填剤(C)の配合量は、成形材料全体に対して60重量%以上とすることが好ましく、80〜92重量%とすることがより好ましい。配合量が60重量%未満では難燃性およびはんだ耐熱性が不十分な場合がある。
【0015】
本発明において用いられる(D)成分の金属水和物としては、特に制限はないが、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化ニッケル、水酸化コバルト、水酸化鉄、水酸化錫、水酸化亜鉛、水酸化銅、水酸化チタン等が挙げられ、これらを単独で用いても2種類以上併用してもよい。また、これらの金属水和物と酸化ニッケル、酸化コバルト、酸化鉄、酸化錫、酸化亜鉛、酸化銅、酸化パラジウム等の金属酸化物との複合化金属水和物を用いることもできる。上記金属水和物の中で、安全性とコスト、難燃効果および成形性に及ぼす影響の観点から水酸化マグネシウム及び/又は水酸化カルシウムを用いることが好ましい。金属水和物の形状については特に制限はないが、成形時の流動性の観点から不定形や針状のものよりも六角板状や柱状等の球形に近いものの方が好ましい。
【0016】
金属水和物(D)の配合量は、(A)成分のエポキシ樹脂100重量部に対して5〜300重量部とすることが好ましく、10〜150重量部とすることがより好ましい。配合量が5重量部未満では難燃性が不十分となりがちで、300重量部を超えると硬化性、硬化物特性が低下する傾向にある。
【0017】
本発明において用いられる(E)成分のシリルイソシアネート化合物としては、下記一般式(I)で表わされるシリルイソシアネート化合物が用いられる。
【化10】
Figure 0003975381
(ここで、nは1〜4の整数を示し、(4−n)個のRは水素及び置換又は非置換の一価の炭化水素基から選ばれ、全て同一でも異なっていてもよい。)
Rは水素又は置換又は非置換の一価の炭化水素基であり、好ましくは炭素数1〜25、より好ましくは炭素数1〜18、さらに好ましくは炭素数1〜10である。このような炭素数1〜25の置換又は非置換の一価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基等のアルキル基、フェニル基、トリル基、キシリル基等のアリール基、ビニル基、アリル基、ブテニル基等のアルケニル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基、3−アミノプロピル基、N−(2−アミノエチル)−3−アミノプロピル基、3−メルカプトプロピル基、3−メタクリロキシプロピル基などが挙げられ、中でもメチル基、ビニル基、フェニル基が好ましい。
【0018】
上記一般式(I)で表わされるシリルイソシアネート化合物(E)を例示すると、下記式(a)〜(f)で表わされる化合物等が挙げられる。
【化11】
Figure 0003975381
【0019】
これらのシリルイソシアネート化合物(E)は単独で用いることもできるし、2種類以上併用してもよい。
シリルイソシアネート化合物(E)の配合量は、(D)成分の金属水和物に対して0.1〜10重量%とすることが好ましく、0.5〜5重量%とすることがより好ましい。配合量が0.1重量%未満では硬化性、硬化物特性の向上効果が不十分となりがちで、10重量%を超えると硬化性が却って低下する傾向にある。
【0020】
本発明における(D)成分の金属水和物は、硬化物特性の観点からはあらかじめ(E)成分のシリルイソシアネート化合物で表面処理して用いることが好ましい。表面処理の方法としては、金属水和物表面をシリルイソシアネート化合物で均一に処理できるのであればいかなる方法を用いてもよいが、一般的な方法として、ヘンシェルミキサー等の剪断力の大きな混合機で金属水和物を撹拌しながらシリルイソシアネート化合物を直接添加し、その後、室温〜80℃の温度で乾燥する乾式法、シリルイソシアネート化合物を溶媒に溶解させ、これに金属水和物を添加して撹拌した後、ろ過、溶媒の除去を行い、その後、室温〜80℃の温度で乾燥する湿式法等を挙げることができる。
【0021】
本発明における成形材料には、上記以外に、赤りん、りん酸化合物等のりん系難燃剤;トリアジン誘導体等の窒素系難燃剤;酸化ニッケル、酸化コバルト、酸化鉄、酸化錫、酸化亜鉛、酸化銅、酸化モリブデン、酸化タングステン、酸化パラジウム、ほう酸亜鉛、モリブデン酸亜鉛等の金属化合物等を難燃助剤として適宜添加することができる。その他の添加剤として高級脂肪酸、高級脂肪酸金属塩、エステル系ワックス、ポリオレフィン系ワックス等の離型剤;カーボンブラック等の着色剤;シラン系、チタネート系、アルミネート系等のカップリング剤;シリコーンパウダー等の可撓剤、シリコーンオイルやシリコーンゴム粉末等の応力緩和剤、ハイドロタルサイト、アンチモンービスマス等のイオントラップ剤などを必要に応じて用いることができる。
【0022】
本発明における成形材料の調製方法は、各種原材料を均一に分散混合できるのであればいかなる手法を用いてもよいが、一般的な方法として、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、押出し機等によって溶融混練し、冷却、粉砕する方法が挙げられる。成形条件に合うような寸法及び重量でタブレット化すると使いやすい。
【0023】
リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウェハ等の支持部材に、ICチップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子等の素子を搭載し、必要な部分を本発明の封止用成形材料で封止して、電子部品装置を製造することができる。このような電子部品装置としては、例えば、銅リードフレーム上に搭載したチップを本発明の成形材料で封止したQFPや、テープキャリアにバンプで接続したICチップを本発明の成形材料で封止したTCPを挙げることができる。また、配線板やガラス上に形成した配線に、ワイヤーボンディング、フリップチップボンディング、はんだ等で接続したICチップ、トランジスタ、ダイオード、サイリスタ等の能動素子及び/又はコンデンサ、抵抗体、コイル等の受動素子を、本発明の成形材料で封止したCOBモジュール、ハイブリッドIC、マルチチップモジュール等を挙げることができる。
【0024】
電子部品を封止する方法としては、低圧トランスファー成形法が最も一般的であるが、インジェクション成形法、圧縮成形法等を用いてもよい。
【0025】
【実施例】
次に実施例により本発明を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
【0026】
実施例1、2、3
まず、下記の方法によりシリルイソシアネート化合物で表面処理した水酸化マグネシウムおよび水酸化カルシウムを作製した。
水酸化マグネシウムをヘンシェルミキサーに投入し、2000rpmで30秒間撹拌してから、メチルシリルトリイソシアネートを上記水酸化マグネシウムに対して2重量%添加し、2000rpmで60秒間撹拌した。その後、60℃のオーブンで3時間乾燥した。水酸化カルシウムの表面処理もこれと同様に行った。
次に、下記の方法により実施例1、2、3の成形材料を作製した。
表1に示す配合で各成分を秤取し、予備混合した。その後、80℃の二軸ミキシングロールで10分間混練し、冷却後粉砕した。エポキシ樹脂はエポキシ当量188、融点106℃の油化シェルエポキシ製エピコートYHー4000Hを、硬化剤は水酸基当量167、軟化点70℃の三井化学製ミレックスXL−225を用いた。
【0027】
比較例1、2、3
まず、下記の方法によりエポキシシランカップリング剤で表面処理した水酸化カルシウムを作製した。
水酸化カルシウムをヘンシェルミキサーに投入し、2000rpmで30秒間撹拌してから、γーグリシドキシプロピルトリメトキシシランを上記水酸化カルシウムに対して2重量%添加し、2000rpmで60秒間撹拌した。その後、180℃のオーブンで1時間乾燥した。
次に、実施例1、2、3と同様に表1に示す配合で比較例1、2、3の成形材料を作製した。
【0028】
【表1】
Figure 0003975381
【0029】
実施例および比較例で作製した成形材料の特性を、次に述べる各試験を行い評価した。各試験の試料は、トランスファ成形機を用い、金型温度180℃、成形圧力6.9MPa、硬化時間90秒で成形した。
(1)難燃性
厚さ1/16in.の試料を成形し、175℃で6時間後硬化させた後、UL94垂直試験法に従って評価した。
(2)熱時硬度
直径100mm、厚さ3mmの円盤試料成形用金型を用いて成形材料を成形し、成形直後の試料の熱時硬度をショアD硬度計を用いて測定した。なお、熱時硬度の値は数値が高いほど良いと評価する。
(3)曲げ強度
長さ70mm、幅10mm、厚さ3mmの試料を成形し、175℃で6時間後硬化させた後、スパン48mm、曲げ速度1.5mm/minの条件で3点曲げ試験を行い、曲げ強度を測定した。
(4)耐リフロー性
ICチップを成形材料で封止してQFP80ピンのパッケージを作製し、175℃で6時間後硬化させた後、85℃、85%RHで所定時間吸湿させ、VPS装置により215℃、90秒の条件でリフロー処理を行って、クラックの発生を観測し、試験数に対するクラック発生数で評価した。
(5)耐湿信頼性
ICチップを成形材料で封止してSOP28ピンのパッケージを作製し、175℃で6時間後硬化させた後、85℃、85%RHで72時間吸湿させ、VPS装置により215℃、90秒の条件でリフロー処理を行った。この試料を121℃、2気圧のPCT装置中に所定時間放置し、断線の有無により耐湿信頼性を評価した。
得られた評価結果を表2に示す。
【0030】
【表2】
Figure 0003975381
【0031】
本発明の実施例1、2、3は、いずれも難燃性が良好で、熱時硬度、曲げ強度、耐リフロー性、耐湿信頼性にも優れている。それに対して、比較例1では、本発明の金属水和物を含まないため、難燃性が悪く、また耐湿信頼性にも劣っている。一方、本発明のシリルイソシアネート化合物を含まない比較例2、3では、熱時硬度、曲げ強度、および耐リフロー性が劣っている。
【0032】
【発明の効果】
本発明によって得られる電子部品封止用エポキシ樹脂成形材料は、実施例で示した様に、ノンハロゲン、ノンアンチモンで難燃化を達成でき、かつ硬化性、硬化物特性に優れており、電子部品封止用として好適である。さらにそれを用いた電子部品は信頼性に優れ、かつその処分時等に環境、安全面の問題を生じないので、その工業的価値は大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin molding material for sealing that is excellent in flame retardancy, curability, and cured product characteristics, and an electronic component device that is provided with an element sealed using the same and that is excellent in solder heat resistance and moisture resistance reliability.
[0002]
[Prior art]
Resin sealing is the mainstream of elements for electronic component devices such as transistors and ICs from the viewpoint of productivity and cost. This sealing resin is mainly an epoxy resin that is excellent in electrical characteristics, cost, workability, etc., but since epoxy resin has insufficient flame retardancy, it has been conventionally used as a brominated epoxy resin or the like. Flame retardancy has been achieved by adding a brominated flame retardant and antimony oxide in combination.
[0003]
[Problems to be solved by the invention]
Halogen (bromine) flame retardants such as decabromo are suspected of producing dioxins during combustion, and antimony oxide is known to be toxic. The disposal method of electronic parts used has become a problem in terms of environment and safety, and there is an increasing demand for usage regulations. In addition, it is known that bromine ions have an adverse effect on the high-temperature standing characteristics of resin-encapsulated ICs. From this viewpoint, reduction of brominated flame retardants is desired.
Under such circumstances, various non-halogen and non-antimony flame retardants have been proposed. For example, metal hydrates such as aluminum hydroxide, magnesium hydroxide, and calcium hydroxide have the advantage of high safety and low cost. However, a large amount of addition is necessary for flame retardancy. It has the problem of impairing curability and cured product properties. Therefore, these metal hydrates are preliminarily surface-treated with an epoxy silane coupling agent or the like and then blended, but the effect cannot be said to be sufficient.
[0004]
The present invention is excellent in solder heat resistance and moisture resistance reliability, comprising an epoxy resin molding material for sealing that is non-halogen, non-antimony and excellent in flame retardancy, curability, and cured product characteristics, and an element sealed using the same. An electronic component device is to be provided.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the inventors have formulated a specific silyl isocyanate compound and a metal hydrate at the same time, or the metal hydrate is preliminarily surfaced with a specific silyl isocyanate compound. It discovered that said objective could be achieved by mix | blending after processing, and came to complete this invention.
[0006]
That is, the present invention
(1) (A) epoxy resin, (B) curing agent, (C) inorganic filler, (D) metal hydrate, (E) silyl isocyanate compound represented by the following general formula (I) as an essential component Epoxy resin molding material for sealing,
[Formula 4]
Figure 0003975381
(Here, n represents an integer of 1 to 4, and (4-n) Rs are selected from hydrogen and a substituted or unsubstituted monovalent hydrocarbon group, and may be all the same or different.)
(2) The epoxy resin molding material for sealing according to the above (1), wherein the metal hydrate of component (D) is previously surface-treated with the silyl isocyanate compound of component (E),
(3) The epoxy resin molding material for sealing according to (1) or (2) above, wherein the metal hydrate of component (D) contains magnesium hydroxide and / or calcium hydroxide,
(4) The epoxy resin molding material for sealing according to any one of (1) to (3) above, wherein the component (A) contains an epoxy resin represented by the following general formula (II):
[Chemical formula 5]
Figure 0003975381
(Here, R 1 to R 4 are selected from hydrogen and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and all may be the same or different. N represents 0 to 3. )
(5) The epoxy resin molding material for sealing according to any one of (1) to (4) above, wherein the component (B) contains a curing agent of the following general formula (III):
[Chemical 6]
Figure 0003975381
(Here, R is selected from hydrogen, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms and a halogen atom, and n represents 0 to 8.)
(6) An electronic component device including an element sealed with the sealing epoxy resin molding material according to any one of (1) to (5) above,
It is.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin of component (A) used in the present invention is not particularly limited as long as it is generally used in an epoxy resin molding material for sealing. For example, phenol novolac type epoxy resin, orthocresol novolak Type epoxy resins, bisphenol A novolac type epoxy resins and other epoxy and aldehyde novolak resins epoxidized; bisphenol A, bisphenol F, bisphenol S, diglycidyl ethers such as alkyl-substituted biphenols; diaminodiphenylmethane Glycidylamine type epoxy resin obtained by reaction of polyamine such as isocyanuric acid and epichlorohydrin; epoxidized product of co-condensation resin of dicyclopentadiene and phenol; epoxy resin having naphthalene ring; Epoxides of phthal aralkyl resins; trimethylolpropane type epoxy resins; terpene-modified epoxy resins; linear aliphatic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, and alicyclic epoxy resins The epoxy resin of the following general formula (II) is suitable from the viewpoint of reflow resistance.
[0008]
[Chemical 7]
Figure 0003975381
(Here, R 1 to R 4 are selected from hydrogen and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and all may be the same or different. N represents 0 to 3. )
For example, 4,4′-bis (2,3-epoxypropoxy) biphenyl and 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylbiphenyl Examples thereof include an epoxy resin as a main component, an epoxy resin obtained by reacting epichlorohydrin with 4,4′-hydroxybiphenyl or 4,4′-hydroxy-3,3 ′, 5,5′-tetramethylbiphenyl. . Among them, an epoxy resin mainly composed of 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylbiphenyl is preferable. When using this biphenyl type epoxy resin, it is preferable that the compounding quantity shall be 60 weight% or more with respect to the epoxy resin whole quantity. If it is less than 60% by weight, the low hygroscopicity and high adhesive properties of the epoxy resin are not exhibited, and the effect on the reflow resistance is small.
These epoxy resins may be used alone or in combination of two or more.
[0009]
The curing agent for the component (B) used in the present invention is not particularly limited as long as it functions as a curing agent for epoxy resins, and examples thereof include phenolic compounds, acid anhydrides, and amine compounds. Phenol compounds are preferred. Examples of phenolic compounds include phenols such as phenol, cresol, xylenol, hydroquinone, resorcin, catechol, bisphenol A, bisphenol F, or naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene, and formaldehyde, acetaldehyde, propionaldehyde. , A resin obtained by condensation or cocondensation with aldehydes such as benzaldehyde and salicylaldehyde under an acidic catalyst; a phenol resin having a xylylene skeleton synthesized from phenol and dimethoxyparaxylene; a phenol having a dicyclopentadiene skeleton Resin; Phenolic resin having cyclopentadiene skeleton; Melamine modified phenolic resin; Terpene modified phenolic resin; Polycyclic aromatic modified phenolic tree Fat; a naphthol resin having a xylylene skeleton, and the like can be used, and these can be used alone or in combination of two or more. Particularly from the viewpoint of reflow resistance, a phenol-aralkyl resin represented by the following general formula (III) is preferred. When using this hardening | curing agent, in order to exhibit the performance, it is preferable to set it as 60 weight% or more with respect to the hardening | curing agent whole quantity.
[0010]
[Chemical 8]
Figure 0003975381
(Here, R is selected from hydrogen, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms and a halogen atom, and n represents 0 to 8.)
Among these, those represented by the following formula (IV) and those having n of 0 to 8 on average are preferable.
[Chemical 9]
Figure 0003975381
[0011]
The chemical equivalent ratio of the epoxy resin of component (A) and the curing agent of component (B) is not particularly limited, but is preferably set in the range of 0.7 to 1.3 in order to suppress each unreacted component. . More preferably, it is 0.8-1.2.
[0012]
Moreover, the hardening accelerator which accelerates | stimulates hardening reaction of an epoxy resin and a hardening | curing agent can be used as needed. Examples of the curing accelerator include 1,8-diaza-bicyclo (5,4,0) undecene-7, 1,5-diaza-bicyclo (4,3,0) nonene, and 5,6-dibutylamino-1. , 8-diaza-bicyclo (5,4,0) undecene-7 and the like, and intramolecular polarization obtained by adding a compound having a π bond such as maleic anhydride, benzoquinone and diazophenylmethane to these compounds , Tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and their derivatives, 2-methylimidazole, 2-phenylimidazole, 2-phenyl -Imidazo, such as 4-methylimidazole and 2-heptadecylimidazole And their derivatives, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, and phenylphosphine, and compounds having a π bond such as maleic anhydride, benzoquinone, diazophenylmethane, etc. Phosphorus compounds with intramolecular polarization formed by addition, tetrasubstituted phosphonium tetrasubstituted borate such as tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium ethyltriphenylborate, tetrabutylphosphonium tetrabutylborate, 2-ethyl- Examples include tetraphenylboron salts such as 4-methylimidazole / tetraphenylborate and N-methylmorpholine / tetraphenylborate, and derivatives thereof. . Among these, organic phosphines, cycloamidine compounds, or adducts of these with benzoquinone are preferable. These may be used alone or in combination of two or more.
[0013]
The inorganic filler of component (C) used in the present invention is not particularly limited, but powders such as fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, boron nitride, beryllia, zirconia, etc. Or a single crystal fiber such as a bead obtained by spheroidizing these, potassium titanate, silicon carbide, silicon nitride, alumina, glass fiber, or the like may be used alone or in combination of two or more. Among the inorganic fillers, fused silica is preferable from the viewpoint of reducing the linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity. Although there is no restriction | limiting in particular about the shape of an inorganic filler, From the fluidity | liquidity at the time of shaping | molding, and mold abrasion property, it is preferable to make 50% or more spherical, and it is preferable to use especially spherical fused silica powder.
[0014]
The blending amount of the inorganic filler (C) is preferably 60% by weight or more, and more preferably 80 to 92% by weight with respect to the entire molding material. If the blending amount is less than 60% by weight, flame retardancy and solder heat resistance may be insufficient.
[0015]
The metal hydrate of the component (D) used in the present invention is not particularly limited. For example, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, nickel hydroxide, cobalt hydroxide, iron hydroxide, water Examples thereof include tin oxide, zinc hydroxide, copper hydroxide, titanium hydroxide, and the like. These may be used alone or in combination of two or more. In addition, composite metal hydrates of these metal hydrates and metal oxides such as nickel oxide, cobalt oxide, iron oxide, tin oxide, zinc oxide, copper oxide, and palladium oxide can also be used. Among the above metal hydrates, magnesium hydroxide and / or calcium hydroxide is preferably used from the viewpoint of safety and cost, flame retardancy and influence on formability. Although there is no restriction | limiting in particular about the shape of a metal hydrate, From the viewpoint of the fluidity | liquidity at the time of shaping | molding, the thing close | similar to spherical shapes, such as a hexagonal plate shape and a column shape, is more preferable than an amorphous shape or a needle shape.
[0016]
The compounding amount of the metal hydrate (D) is preferably 5 to 300 parts by weight, more preferably 10 to 150 parts by weight with respect to 100 parts by weight of the epoxy resin as the component (A). If the blending amount is less than 5 parts by weight, the flame retardancy tends to be insufficient, and if it exceeds 300 parts by weight, the curability and cured product properties tend to be lowered.
[0017]
As the silyl isocyanate compound of the component (E) used in the present invention, a silyl isocyanate compound represented by the following general formula (I) is used.
[Chemical Formula 10]
Figure 0003975381
(Here, n represents an integer of 1 to 4, and (4-n) Rs are selected from hydrogen and a substituted or unsubstituted monovalent hydrocarbon group, and may be all the same or different.)
R is hydrogen or a substituted or unsubstituted monovalent hydrocarbon group, preferably having 1 to 25 carbon atoms, more preferably 1 to 18 carbon atoms, and still more preferably 1 to 10 carbon atoms. Examples of such a substituted or unsubstituted monovalent hydrocarbon group having 1 to 25 carbon atoms include alkyl groups such as a methyl group, an ethyl group, and a propyl group, and aryl groups such as a phenyl group, a tolyl group, and a xylyl group. , Alkenyl groups such as vinyl group, allyl group and butenyl group, halogenated alkyl groups such as 3-chloropropyl group and 3,3,3-trifluoropropyl group, 3-aminopropyl group, N- (2-aminoethyl) ) -3-aminopropyl group, 3-mercaptopropyl group, 3-methacryloxypropyl group and the like, among which methyl group, vinyl group and phenyl group are preferable.
[0018]
Examples of the silyl isocyanate compound (E) represented by the general formula (I) include compounds represented by the following formulas (a) to (f).
Embedded image
Figure 0003975381
[0019]
These silyl isocyanate compounds (E) can be used alone or in combination of two or more.
The compounding amount of the silyl isocyanate compound (E) is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight, based on the metal hydrate of the component (D). If the blending amount is less than 0.1% by weight, the effect of improving the curability and cured product properties tends to be insufficient, and if it exceeds 10% by weight, the curability tends to decrease.
[0020]
The metal hydrate of component (D) in the present invention is preferably used after surface treatment with the silyl isocyanate compound of component (E) from the viewpoint of cured product characteristics. As the surface treatment method, any method can be used as long as the surface of the metal hydrate can be uniformly treated with the silyl isocyanate compound, but as a general method, a mixer having a large shearing force such as a Henschel mixer is used. Add the silyl isocyanate compound directly while stirring the metal hydrate, then dry at room temperature to 80 ° C, dissolve the silyl isocyanate compound in the solvent, add the metal hydrate to this and stir Thereafter, filtration, removal of the solvent, and then a wet method of drying at a temperature of room temperature to 80 ° C. can be exemplified.
[0021]
In addition to the above, the molding material in the present invention includes phosphorus-based flame retardants such as red phosphorus and phosphoric acid compounds; nitrogen-based flame retardants such as triazine derivatives; nickel oxide, cobalt oxide, iron oxide, tin oxide, zinc oxide, oxidation Metal compounds such as copper, molybdenum oxide, tungsten oxide, palladium oxide, zinc borate, and zinc molybdate can be appropriately added as flame retardant aids. Other additives such as higher fatty acids, higher fatty acid metal salts, ester waxes, polyolefin waxes, etc .; carbon black and other colorants; silanes, titanates, aluminates, etc. coupling agents; silicone powders If necessary, a softener such as a silicone oil or a silicone rubber powder, an ion trapping agent such as hydrotalcite or antimony-bismuth can be used.
[0022]
The method for preparing the molding material in the present invention may be any method as long as various raw materials can be uniformly dispersed and mixed, but as a general method, after a predetermined amount of raw materials are sufficiently mixed by a mixer or the like And a method of melt-kneading with a mixing roll, an extruder, etc., cooling and pulverizing. It is easy to use if it is tableted with dimensions and weight that match the molding conditions.
[0023]
ICs, transistors, diodes, active elements such as thyristors, and passive elements such as capacitors, resistors, and coils are mounted on support members such as lead frames, wired tape carriers, wiring boards, glass, and silicon wafers. And an electronic component apparatus can be manufactured by sealing a necessary part with the molding material for sealing of the present invention. As such an electronic component device, for example, a QFP in which a chip mounted on a copper lead frame is sealed with the molding material of the present invention, or an IC chip connected to a tape carrier with a bump is sealed with the molding material of the present invention. Can be mentioned. In addition, IC chips, active elements such as transistors, diodes, thyristors, etc. and / or passive elements such as capacitors, resistors, coils, etc., connected to wiring formed on wiring boards or glass by wire bonding, flip chip bonding, solder, etc. Can be mentioned COB modules, hybrid ICs, multichip modules and the like sealed with the molding material of the present invention.
[0024]
As the method for sealing the electronic component, the low-pressure transfer molding method is the most common, but an injection molding method, a compression molding method, or the like may be used.
[0025]
【Example】
EXAMPLES Next, although an Example demonstrates this invention, the scope of the present invention is not limited to these Examples.
[0026]
Examples 1, 2, 3
First, magnesium hydroxide and calcium hydroxide surface-treated with a silyl isocyanate compound were prepared by the following method.
Magnesium hydroxide was put into a Henschel mixer and stirred at 2000 rpm for 30 seconds. Then, 2% by weight of methylsilyl triisocyanate was added to the magnesium hydroxide and stirred at 2000 rpm for 60 seconds. Then, it dried in 60 degreeC oven for 3 hours. The surface treatment of calcium hydroxide was performed in the same manner.
Next, the molding materials of Examples 1, 2, and 3 were produced by the following method.
Each component was weighed with the formulation shown in Table 1 and premixed. Then, it knead | mixed for 10 minutes with the 80 degreeC biaxial mixing roll, and it grind | pulverized after cooling. As the epoxy resin, Epicote YH-4000H made of oiled shell epoxy having an epoxy equivalent of 188 and a melting point of 106 ° C. was used, and as a curing agent, Millex XL-225 made by Mitsui Chemicals having a hydroxyl equivalent of 167 and a softening point of 70 ° C. was used.
[0027]
Comparative Examples 1, 2, 3
First, calcium hydroxide surface-treated with an epoxysilane coupling agent was produced by the following method.
Calcium hydroxide was charged into a Henschel mixer and stirred at 2000 rpm for 30 seconds, and then 2% by weight of γ-glycidoxypropyltrimethoxysilane was added to the calcium hydroxide and stirred at 2000 rpm for 60 seconds. Then, it dried for 1 hour in 180 degreeC oven.
Next, molding materials of Comparative Examples 1, 2, and 3 were prepared with the formulations shown in Table 1 in the same manner as in Examples 1, 2, and 3.
[0028]
[Table 1]
Figure 0003975381
[0029]
The properties of the molding materials produced in the examples and comparative examples were evaluated by performing the following tests. Samples for each test were molded using a transfer molding machine at a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds.
(1) Flame-retardant thickness 1/16 in. The sample was molded and post-cured at 175 ° C. for 6 hours, and then evaluated according to the UL94 vertical test method.
(2) The molding material was molded using a disk sample molding die having a hot hardness diameter of 100 mm and a thickness of 3 mm, and the hot hardness of the sample immediately after molding was measured using a Shore D hardness meter. In addition, it is evaluated that the higher the numerical value of hot hardness, the better.
(3) Bending strength A sample having a length of 70 mm, a width of 10 mm, and a thickness of 3 mm was molded and post-cured at 175 ° C. for 6 hours, and then subjected to a three-point bending test under the conditions of a span of 48 mm and a bending speed of 1.5 mm / min. And the bending strength was measured.
(4) A reflow-resistant IC chip is sealed with a molding material to produce a QFP80 pin package, and after post-curing at 175 ° C. for 6 hours, moisture is absorbed at 85 ° C. and 85% RH for a predetermined time. Reflow treatment was performed under the conditions of 215 ° C. and 90 seconds, the occurrence of cracks was observed, and the number of cracks generated was evaluated with respect to the number of tests.
(5) Moisture-resistant reliability IC chip is sealed with a molding material to produce a SOP 28-pin package, and after post-curing at 175 ° C. for 6 hours, moisture is absorbed at 85 ° C. and 85% RH for 72 hours. The reflow treatment was performed at 215 ° C. for 90 seconds. This sample was left in a PCT apparatus at 121 ° C. and 2 atm for a predetermined time, and the moisture resistance reliability was evaluated by the presence or absence of disconnection.
The obtained evaluation results are shown in Table 2.
[0030]
[Table 2]
Figure 0003975381
[0031]
Examples 1, 2, and 3 of the present invention all have good flame retardancy and are excellent in hot hardness, bending strength, reflow resistance, and moisture resistance reliability. On the other hand, Comparative Example 1 does not contain the metal hydrate of the present invention, so that the flame retardancy is poor and the moisture resistance reliability is also poor. On the other hand, Comparative Examples 2 and 3, which do not contain the silyl isocyanate compound of the present invention, are inferior in heat hardness, bending strength, and reflow resistance.
[0032]
【The invention's effect】
As shown in the examples, the epoxy resin molding material for sealing electronic parts obtained by the present invention can achieve flame retardancy with non-halogen and non-antimony, and has excellent curability and cured product characteristics. Suitable for sealing. Furthermore, the electronic parts using them are excellent in reliability and do not cause environmental and safety problems at the time of disposal.

Claims (6)

(A)エポキシ樹脂、
(B)硬化剤、
(C)無機充填剤、
(D)金属水和物、
(E)下記一般式(I)で表わされるシリルイソシアネート化合物、
Figure 0003975381
(ここで、nは1〜4の整数を示し、(4−n)個のRは水素及び置換又は非置換の一価の炭化水素基から選ばれ、全て同一でも異なっていてもよい。)
を必須成分として含有する封止用エポキシ樹脂成形材料。
(A) epoxy resin,
(B) a curing agent,
(C) inorganic filler,
(D) metal hydrate,
(E) a silyl isocyanate compound represented by the following general formula (I):
Figure 0003975381
(Here, n represents an integer of 1 to 4, and (4-n) R are selected from hydrogen and a substituted or unsubstituted monovalent hydrocarbon group, and may be all the same or different.)
An epoxy resin molding material for sealing, containing as an essential component.
(D)成分の金属水和物が、(E)成分のシリルイソシアネート化合物であらかじめ表面処理されていることを特徴とする請求項1記載の封止用エポキシ樹脂成形材料。2. The epoxy resin molding material for sealing according to claim 1, wherein the metal hydrate of component (D) is surface-treated in advance with a silyl isocyanate compound of component (E). (D)成分の金属水和物が、水酸化マグネシウム及び/又は水酸化カルシウムを含むことを特徴とする請求項1又は請求項2記載の封止用エポキシ樹脂成形材料。3. The epoxy resin molding material for sealing according to claim 1 or 2, wherein the metal hydrate of component (D) contains magnesium hydroxide and / or calcium hydroxide. (A)成分が下記一般式(II)で示されるエポキシ樹脂を含むことを特徴とする請求項1〜3各項記載のいずれかの封止用エポキシ樹脂成形材料。
Figure 0003975381
(ここで、R1〜R4は水素及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、全て同一でも異なっていてもよい。nは0〜3を示す。)
(A) Component contains the epoxy resin shown by following general formula (II), The epoxy resin molding material for sealing in any one of Claims 1-3 characterized by the above-mentioned.
Figure 0003975381
(Here, R 1 to R 4 are selected from hydrogen and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and all may be the same or different. N represents 0 to 3. )
(B)成分が下記一般式(III)の硬化剤を含むことを特徴とする請求項1〜4各項記載のいずれかの封止用エポキシ樹脂成形材料。
Figure 0003975381
(ここで、Rは水素、炭素数1〜10の置換又は非置換の一価の炭化水素基及びハロゲン原子から選ばれ、nは0〜8を示す。)
(B) Component contains the hardening | curing agent of the following general formula (III), The epoxy resin molding material for sealing in any one of Claims 1-4 characterized by the above-mentioned.
Figure 0003975381
(Here, R is selected from hydrogen, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms and a halogen atom, and n represents 0 to 8.)
請求項1〜5各項記載のいずれかの封止用エポキシ樹脂成形材料により封止された素子を備える電子部品装置。An electronic component device comprising an element sealed with the sealing epoxy resin molding material according to any one of claims 1 to 5.
JP33926798A 1998-11-30 1998-11-30 Epoxy resin molding material for sealing and electronic component device Expired - Fee Related JP3975381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33926798A JP3975381B2 (en) 1998-11-30 1998-11-30 Epoxy resin molding material for sealing and electronic component device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33926798A JP3975381B2 (en) 1998-11-30 1998-11-30 Epoxy resin molding material for sealing and electronic component device

Publications (2)

Publication Number Publication Date
JP2000164749A JP2000164749A (en) 2000-06-16
JP3975381B2 true JP3975381B2 (en) 2007-09-12

Family

ID=18325842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33926798A Expired - Fee Related JP3975381B2 (en) 1998-11-30 1998-11-30 Epoxy resin molding material for sealing and electronic component device

Country Status (1)

Country Link
JP (1) JP3975381B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957957B2 (en) * 2000-07-24 2007-08-15 京セラケミカル株式会社 Resin composition for sealing and semiconductor sealing device

Also Published As

Publication number Publication date
JP2000164749A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
JP2024026589A (en) Sealing resin composition, electronic component device, and manufacturing method of electronic component device
KR100893022B1 (en) Curing accelerator, curable resin composition, and electronic part/device
KR100454380B1 (en) Encapsulant composition and an electronic device
JP2013249458A (en) Epoxy resin molding material for sealing and electronic component device
JP2001151867A (en) Epoxy resin molding compound for sealing use and electronic part device
JP2003321532A (en) Epoxy resin molding material for sealing and electronic part apparatus
JP6277611B2 (en) Epoxy resin molding material for device sealing and electronic component device
JP3994500B2 (en) Epoxy resin molding material for electronic component sealing and electronic component
JP4325000B2 (en) Epoxy resin molding material for sealing and electronic component device
JP3890681B2 (en) Epoxy resin molding material for electronic component sealing and electronic component
JP3975381B2 (en) Epoxy resin molding material for sealing and electronic component device
JP2006028264A (en) Epoxy resin molding material for encapsulation and electronic component device
JP2012107209A (en) Epoxy resin composition for sealing and electronic part device
JP2006002040A (en) Epoxy resin molding material for encapsulation and electronic component device
JPWO2020067016A1 (en) Manufacturing method of sealing resin composition, electronic component device and electronic component device
JP2006233189A (en) Hardening accelerator, hardenable resin composition, and electronic component device
JP2006077096A (en) Epoxy resin-molding material for sealing and electronic part device
JP2005225912A (en) Epoxy resin molding material for sealing and electronic part apparatus
JP2001207026A (en) Epoxy resin molding material for sealing and electronic part device
JP3870489B2 (en) Epoxy resin molding material for electronic component sealing and electronic component
JP2004143465A (en) Epoxy resin molding material for sealing and electronic component device
JP2000129094A (en) Epoxy resin molding material for sealing and electronic component device
JP2008115364A (en) Epoxy resin composition and electronic component device
JPH10212396A (en) Epoxy resin molding material for sealing electronic component and electronic part item sealed therewith
JP2024081461A (en) Sealing resin composition, electronic component device and method for producing electronic component device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees