JP3975009B2 - Vehicle travel safety device - Google Patents

Vehicle travel safety device Download PDF

Info

Publication number
JP3975009B2
JP3975009B2 JP23854598A JP23854598A JP3975009B2 JP 3975009 B2 JP3975009 B2 JP 3975009B2 JP 23854598 A JP23854598 A JP 23854598A JP 23854598 A JP23854598 A JP 23854598A JP 3975009 B2 JP3975009 B2 JP 3975009B2
Authority
JP
Japan
Prior art keywords
vehicle
overtaking
speed
contact
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23854598A
Other languages
Japanese (ja)
Other versions
JP2000067394A (en
Inventor
賢二 小▲高▼
智之 新村
洋一 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP23854598A priority Critical patent/JP3975009B2/en
Priority to US09/377,105 priority patent/US6269308B1/en
Publication of JP2000067394A publication Critical patent/JP2000067394A/en
Priority to US09/842,018 priority patent/US6317693B2/en
Priority to US09/842,009 priority patent/US6317692B2/en
Application granted granted Critical
Publication of JP3975009B2 publication Critical patent/JP3975009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーダー装置等の物体検出手段を用いて自車が対向車に接触するのを防止する車両の走行安全装置に関する。
【0002】
【従来の技術】
かかる車両の走行安全装置は、特開平7−14100号公報により既に知られている。
上記公報に記載されたものは、自車が対向車線に進入して対向車と衝突する可能性がある場合に、ドライバーに自発的な衝突回避操作を促すための警報を発したり、自車を自動的に制動したりした対向車との衝突を回避するようになっている。
【0003】
【発明が解決しようとする課題】
ところで、図3に示すように、車速Viおよびヨーレートγiに基づいて推定した自車Aiの将来の移動軌跡から、自車Aiの車体軸線を基準とした横移動量Y1 を算出するとともに、レーダー装置により自車Aiの車体軸線を基準とした対向車Aoの相対横距離Y2 を算出し、前記横移動量Y1 および前記相対横距離Y2 を比較することにより自車Aiおよび対向車Aoの衝突可能性を判定することが考えられる。しかしながら、図8に示すように、自車Aiが前走車Afを追い越す場合には、先ずステアリングホイールを右方向に操作して進路を右側に変更し、前走車Afを追い抜いた後にステアリングホイールを左方向に操作して元の進路に復帰するため、実際には対向車Aoと衝突する可能性が無いにも拘わらず、ステアリングホイールを右方向に操作した時点で対向車Aoと衝突する可能性が有ると誤判定されてしまう問題が発生する。
【0004】
本発明は前述の事情に鑑みてなされたもので、前走車等の追い越し時に、自車および対向車の接触可能性の誤判定に基づく接触回避操作が行なわれるのを未然に防止することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載された発明は、自車の進行方向に存在する物体を検出して自車および物体の相対的な位置関係を算出する物体検出手段と、自車の将来の移動軌跡を推定する移動軌跡推定手段と、自車が前記移動軌跡に沿って現在の対向車の位置まで進行したときの自車の推定位置と現在の対向車の位置との横方向の偏差である相対横偏差を算出する相対横偏差算出手段と、相対横偏差算出手段で算出した相対横偏差が所定範囲内にあるときに自車と対向車とが接触する可能性が有ると判定する接触可能性判定手段と、接触可能性判定手段が自車と対向車とが接触する可能性が有ると判定したときに自車の進行方向に存在する対向車の方向と逆方向に操舵装置を操舵する接触回避操作を自動的に行う接触回避手段と、自車が前走車を追い越し中であるか否かを判定する追い越し判定手段とを備えてなり、追い越し判定手段が自車が前走車を追い越し中であると判定したときに、接触回避手段は接触回避操作を抑制あるいは中止することを特徴とする。
【0006】
上記構成によれば、物体検出手段自車および対向車の相対的な位置関係を検出し、移動軌跡推定手段自車の将来の移動軌跡を推定すると、相対横偏差算出手段が自車が前記移動軌跡に沿って現在の対向車の位置まで進行したときの自車の推定位置と現在の対向車の位置との横方向の偏差である相対横偏差を算出する。接触可能性判定手段が前記相対横偏差が所定範囲内にある場合に自車と対向車とが接触する可能性が有ると判定すると、接触回避手段が対向車との接触を回避すべく、自車の進行方向に存在する対向車の方向と逆方向に操舵装置を操舵する接触回避操作を自動的に行うので、対向車との接触を確実に回避することができる。追い越し判定手段が自車が前走車を追い越し中であると判定すると、接触回避手段は接触回避操作を抑制あるいは中止するので、追い越し中に不要な接触回避操作が行われてドライバーの追い越し操作と干渉するのが防止され、ドライバーの違和感を解消することができる。
【0007】
また請求項2に記載された発明は、請求項1の構成に加えて、操舵角を検出する操舵角検出手段を備えてなり、追い越し判定手段は、物体検出手段で検出した前走車の相対速度と、物体検出手段で検出した前走車の相対距離と、操舵角検出手段で検出した操舵角とに基づいて、前走車に対する追い越し開始を判定することを特徴とする。
【0008】
上記構成によれば、追い越し判定手段が前走車の相対速度、前走車の相対距離および自車の操舵角に基づいて前走車に対する追い越し開始を判定するので、自車の操舵角だけに基づいて追い越し開始を判定するものに比べて的確な判定を行うことができる。
【0009】
また請求項3に記載された発明は、請求項2の構成に加えて、自車の車速を検出する車速検出手段と、前記前走車の相対速度および車速検出手段で検出した自車の車速に基づいて前走車の速度を算出する前走車速度算出手段とを備えてなり、追い越し判定手段は、前記自車の車速から算出した自車の移動距離と、前記前走車の速度から算出した前走車の移動距離と、追い越し開始時における前記前走車の相対距離とに基づいて、前走車に対する追い越し終了を判定することを特徴とする。
【0010】
上記構成によれば、追い越し判定手段が自車の移動距離、前走車の移動距離および追い越し開始時における前走車の相対距離に基づいて前走車に対する追い越し終了を判定するので、前走車を側方から検出する側方センサを用いることなく追い越し終了を的確に判定することができる。
【0011】
また請求項4に記載された発明は、請求項1〜3の何れかの構成に加えて、接触回避手段による接触回避操作の抑制が、操舵装置の作動タイミングの遅延、あるいは操舵装置の操舵量の低減であることを特徴とする。
【0012】
上記構成によれば、接触回避手段が操舵装置の作動タイミングを遅延し、あるいは操舵装置の操舵量を低減するので、追い越し中の接触回避操作を的確に抑制することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
図1〜図8は本発明の一実施例を示すもので、図1は走行安全装置を備えた車両の全体構成図、図2は走行安全装置のブロック図、図3は自車Aiおよび対向車Aoの相対関係を示す図、図4は電子制御ユニットの機能の説明図、図5は正面衝突回避制御手段の回路を説明するブロック図、図6は正面衝突回避制御ルーチンのフローチャート、図7はフラグセットルーチンのフローチャート、図8は追い越し時の作用説明図である。
【0014】
図1および図2に示すように、左右の前輪Wf,Wfおよび左右の後輪Wr,Wrを備えた車両は、操舵輪である左右の前輪Wf,Wfを操舵するためのステアリングホイール1と、ドライバーによるステアリングホイール1の操作をアシストする操舵力および衝突回避のための操舵力を発生する電動パワーステアリング装置2とを備える。電動パワーステアリング装置2の作動を制御する電子制御ユニットUには、レーダー3に連なるレーダー情報処理装置4と、各車輪Wf,Wf;Wr,Wrの回転数を検出する車速センサS1 …と、車体のヨーレートを検出するヨーレートセンサS2 と、ステアリングホイール1の操舵角を検出する操舵角センサS3 と、ドライバーによりステアリングホイール1に加えられる操舵トルクを検出する操舵トルクセンサS4 とからの信号が入力される。電子制御ユニットUは、レーダー情報処理装置4および各センサS1 …,S2 ,S3 ,S4 からの信号に基づいて電動パワーステアリング装置2の作動を制御するとともに、液晶ディスプレイよりなる表示器7およびブザーやランプよりなる警報器8の作動を制御する。
【0015】
レーダー3は自車前方の左右方向所定範囲に向けて電磁波を送信し、その電磁波が物体に反射された反射波を受信するもので、本発明の物体検出手段を構成するレーダー情報処理装置4は、レーダー3からの信号に基づいて自車Aiと対向車Aoとの相対的な位置関係を算出する。図3に示すように、自車Aiと対向車Aoとの相対的な位置関係とは、自車Aiと対向車Aoとの相対距離ΔLと、自車Aiと対向車Aoとの相対速度ΔV(すなわち、自車Aiの車速Viと対向車Aoの車速Voとの差)と、自車Aiの車体軸線に対する対向車Aoの相対横距離Y2 とである。相対横距離Y2 は、自車Aiの車体軸線に対する対向車Aoの成す角度βと、自車Aiおよび対向車Aoの相対距離ΔLとに基づいて算出可能である。レーダー3は対向車Ao以外に先行車Af(図8参照)や道路上の静止物を検出するが、検出された相対速度ΔVの大きさに基づいて対向車Aoを先行車Afや静止物から判別することができる。尚、本実施例では、1回の送受信で自車Aiと対向車Aoとの上記相対関係(ΔL,ΔV,β)を検出することができるミリ波レーダーが用いられる。
【0016】
図4に示すように、電子制御ユニットUは電動パワーステアリング制御手段11と、正面衝突回避制御手段12と、切換手段13と、出力電流決定手段14とを備える。通常時は切換手段13が電動パワーステアリング制御手段11側に接続されており、電動パワーステアリング装置2は通常のパワーステアリング機能を発揮する。すなわち、ステアリングホイール1に入力される操舵トルクと車速とに応じて出力電流決定手段14がアクチュエータ15への出力電流を決定し、この出力電流を駆動回路16を介してアクチュエータ15に出力することにより、ドライバーによるステアリングホイール1の操作がアシストされる。一方、自車Aiが対向車Aoと正面衝突する可能性がある場合には切換手段13が正面衝突回避制御手段12側に接続され、正面衝突回避制御手段12でアクチュエータ15の駆動を制御することにより、対向車Aoとの正面衝突を回避するための自動操舵が実行される。この自動操舵の内容は後から詳述する。
【0017】
図5に示すように、電子制御ユニットUの正面衝突回避制御手段12の内部には、移動軌跡推定手段M1と、相対横偏差算出手段M2と、接触可能性判定手段M3と、接触回避手段M4と、追い越し判定手段M5と、前走車速度算出手段M6とが設けられる。
【0018】
移動軌跡推定手段M1は、自車Aiの車速Viおよび自車Aiのヨーレートγiに基づいて自車Aiの将来の移動軌跡を推定する。相対横偏差算出手段M2は、自車Aiの将来の移動軌跡(すなわち横移動量Y1 )と、物体検出手段4(レーダー情報処理装置4)で検出した自車Aiと対向車Aoとの間の相対距離ΔL、相対速度ΔVおよび角度βとに基づいて、自車Aiと対向車Aoとの相対横偏差ΔYを算出する。接触可能性判定手段M3は、前記相対横偏差ΔYが−ε≦ΔY≦εの状態にあるとき、自車Aiと対向車Aoとが接触する可能性が有ると判定する。接触回避手段M4は、接触可能性判定手段M3が接触可能性が有ると判定したとき、自車Aiと対向車Aoとの接触を回避すべく電動パワーステアリング装置2を介して接触回避操作を実行する。
【0019】
このとき、追い越し判定手段M5が、自車Aiが前走車Afを追い越し中であると判定すると、接触回避手段M4が接触回避操作を抑制あるいは中止することにより、追い越し中における接触可能性の誤判定に基づく不要な接触回避操作が行われるのが回避される。
追い越し判定手段M5による追い越し開始の判定は、物体検出手段4で検出した前走車Afの相対速度ΔV′と、物体検出手段4で検出した前走車Afの相対距離ΔL′と、操舵角検出手段S3 (操舵角センサS3 )で検出した操舵角θとに基づいて行われ、また追い越し判定手段M5による追い越し終了の判定は、自車Aiの移動距離と、前走車Afの移動距離と、前走車Afの相対距離ΔL′とに基づいて行われる。このとき、自車Aiの移動距離は、車速検出手段S1 (車速センサS1 )で検出した自車Aiの車速Viに基づいて算出され、また前走車Afの移動距離は、前走車Afの相対速度Vfと自車Aiの車速Viとから前走車速度算出手段M6が算出した前走車Afの車速Vfに基づいて算出される。
【0020】
次に、本発明の実施例の作用を図6および図7のフローチャートを参照して説明する。
先ず、図6のフローチャートのステップS1で、レーダー情報処理装置4から電子制御ユニットUに自車Aiと対向車Aoとの相対距離ΔLと、自車Aiと対向車Aoとの相対速度ΔVと、自車Aiの車体軸線に対する対向車Aoの相対横距離Y2 とを読み込む。続くステップS2で、車速センサS1 …で検出した自車Aiの車速Viと、ヨーレートセンサS2 で検出した自車Aiのヨーレートγiとに基づいて横移動量Y1 を算出する。図3に示すように、横移動量Y1 は、自車Aiが現在の対向車Aoの位置まで進行したときに発生する横方向の移動量であって、次のようにして算出される。すなわち、自車Aiが現在の対向車Aoの位置に達するまでの時間t1 は、相対距離ΔLを自車Aiの車速Viで除算したΔL/Viで与えられるので、時間t1 =ΔL/Viが経過したときの自車Aiの横移動量Y1 は、自車Aiの車速Viおよび自車Aiのヨーレートγiを用いると、
1 =(1/2)・Vi・γi・(ΔL/Vi)2 …(1)
で与えられる。
【0021】
続くステップS3で、相対横距離Y2 から横移動量Y1 を減算することにより、相対横偏差ΔYを算出する。
【0022】
ΔY=Y2 −Y1 …(2)
図3から明らかなように、相対横偏差ΔYは、自車Aiが現在の対向車Aoの位置まで進行したときに、現在の対向車Aoの位置と、自車Aiの推定位置との間の横方向の偏差に相当する。相対横偏差ΔYは正負の値を持ち、本実施例の左側通行の場合には、Y2 >Y1 で相対横偏差ΔYが正であれば自車Aiの推定移動軌跡は現在の対向車Aoの位置の左側を通過し、Y2 <Y1 で相対横偏差ΔYが負であれば自車Aiの推定移動軌跡は現在の対向車Aoの位置の右側を通過する。そして、この相対横偏差ΔYの絶対値が小さいほど、自車Aiが対向車Aoに接触する可能性が高いことになる。
【0023】
続くステップS4で、前記相対横偏差ΔYが予め設定した範囲にあるか否かを判定する。すなわち、自動車の車体の横幅に基づいて予め設定した所定値ε(例えば2m)に基づく所定範囲に相対横偏差ΔYが入っており、従って、
−ε≦ΔY≦ε …(3)
が成立する場合には、自車Aiが対向車Aoに衝突する可能性があるとの第1段階の判定を行なう。一方、前記(3)式が成立しないときには、自車Aiが対向車Aoの左側あるいは右側をすり抜けて衝突が発生しないと判定して、衝突回避のための警報や操舵制御を実行せずにステップS1に復帰する。
【0024】
続くステップS5で、自車Aiが前走車Afを追い越し中であるか否かを識別するための追い越し判定フラグの状態を参照する。前記追い越し判定フラグは、自車Aiが前走車Afを追い越し中である場合に「1」にセットされ、逆に追い越し中でない場合に「0」にリセットされるものであり、以下、図7のフローチャートに基づいてその説明を行う。
先ず、ステップS11で、レーダー情報処理装置4から前走車Afを含む物体と自車Aiとの相対距離ΔL′を読み込むとともに、前走車Afを含む物体と自車Aiとの相対速度ΔV′を読み込む。続くステップS12で、車速センサS1 …で検出した自車Aiの車速Viと、操舵角センサS3 で検出した自車Aiの操舵角θとを読み込む。続くステップS13で、前記相対速度ΔV′に基づいて対向車Aoから前走車Afを識別する。対向車Aoは自車Aiと逆方向に走行するので相対速度ΔV′の絶対値が大きくなるが、前走車Afは自車Aiと同方向に走行するので相対速度ΔV′の絶対値は小さくなることから、相対速度ΔV′の絶対値が所定値以下のものを前走車Afであると判定することができる。尚、自車Aiの車速Viが前走車Afの車速Vfよりも大きいときには相対速度ΔV′は負値になり、自車Aiの車速Viが前走車Afの車速Vfよりも小さいときには相対速度ΔV′は正値になる。
【0025】
続くステップS14で自車Aiと前走車Afとの相対速度ΔV′が負値でなければ、つまり自車Aiの車速Viが前走車Afの車速Vfよりも小さいときには、自車Aiは追い越し状態にないと判定し、ステップS20で追い越し判定フラグを「0」にリセットする。またステップS15では、自車Aiおよび前走車Afの相対距離ΔL′の変化を監視し、前記相対距離ΔL′が減少していなければ自車Aiは追い越し状態にないと判定し、ステップS20で追い越し判定フラグを「0」にリセットする。またステップS16では、操舵角センサS3 で検出した操舵角θを閾値θ0 と比較し、θ≧θ0 が成立していなければ自車Aiは追い越し状態にないと判定し、ステップS20で追い越し判定フラグを「0」にリセットする。
【0026】
一方、前記ステップS14でΔV′<0が成立して自車Aiの車速Viが前走車Afの車速Vfよりも大きくなっており、前記ステップS15で自車Aiと前走車Afとの相対距離ΔL′が減少しており、且つ前記ステップS16でθ≧θ0 が成立してステアリングホイール1が大きく操舵されていれば、自車Aiは追い越し状態に入った判定してステップS17で追い越し判定フラグを「1」にセットする。
【0027】
続くステップS18で、追い越しが開始されたときの自車Aiの位置を基準とする自車Aiの走行位置Xiと前走車Afの走行位置Xfとを算出する。自車Aiの走行位置Xiは、自車Aiの車速を時間で積分して移動距離を算出することにより、次式で与えられえる。
【0028】
Xi=∫Vidt …(4)
また前走車Afの走行位置Xfは、前走車Afが追い越し開始時の車速Vfを保持していると仮定し、更に追い越し開始時の相対距離ΔL′と、追い越し開始からの経過時間tとを用いて、次式で与えられえる。
【0029】
Xf=ΔL′+Vf・t …(5)
続くステップS19で、自車Aiの走行位置Xiおよび前走車Afの走行位置Xfを比較し、Xi≦Xfであれば自車Aiが前走車Afの手前にあって未だ追い越し中であると判定し、Xi>Xfであれば自車Aiが前走車Afの前方に出て追い越しが終了したと判定する。そして追い越し終了が判定されると、ステップS20で追い越し判定フラグを「0」にリセットする。
【0030】
図6のフローチャートに戻り、前記ステップS5で追い越し判定フラグが「0」にリセットされていて自車Aiが前走車Afを追い越し中でない場合には、ステップS6で、衝突回避制御の開始タイミングを決定すべく、自車Aiが衝突予測地点に達するまでの時間t0 を算出し、この時間t0 を予め設定した閾値τ0 と比較する。自車Aiが衝突予測地点に達するまでの時間t0 は、自車Aiおよび対向車Aoの相対距離ΔLを相対速度ΔVで除算することにより算出可能である。
【0031】
0 =ΔL/ΔV …(6)
また前記閾値τ0 は、ドライバーが自発的な衝突回避操舵を開始するタイミングに相当するもので、実験的に求められる。而して、ステップS6でt0 がτ0 以下になると、ステップS7で表示器7および警報器8を作動させてドライバーに警報を発するとともに、衝突回避のための自動操舵を実行する。
【0032】
衝突回避のための自動操舵を実行している間に、ステップS8でドライバーの自発的な衝突回避操作が検出されると、例えば操舵トルクセンサによりドライバーがステアリングホイール1を操作したことが検出されたり、ブレーキペダルの踏力センサによりドライバーが制動を行ったことが検出されると、ステップS9で警報や衝突回避のための自動操舵を中止する。これにより、ドライバーの自発的な衝突回避操作が自動操舵と干渉するのが防止され、ドライバーの衝突回避操作を優先して違和感を解消することができる。
【0033】
一方、前記ステップS5で追い越し判定フラグが「1」にセットされていて自車Aiが前走車Afを追い越し中である場合には、ステップS10で、衝突回避のための操舵制御を抑制する。この操舵制御の抑制は、例えば目標操舵角の減少や操舵開始タイミングの遅延により達成される。操舵開始タイミングを遅らせる場合には、衝突回避制御の開始タイミングを決定閾値τ0 の値を通常時よりも小さくすれば良い。これにより、ドライバーが自己の意志に基づいて追い越しを行っている間に、対向車Aoとの衝突を回避するための自動操舵が不用意に行われるのを防止し、ドライバーの違和感を解消することができる。尚、追い越し中にドライバーの対向車Aoに対する注意がおろそかにならないように、対向車Aoとの衝突の可能性がある場合には警報だけを行うものとする。
【0034】
このように、自車Aiおよび前走車Afの相対的な位置関係と、自車Aiの操舵角θとに基づいて追い越し開始の判定を行うので、操舵角θだけに基づいて判定を行う場合に比べて判定精度を高めることができる。また追い越し開始後の自車Aiの走行位置Xiおよび前走車Afの走行位置Xfに基づいて追い越し終了の判定を行うので、前走車Afを側方から検出するための側方センサを設けることなく追い越しの終了を判定することができる。
【0035】
以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0036】
例えば、実施例では追い越し中に衝突回避のための操舵制御を抑制しているが、その操舵制御を中止しても良い。また実施例では走行している前走車Afを追い越す場合について説明したが、本発明は道路に停止している前走車Afや、道路上に落下した障害物の側方を迂回して回避する場合にも同様にして適用可能である。従って、本発明における前走車Afには走行中の前走車Af以外に停止中の前走車Afや道路上の静止物も含まれるものとする。また操舵角センサS3 で検出される操舵角θは、車輪の転舵角で代用することができる。
【0037】
【発明の効果】
以上のように請求項1に記載された発明によれば、物体検出手段自車および対向車の相対的な位置関係を検出し、移動軌跡推定手段自車の将来の移動軌跡を推定すると、相対横偏差算出手段が自車が前記移動軌跡に沿って現在の対向車の位置まで進行したときの自車の推定位置と現在の対向車の位置との横方向の偏差である相対横偏差を算出する。接触可能性判定手段が前記相対横偏差が所定範囲内にある場合に自車と対向車とが接触する可能性が有ると判定すると、接触回避手段が対向車との接触を回避すべく、自車の進行方向に存在する対向車の方向と逆方向に操舵装置を操舵する接触回避操作を自動的に行うので、対向車との接触を確実に回避することができる。追い越し判定手段が自車が前走車を追い越し中であると判定すると、接触回避手段は接触回避操作を抑制あるいは中止するので、追い越し中に不要な接触回避操作が行われてドライバーの追い越し操作と干渉するのが防止され、ドライバーの違和感を解消することができる。
【0038】
また請求項2に記載された発明によれば、追い越し判定手段が前走車の相対速度、前走車の相対距離および自車の操舵角に基づいて前走車に対する追い越し開始を判定するので、自車の操舵角だけに基づいて追い越し開始を判定するものに比べて的確な判定を行うことができる。
【0039】
また請求項3に記載された発明によれば、追い越し判定手段が自車の移動距離、前走車の移動距離および追い越し開始時における前走車の相対距離に基づいて前走車に対する追い越し終了を判定するので、前走車を側方から検出する側方センサを用いることなく追い越し終了を的確に判定することができる。
【0040】
また請求項4に記載された発明によれば、接触回避手段が操舵装置の作動タイミングを遅延し、あるいは操舵装置の操舵量を低減するので、追い越し中の接触回避操作を的確に抑制することができる。
【図面の簡単な説明】
【図1】 走行安全装置を備えた車両の全体構成図
【図2】 走行安全装置のブロック図
【図3】 自車Aiおよび対向車Aoの相対関係を示す図
【図4】 電子制御ユニットの機能の説明図
【図5】 正面衝突回避制御手段の回路を説明するブロック図
【図6】 正面衝突回避制御ルーチンのフローチャート
【図7】 フラグセットルーチンのフローチャート
【図8】 追い越し時の作用説明図
【符号の説明】
2 パワーステアリング装置(操舵手段)
4 レーダー情報処理装置(物体検出手段)
Af 前走車
Ai 自車
Ao 対向車
M1 移動軌跡推定手段
M2 相対横偏差算出手段
M3 接触可能性判定手段
M4 接触回避手段
M5 追い越し判定手段
M6 前走車速度算出手段
1 車速センサ(車速検出手段)
3 操舵角センサ(操舵角検出手段)
Vf 前走車の速度
Vi 車速
−ε〜ε 所定範囲
θ 操舵角
ΔL′ 相対距離
ΔV′ 相対速度
ΔY 相対横偏差
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle travel safety device that prevents an own vehicle from coming into contact with an oncoming vehicle using an object detection means such as a radar device.
[0002]
[Prior art]
Such a vehicle safety device is already known from JP-A-7-14100.
What is described in the above publication is that if there is a possibility that the vehicle will enter the oncoming lane and collide with the oncoming vehicle, a warning will be issued to prompt the driver to perform a collision avoidance operation, Collisions with oncoming vehicles that have been braked automatically are avoided.
[0003]
[Problems to be solved by the invention]
By the way, as shown in FIG. 3, the lateral movement amount Y 1 with respect to the vehicle body axis of the own vehicle Ai is calculated from the future movement locus of the own vehicle Ai estimated based on the vehicle speed Vi and the yaw rate γi, and the radar The apparatus calculates the relative lateral distance Y 2 of the oncoming vehicle Ao with reference to the vehicle body axis of the own vehicle Ai, and compares the lateral movement amount Y 1 and the relative lateral distance Y 2 to compare the own vehicle Ai and the oncoming vehicle Ao. It is conceivable to determine the possibility of collision. However, as shown in FIG. 8, when the own vehicle Ai overtakes the preceding vehicle Af, the steering wheel is first operated to the right to change the course to the right side, and after passing the preceding vehicle Af, the steering wheel The left side is operated to return to the original course, so it is possible to collide with the oncoming vehicle Ao when the steering wheel is operated to the right even though there is no possibility of actually colliding with the oncoming vehicle Ao. There is a problem that it is erroneously determined that there is a property.
[0004]
The present invention has been made in view of the above-described circumstances, and it is possible to prevent a contact avoidance operation based on a misjudgment of the possibility of contact between the own vehicle and the oncoming vehicle from being performed when overtaking a preceding vehicle or the like. Objective.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the invention described in claim 1 includes an object detection means for detecting an object existing in the traveling direction of the host vehicle and calculating a relative positional relationship between the host vehicle and the object, A trajectory estimating means for estimating a future trajectory of the vehicle, and a side of the estimated position of the own vehicle and the current position of the oncoming vehicle when the host vehicle travels to the current oncoming vehicle position along the moving trajectory. there the relative lateral deviation calculating means for calculating the relative lateral deviation which is a direction of the deviation, possibly relative transverse deviation calculated by the relative lateral deviation calculating means contact between the vehicle and the oncoming vehicle when in a predetermined range When the contact possibility determination means and the contact possibility determination means determine that there is a possibility of contact between the host vehicle and the oncoming vehicle, the direction of the oncoming vehicle is opposite to the direction of the oncoming vehicle. Contact avoiding means for automatically performing a contact avoiding operation of steering the steering device; An overtaking judging means for judging whether or not the own vehicle is overtaking the preceding vehicle, and a contact avoidance means when the overtaking judging means judges that the own vehicle is overtaking the preceding vehicle. Is characterized by suppressing or canceling the contact avoidance operation.
[0006]
According to the above arrangement, the object detecting means detects the relative positional relationship between the vehicle and the oncoming vehicle, the movement locus estimating means for estimating a future locus of movement of the vehicle, the relative lateral deviation calculating means is the vehicle A relative lateral deviation, which is a lateral deviation between the estimated position of the host vehicle and the current oncoming vehicle position when traveling to the current oncoming vehicle position along the movement locus, is calculated. If the contact possibility determining means determines that there is a possibility of contact between the own vehicle and the oncoming vehicle when the relative lateral deviation is within the predetermined range, the contact avoiding means is configured to avoid contact with the oncoming vehicle. Since the contact avoidance operation of steering the steering device in the direction opposite to the direction of the oncoming vehicle existing in the traveling direction of the vehicle is automatically performed, the contact with the oncoming vehicle can be reliably avoided. If the overtaking determination means determines that the host vehicle is overtaking the preceding vehicle, the contact avoidance means suppresses or cancels the contact avoidance operation, so that an unnecessary contact avoidance operation is performed during overtaking and the driver's overtaking operation. Interference is prevented and the driver's uncomfortable feeling can be resolved.
[0007]
In addition to the structure of claim 1, the invention described in claim 2 is provided with a steering angle detection means for detecting a steering angle, and the overtaking determination means is a relative of the preceding vehicle detected by the object detection means. Based on the speed, the relative distance of the preceding vehicle detected by the object detection means, and the steering angle detected by the steering angle detection means, the start of overtaking for the preceding vehicle is determined.
[0008]
According to the above configuration, the overtaking determination means determines the start of overtaking for the preceding vehicle based on the relative speed of the preceding vehicle, the relative distance of the preceding vehicle, and the steering angle of the own vehicle. An accurate determination can be made as compared with the case where the start of overtaking is determined based on this.
[0009]
In addition to the configuration of claim 2, the invention described in claim 3 includes vehicle speed detection means for detecting the vehicle speed of the host vehicle, and the vehicle speed of the host vehicle detected by the relative speed of the preceding vehicle and the vehicle speed detection means. A preceding vehicle speed calculating means for calculating the speed of the preceding vehicle based on the vehicle, and the overtaking determining means is based on the moving distance of the own vehicle calculated from the vehicle speed of the own vehicle and the speed of the preceding vehicle. Based on the calculated distance traveled by the preceding vehicle and the relative distance of the preceding vehicle at the time of overtaking, the end of overtaking with respect to the preceding vehicle is determined.
[0010]
According to the above configuration, the overtaking determination means determines the overtaking end with respect to the preceding vehicle based on the moving distance of the own vehicle, the moving distance of the preceding vehicle, and the relative distance of the preceding vehicle at the time of starting overtaking. It is possible to accurately determine the end of overtaking without using a side sensor that detects from the side.
[0011]
According to a fourth aspect of the present invention, in addition to the configuration of any one of the first to third aspects, the suppression of the contact avoidance operation by the contact avoiding means is a delay in the operation timing of the steering device or the steering amount of the steering device. It is characterized by the reduction of.
[0012]
According to the above configuration, the contact avoiding means delays the operation timing of the steering device or reduces the steering amount of the steering device, so that the contact avoiding operation during overtaking can be accurately suppressed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
1 to 8 show an embodiment of the present invention. FIG. 1 is an overall configuration diagram of a vehicle equipped with a travel safety device, FIG. 2 is a block diagram of the travel safety device, and FIG. FIG. 4 is an explanatory diagram of functions of the electronic control unit, FIG. 5 is a block diagram illustrating a circuit of a front collision avoidance control means, FIG. 6 is a flowchart of a front collision avoidance control routine, and FIG. Is a flowchart of the flag set routine, and FIG. 8 is an explanatory diagram of the action at the time of overtaking.
[0014]
As shown in FIGS. 1 and 2, a vehicle including left and right front wheels Wf, Wf and left and right rear wheels Wr, Wr includes a steering wheel 1 for steering left and right front wheels Wf, Wf, And an electric power steering device 2 that generates a steering force for assisting the driver to operate the steering wheel 1 and a steering force for avoiding a collision. The electronic control unit U that controls the operation of the electric power steering device 2 includes a radar information processing device 4 connected to the radar 3, a vehicle speed sensor S 1 that detects the rotational speed of each wheel Wf, Wf; Wr, Wr, Signals from a yaw rate sensor S 2 that detects the yaw rate of the vehicle body, a steering angle sensor S 3 that detects the steering angle of the steering wheel 1, and a steering torque sensor S 4 that detects the steering torque applied to the steering wheel 1 by the driver Is entered. The electronic control unit U controls the operation of the electric power steering device 2 on the basis of signals from the radar information processing device 4 and the sensors S 1 ... S 2 , S 3 , S 4, and a display composed of a liquid crystal display. 7 and the operation of the alarm 8 comprising a buzzer and a lamp are controlled.
[0015]
The radar 3 transmits an electromagnetic wave toward a predetermined range in the left-right direction in front of the host vehicle, and receives a reflected wave reflected by the object. The radar information processing apparatus 4 constituting the object detection unit of the present invention includes: Based on the signal from the radar 3, the relative positional relationship between the host vehicle Ai and the oncoming vehicle Ao is calculated. As shown in FIG. 3, the relative positional relationship between the host vehicle Ai and the oncoming vehicle Ao includes the relative distance ΔL between the host vehicle Ai and the oncoming vehicle Ao, and the relative speed ΔV between the host vehicle Ai and the oncoming vehicle Ao. (i.e., the difference between the vehicle speed Vo in the vehicle speed Vi and the oncoming vehicle Ao of the vehicle Ai) and a relative transverse distance Y 2 Doo oncoming Ao with respect to the vehicle body axis of the vehicle Ai. The relative lateral distance Y 2 can be calculated based on the angle β formed by the oncoming vehicle Ao with respect to the vehicle body axis of the own vehicle Ai and the relative distance ΔL between the own vehicle Ai and the oncoming vehicle Ao. In addition to the oncoming vehicle Ao, the radar 3 detects the preceding vehicle Af (see FIG. 8) and a stationary object on the road. The radar 3 detects the oncoming vehicle Ao from the preceding vehicle Af and the stationary object based on the detected relative speed ΔV. Can be determined. In this embodiment, a millimeter wave radar that can detect the relative relationship (ΔL, ΔV, β) between the host vehicle Ai and the oncoming vehicle Ao by one transmission and reception is used.
[0016]
As shown in FIG. 4, the electronic control unit U includes electric power steering control means 11, frontal collision avoidance control means 12, switching means 13, and output current determination means 14. Normally, the switching means 13 is connected to the electric power steering control means 11 side, and the electric power steering device 2 exhibits a normal power steering function. That is, the output current determining means 14 determines the output current to the actuator 15 according to the steering torque and the vehicle speed input to the steering wheel 1, and outputs this output current to the actuator 15 via the drive circuit 16. The operation of the steering wheel 1 by the driver is assisted. On the other hand, when there is a possibility that the own vehicle Ai collides with the oncoming vehicle Ao, the switching means 13 is connected to the front collision avoidance control means 12 side, and the front collision avoidance control means 12 controls the driving of the actuator 15. Thus, automatic steering for avoiding a frontal collision with the oncoming vehicle Ao is executed. The details of this automatic steering will be described later.
[0017]
As shown in FIG. 5, in the front collision avoidance control means 12 of the electronic control unit U, there are a movement trajectory estimation means M1, a relative lateral deviation calculation means M2, a contact possibility determination means M3, and a contact avoidance means M4. And overtaking determination means M5 and forward vehicle speed calculation means M6.
[0018]
The movement locus estimation means M1 estimates the future movement locus of the own vehicle Ai based on the vehicle speed Vi of the own vehicle Ai and the yaw rate γi of the own vehicle Ai. Relative lateral deviation calculation means M2 is provided between the future movement trajectory of own vehicle Ai (that is, lateral movement amount Y 1 ) and own vehicle Ai detected by object detection means 4 (radar information processing device 4) and oncoming vehicle Ao. The relative lateral deviation ΔY between the host vehicle Ai and the oncoming vehicle Ao is calculated based on the relative distance ΔL, the relative speed ΔV, and the angle β. The contact possibility determination means M3 determines that there is a possibility that the own vehicle Ai and the oncoming vehicle Ao are in contact with each other when the relative lateral deviation ΔY is in a state of −ε ≦ ΔY ≦ ε. When the contact avoidance means M4 determines that the contact possibility determination means M3 has contact possibility, the contact avoidance means M4 performs a contact avoidance operation via the electric power steering device 2 to avoid contact between the host vehicle Ai and the oncoming vehicle Ao. To do.
[0019]
At this time, if the overtaking determination unit M5 determines that the host vehicle Ai is overtaking the preceding vehicle Af, the contact avoiding unit M4 suppresses or cancels the contact avoiding operation, thereby causing an erroneous contact possibility during overtaking. An unnecessary contact avoidance operation based on the determination is avoided.
The determination of the overtaking start by the overtaking determination means M5 is performed by detecting the relative speed ΔV ′ of the preceding vehicle Af detected by the object detection means 4, the relative distance ΔL ′ of the preceding vehicle Af detected by the object detection means 4, and the steering angle detection. Based on the steering angle θ detected by the means S 3 (steering angle sensor S 3 ), the overtaking determination by the overtaking determination means M5 is determined by the movement distance of the own vehicle Ai and the movement distance of the preceding vehicle Af. And the relative distance ΔL ′ of the preceding vehicle Af. At this time, the moving distance of the own vehicle Ai is calculated based on the vehicle speed Vi of the own vehicle Ai detected by the vehicle speed detecting means S 1 (vehicle speed sensor S 1 ), and the moving distance of the preceding vehicle Af is calculated as the preceding vehicle. It is calculated based on the vehicle speed Vf of the preceding vehicle Af calculated by the preceding vehicle speed calculation means M6 from the relative speed Vf of Af and the vehicle speed Vi of the host vehicle Ai.
[0020]
Next, the operation of the embodiment of the present invention will be described with reference to the flowcharts of FIGS.
First, in step S1 of the flowchart of FIG. 6, the radar information processing apparatus 4 sends the electronic control unit U the relative distance ΔL between the host vehicle Ai and the oncoming vehicle Ao, the relative speed ΔV between the host vehicle Ai and the oncoming vehicle Ao, The relative lateral distance Y 2 of the oncoming vehicle Ao with respect to the vehicle body axis of the own vehicle Ai is read. In the subsequent step S2, the lateral movement amount Y 1 is calculated based on the vehicle speed Vi of the host vehicle Ai detected by the vehicle speed sensor S 1 ... And the yaw rate γi of the host vehicle Ai detected by the yaw rate sensor S 2 . As shown in FIG. 3, the lateral movement amount Y 1 is a lateral movement amount that occurs when the host vehicle Ai travels to the current position of the oncoming vehicle Ao, and is calculated as follows. That is, the time t 1 until the own vehicle Ai reaches the current position of the oncoming vehicle Ao is given by ΔL / Vi obtained by dividing the relative distance ΔL by the vehicle speed Vi of the own vehicle Ai, so the time t 1 = ΔL / Vi As the lateral movement amount Y 1 of the own vehicle Ai when elapses, the vehicle speed Vi of the own vehicle Ai and the yaw rate γi of the own vehicle Ai are used.
Y 1 = (1/2) · Vi · γi · (ΔL / Vi) 2 (1)
Given in.
[0021]
In the subsequent step S3, the relative lateral deviation ΔY is calculated by subtracting the lateral movement amount Y 1 from the relative lateral distance Y 2 .
[0022]
ΔY = Y 2 −Y 1 (2)
As is apparent from FIG. 3, the relative lateral deviation ΔY is determined between the current position of the oncoming vehicle Ao and the estimated position of the own vehicle Ai when the own vehicle Ai travels to the current position of the oncoming vehicle Ao. Corresponds to lateral deviation. The relative lateral deviation ΔY has a positive / negative value. In the case of left-hand traffic in this embodiment, if Y 2 > Y 1 and the relative lateral deviation ΔY is positive, the estimated movement locus of the own vehicle Ai is the current oncoming vehicle Ao. If Y 2 <Y 1 and the relative lateral deviation ΔY is negative, the estimated movement locus of the host vehicle Ai passes the right side of the current position of the oncoming vehicle Ao. The smaller the absolute value of the relative lateral deviation ΔY, the higher the possibility that the own vehicle Ai will contact the oncoming vehicle Ao.
[0023]
In subsequent step S4, it is determined whether or not the relative lateral deviation ΔY is within a preset range. That is, the relative lateral deviation ΔY is in a predetermined range based on a predetermined value ε (for example, 2 m) set in advance based on the lateral width of the body of the automobile.
−ε ≦ ΔY ≦ ε (3)
Is established, the first stage determination is made that the host vehicle Ai may collide with the oncoming vehicle Ao. On the other hand, when the expression (3) is not satisfied, it is determined that the own vehicle Ai has passed through the left or right side of the oncoming vehicle Ao and no collision has occurred, and the step without executing the warning or steering control for avoiding the collision is performed. Return to S1.
[0024]
In subsequent step S5, the state of the overtaking determination flag for identifying whether or not the own vehicle Ai is overtaking the preceding vehicle Af is referred to. The overtaking determination flag is set to “1” when the host vehicle Ai is overtaking the preceding vehicle Af, and is reset to “0” when the own vehicle Ai is not overtaking. This will be described based on the flowchart.
First, in step S11, a relative distance ΔL ′ between the object including the preceding vehicle Af and the host vehicle Ai is read from the radar information processing apparatus 4, and the relative speed ΔV ′ between the object including the preceding vehicle Af and the host vehicle Ai is read. Is read. In step S12, it reads the vehicle speed Vi of the vehicle Ai detected by the vehicle speed sensor S 1 ..., and θ steering angle of the vehicle Ai detected by the steering angle sensor S 3. In the following step S13, the preceding vehicle Af is identified from the oncoming vehicle Ao based on the relative speed ΔV ′. Since the oncoming vehicle Ao travels in the opposite direction to the own vehicle Ai, the absolute value of the relative speed ΔV ′ increases. However, since the preceding vehicle Af travels in the same direction as the own vehicle Ai, the absolute value of the relative speed ΔV ′ is small. Therefore, it is possible to determine that the absolute value of the relative speed ΔV ′ is equal to or less than the predetermined value as the preceding vehicle Af. The relative speed ΔV ′ takes a negative value when the vehicle speed Vi of the host vehicle Ai is greater than the vehicle speed Vf of the preceding vehicle Af, and the relative speed when the vehicle speed Vi of the host vehicle Ai is less than the vehicle speed Vf of the preceding vehicle Af. ΔV ′ takes a positive value.
[0025]
If the relative speed ΔV ′ between the own vehicle Ai and the preceding vehicle Af is not a negative value in the subsequent step S14, that is, if the vehicle speed Vi of the own vehicle Ai is smaller than the vehicle speed Vf of the preceding vehicle Af, the own vehicle Ai is overtaking. It is determined that the vehicle is not in a state, and the overtaking determination flag is reset to “0” in step S20. In step S15, a change in the relative distance ΔL ′ between the host vehicle Ai and the preceding vehicle Af is monitored. If the relative distance ΔL ′ is not decreased, it is determined that the host vehicle Ai is not in an overtaking state, and in step S20. The overtaking determination flag is reset to “0”. Further, in step S16, by comparing the steering angle theta detected by the steering angle sensor S 3 and the threshold value theta 0, the vehicle Ai unless satisfied theta ≧ theta 0 is determined not to overtake state, overtaking at step S20 The determination flag is reset to “0”.
[0026]
On the other hand, ΔV ′ <0 is established in step S14, and the vehicle speed Vi of the own vehicle Ai is larger than the vehicle speed Vf of the preceding vehicle Af. In step S15, the relative speed between the own vehicle Ai and the preceding vehicle Af is increased. If the distance ΔL ′ is decreased and θ ≧ θ 0 is established in step S16 and the steering wheel 1 is steered largely, it is determined that the host vehicle Ai has entered the overtaking state, and the overtaking determination is made in step S17. Set the flag to "1".
[0027]
In the subsequent step S18, the traveling position Xi of the own vehicle Ai and the traveling position Xf of the preceding vehicle Af are calculated based on the position of the own vehicle Ai when overtaking is started. The travel position Xi of the host vehicle Ai can be given by the following equation by calculating the travel distance by integrating the vehicle speed of the host vehicle Ai with time.
[0028]
Xi = ∫Vidt (4)
Further, the traveling position Xf of the preceding vehicle Af is assumed that the preceding vehicle Af holds the vehicle speed Vf at the start of overtaking, and further, the relative distance ΔL ′ at the start of overtaking, the elapsed time t from the start of overtaking, and Can be given by:
[0029]
Xf = ΔL ′ + Vf · t (5)
In subsequent step S19, the traveling position Xi of the host vehicle Ai and the traveling position Xf of the preceding vehicle Af are compared. If Xi ≦ Xf, the host vehicle Ai is in front of the preceding vehicle Af and is still overtaking. If Xi> Xf, it is determined that the own vehicle Ai has come out ahead of the preceding vehicle Af and the overtaking has ended. When the overtaking end is determined, the overtaking determination flag is reset to “0” in step S20.
[0030]
Returning to the flowchart of FIG. 6, when the overtaking determination flag is reset to “0” in step S5 and the own vehicle Ai is not overtaking the preceding vehicle Af, the start timing of the collision avoidance control is set in step S6. to determine, calculate the time t 0 until the vehicle Ai reaches the collision prediction point, is compared with a threshold value tau 0 is set, this time t 0 in advance. The time t 0 until the host vehicle Ai reaches the predicted collision point can be calculated by dividing the relative distance ΔL between the host vehicle Ai and the oncoming vehicle Ao by the relative speed ΔV.
[0031]
t 0 = ΔL / ΔV (6)
The threshold τ 0 corresponds to the timing at which the driver starts spontaneous collision avoidance steering, and is obtained experimentally. Thus, when t 0 becomes τ 0 or less in step S6, the display unit 7 and the alarm unit 8 are operated in step S7 to issue a warning to the driver, and automatic steering for collision avoidance is executed.
[0032]
If a driver's spontaneous collision avoidance operation is detected in step S8 while automatic steering for collision avoidance is being performed, for example, the steering torque sensor may detect that the driver has operated the steering wheel 1. When it is detected by the pedal force sensor of the brake pedal that the driver has braked, automatic steering for avoiding an alarm or collision is stopped in step S9. As a result, the driver's spontaneous collision avoidance operation is prevented from interfering with automatic steering, and the driver's collision avoidance operation can be prioritized to eliminate the uncomfortable feeling.
[0033]
On the other hand, if the overtaking determination flag is set to “1” in step S5 and the own vehicle Ai is overtaking the preceding vehicle Af, steering control for collision avoidance is suppressed in step S10. The suppression of the steering control is achieved, for example, by reducing the target steering angle or delaying the steering start timing. In order to delay the steering start timing, the start timing of the collision avoidance control may be made smaller than the normal threshold value τ 0 . This prevents the driver from feeling uncomfortable by preventing inadvertent automatic steering to avoid a collision with the oncoming vehicle Ao while the driver is overtaking based on his / her will. Can do. In order to avoid neglecting the driver's attention to the oncoming vehicle Ao during overtaking, only a warning is given if there is a possibility of a collision with the oncoming vehicle Ao.
[0034]
As described above, since the start of overtaking is determined based on the relative positional relationship between the own vehicle Ai and the preceding vehicle Af and the steering angle θ of the own vehicle Ai, the determination is made based only on the steering angle θ. Compared to the above, the determination accuracy can be increased. Further, since the overtaking end determination is made based on the traveling position Xi of the host vehicle Ai after the start of overtaking and the traveling position Xf of the preceding traveling vehicle Af, a side sensor for detecting the traveling vehicle Af from the side is provided. It is possible to determine the end of overtaking.
[0035]
As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.
[0036]
For example, in the embodiment, the steering control for avoiding the collision is suppressed during overtaking, but the steering control may be stopped. Further, in the embodiment, the case of overtaking the preceding vehicle Af that is traveling has been described, but the present invention avoids the preceding vehicle Af that has stopped on the road and the side of the obstacle that has dropped on the road. It can be applied in the same way to this. Therefore, the preceding vehicle Af in the present invention includes the stopped preceding vehicle Af and a stationary object on the road in addition to the traveling preceding vehicle Af. Further, the steering angle θ detected by the steering angle sensor S 3 can be substituted by the turning angle of the wheel.
[0037]
【The invention's effect】
According to the invention described in claim 1 as described above, when the object detecting means detects the relative positional relationship between the vehicle and the oncoming vehicle, the movement locus estimating means for estimating a future locus of movement of the vehicle The relative lateral deviation is a lateral deviation between the estimated position of the own vehicle and the current position of the oncoming vehicle when the own vehicle has traveled along the movement locus to the current oncoming vehicle position. Is calculated. If the contact possibility determining means determines that there is a possibility of contact between the own vehicle and the oncoming vehicle when the relative lateral deviation is within the predetermined range, the contact avoiding means is configured to avoid contact with the oncoming vehicle. Since the contact avoidance operation of steering the steering device in the direction opposite to the direction of the oncoming vehicle existing in the traveling direction of the vehicle is automatically performed, the contact with the oncoming vehicle can be reliably avoided. If the overtaking determination means determines that the host vehicle is overtaking the preceding vehicle, the contact avoidance means suppresses or cancels the contact avoidance operation, so that an unnecessary contact avoidance operation is performed during overtaking and the driver's overtaking operation. Interference is prevented and the driver's uncomfortable feeling can be resolved.
[0038]
According to the invention described in claim 2, the overtaking determination means determines the start of overtaking with respect to the preceding vehicle based on the relative speed of the preceding vehicle, the relative distance of the preceding vehicle, and the steering angle of the host vehicle. An accurate determination can be made as compared with the case where the start of overtaking is determined based only on the steering angle of the host vehicle.
[0039]
According to the third aspect of the present invention, the overtaking determination means determines that the overtaking of the preceding vehicle is terminated based on the moving distance of the own vehicle, the moving distance of the preceding vehicle, and the relative distance of the preceding vehicle at the start of overtaking. Since the determination is made, the end of overtaking can be accurately determined without using a side sensor that detects the preceding vehicle from the side.
[0040]
According to the invention described in claim 4, since the contact avoiding means delays the operation timing of the steering device or reduces the steering amount of the steering device, the contact avoiding operation during overtaking can be accurately suppressed. it can.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a vehicle equipped with a travel safety device. FIG. 2 is a block diagram of the travel safety device. FIG. 3 is a diagram showing a relative relationship between a host vehicle Ai and an oncoming vehicle Ao. Functional diagram [FIG. 5] Block diagram explaining the circuit of the front collision avoidance control means [FIG. 6] Flow chart of front collision avoidance control routine [FIG. 7] Flow chart of flag set routine [FIG. [Explanation of symbols]
2 Power steering device (steering means)
4 Radar information processing equipment (object detection means)
Af Previous vehicle Ai Own vehicle Ao Oncoming vehicle M1 Movement trajectory estimation means M2 Relative lateral deviation calculation means M3 Contact possibility determination means M4 Contact avoidance means M5 Passing determination means M6 Front vehicle speed calculation means S 1 Vehicle speed sensor (vehicle speed detection means) )
S 3 Steering angle sensor (steering angle detection means)
Vf Speed of preceding vehicle Vi Vehicle speed -ε to ε Predetermined range θ Steering angle ΔL 'Relative distance ΔV' Relative velocity ΔY Relative lateral deviation

Claims (4)

自車(Ai)の進行方向に存在する物体を検出して自車(Ai)および物体の相対的な位置関係を算出する物体検出手段(4)と、
自車(Ai)の将来の移動軌跡を推定する移動軌跡推定手段(M1)と、
自車(Ai)が前記移動軌跡に沿って現在の対向車(Ao)の位置まで進行したときの自車(Ai)の推定位置と現在の対向車(Ao)の位置との横方向の偏差である相対横偏差(ΔY)を算出する相対横偏差算出手段(M2)と、
相対横偏差算出手段(M2)で算出した相対横偏差(ΔY)が所定範囲(−ε〜ε)内にあるときに自車(Ai)と対向車(Ao)とが接触する可能性が有ると判定する接触可能性判定手段(M3)と、
接触可能性判定手段(M3)が自車(Ai)と対向車(Ao)とが接触する可能性が有ると判定したときに自車(Ai)の進行方向に存在する対向車(Ao)の方向と逆方向に操舵装置(2)を操舵する接触回避操作を自動的に行う接触回避手段(M4)と、
自車(Ai)が前走車(Af)を追い越し中であるか否かを判定する追い越し判定手段(M5)と、
を備えてなり、
追い越し判定手段(M5)が自車(Ai)が前走車(Af)を追い越し中であると判定したときに、接触回避手段(M4)は接触回避操作を抑制あるいは中止することを特徴とする車両の走行安全装置。
Object detection means (4) for detecting an object existing in the traveling direction of the host vehicle (Ai) and calculating a relative positional relationship between the host vehicle (Ai) and the object;
A movement trajectory estimation means (M1) for estimating a future movement trajectory of the host vehicle (Ai);
Lateral deviation between the estimated position of the own vehicle (Ai) and the current position of the oncoming vehicle (Ao) when the own vehicle (Ai) travels along the movement locus to the position of the current oncoming vehicle (Ao) A relative lateral deviation calculating means (M2) for calculating a relative lateral deviation (ΔY),
When the relative lateral deviation (ΔY) calculated by the relative lateral deviation calculating means (M2) is within a predetermined range (−ε to ε), there is a possibility that the own vehicle (Ai) and the oncoming vehicle (Ao) come into contact with each other. Contact possibility determination means (M3) for determining
When the contact possibility determination means (M3) determines that there is a possibility that the own vehicle (Ai) and the oncoming vehicle (Ao) are in contact, the oncoming vehicle (Ao) present in the traveling direction of the own vehicle (Ai) Contact avoiding means (M4) for automatically performing a contact avoiding operation of steering the steering device (2) in the direction opposite to the direction;
Overtaking determination means (M5) for determining whether or not the own vehicle (Ai) is overtaking the preceding vehicle (Af);
With
When the overtaking determination means (M5) determines that the host vehicle (Ai) is overtaking the preceding vehicle (Af), the contact avoidance means (M4) suppresses or cancels the contact avoidance operation. Vehicle travel safety device.
操舵角(θ)を検出する操舵角検出手段(S3 )を備えてなり、
追い越し判定手段(M5)は、物体検出手段(4)で検出した前走車(Af)の相対速度(ΔV′)と、物体検出手段(4)で検出した前走車(Af)の相対距離(ΔL′)と、操舵角検出手段(S3 )で検出した操舵角(θ)とに基づいて、前走車(Af)に対する追い越し開始を判定することを特徴とする、請求項1に記載の車両の走行安全装置。
Steering angle detection means (S 3 ) for detecting the steering angle (θ) is provided,
The overtaking determination means (M5) is a relative speed (ΔV ′) of the preceding vehicle (Af) detected by the object detection means (4) and a relative distance between the preceding vehicle (Af) detected by the object detection means (4). The start of overtaking for the preceding vehicle (Af) is determined based on (ΔL ') and the steering angle (θ) detected by the steering angle detection means (S 3 ). Vehicle travel safety device.
自車(Ai)の車速(Vi)を検出する車速検出手段(S1 )と、
前記前走車(Af)の相対速度(ΔV′)および車速検出手段(S1 )で検出した自車(Ai)の車速(Vi)に基づいて前走車(Af)の速度(Vf)を算出する前走車速度算出手段(M6)と、
を備えてなり、
追い越し判定手段(M5)は、前記自車(Ai)の車速(Vi)から算出した自車(Ai)の移動距離と、前記前走車(Af)の速度(Vf)から算出した前走車(Af)の移動距離と、追い越し開始時における前記前走車(Af)の相対距離(ΔL′)とに基づいて、前走車(Af)に対する追い越し終了を判定することを特徴とする、請求項2に記載の車両の走行安全装置。
Vehicle speed detection means (S 1 ) for detecting the vehicle speed (Vi) of the host vehicle (Ai);
Based on the relative speed (ΔV ′) of the preceding vehicle (Af) and the vehicle speed (Vi) of the host vehicle (Ai) detected by the vehicle speed detection means (S 1 ), the speed (Vf) of the preceding vehicle (Af) is determined. A preceding vehicle speed calculating means (M6) for calculating;
With
The overtaking determination means (M5) is a preceding vehicle calculated from the moving distance of the own vehicle (Ai) calculated from the vehicle speed (Vi) of the own vehicle (Ai) and the speed (Vf) of the preceding vehicle (Af). The end of overtaking for the preceding vehicle (Af) is determined based on the movement distance of (Af) and the relative distance (ΔL ′) of the preceding vehicle (Af) at the start of overtaking. Item 3. The vehicle travel safety device according to Item 2.
接触回避手段(M4)による接触回避操作の抑制が、操舵装置(2)の作動タイミングの遅延、あるいは操舵装置(2)の操舵量の低減であることを特徴とする、請求項1〜3の何れかに記載の車両の走行安全装置。  The suppression of the contact avoidance operation by the contact avoiding means (M4) is a delay of the operation timing of the steering device (2) or a reduction of the steering amount of the steering device (2). The vehicle travel safety device according to any one of the above.
JP23854598A 1998-08-20 1998-08-25 Vehicle travel safety device Expired - Fee Related JP3975009B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23854598A JP3975009B2 (en) 1998-08-25 1998-08-25 Vehicle travel safety device
US09/377,105 US6269308B1 (en) 1998-08-20 1999-08-19 Safety running system for vehicle
US09/842,018 US6317693B2 (en) 1998-08-20 2001-04-26 Safety running system for vehicle
US09/842,009 US6317692B2 (en) 1998-08-20 2001-04-26 Safety running system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23854598A JP3975009B2 (en) 1998-08-25 1998-08-25 Vehicle travel safety device

Publications (2)

Publication Number Publication Date
JP2000067394A JP2000067394A (en) 2000-03-03
JP3975009B2 true JP3975009B2 (en) 2007-09-12

Family

ID=17031852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23854598A Expired - Fee Related JP3975009B2 (en) 1998-08-20 1998-08-25 Vehicle travel safety device

Country Status (1)

Country Link
JP (1) JP3975009B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004086836A (en) * 2002-07-03 2004-03-18 Isuzu Motors Ltd Driving lane guiding device
JP2006525174A (en) * 2003-03-26 2006-11-09 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Electronic control system for a vehicle and method for calculating at least one intervention independent of a driver in a vehicle system
DE10332961A1 (en) * 2003-07-21 2005-02-17 Robert Bosch Gmbh Method and device for determining the position and / or the expected position of a vehicle during a parking operation in relation to the opposite lane of a multi-lane road
JP4622414B2 (en) * 2004-09-21 2011-02-02 日産自動車株式会社 Travel control device
DE102004062496A1 (en) * 2004-12-24 2006-07-06 Daimlerchrysler Ag A method of operating a collision avoidance or collision sequence mitigation system of a vehicle and collision avoidance or collision mitigation system
JP4961592B2 (en) * 2007-12-05 2012-06-27 本田技研工業株式会社 Vehicle travel support device
JP5177076B2 (en) * 2008-07-28 2013-04-03 日産自動車株式会社 Vehicle driving support device and vehicle driving support method
US20110313665A1 (en) * 2009-03-04 2011-12-22 Adc Automotive Distance Control Systems Gmbh Method for Automatically Detecting a Driving Maneuver of a Motor Vehicle and a Driver Assistance System Comprising Said Method
JP5935406B2 (en) * 2012-03-09 2016-06-15 日産自動車株式会社 Vehicle traveling locus data recording apparatus and method
JP2016002978A (en) * 2014-06-19 2016-01-12 富士重工業株式会社 Travel control device for vehicle
JP5952859B2 (en) * 2014-06-23 2016-07-13 富士重工業株式会社 Vehicle driving support device
JP2020185968A (en) * 2019-05-17 2020-11-19 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
JP7354922B2 (en) * 2020-05-12 2023-10-03 トヨタ自動車株式会社 Information processing device, information processing method, and system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601685B2 (en) * 1988-05-27 1997-04-16 富士通テン株式会社 Overtaking warning device
JP2574886Y2 (en) * 1990-09-26 1998-06-18 日産ディーゼル工業株式会社 Auto brake equipment for automobiles
JPH04245600A (en) * 1991-01-31 1992-09-02 Fujitsu Ten Ltd Radar system collision warning equipment for automatic vehicle
JPH0536000A (en) * 1991-08-01 1993-02-12 Mazda Motor Corp Automatic braking device for vehicle
JPH05180939A (en) * 1991-12-27 1993-07-23 Honda Motor Co Ltd Collision discriminating device for vehicle
JP3308292B2 (en) * 1992-02-28 2002-07-29 マツダ株式会社 Vehicle safety equipment
JPH06150198A (en) * 1992-10-30 1994-05-31 Nippon Seiki Co Ltd Informing device for prevention of vehicle rear-end collision
JP3031119B2 (en) * 1993-06-22 2000-04-10 トヨタ自動車株式会社 Vehicle collision prevention device
JP3631825B2 (en) * 1995-11-20 2005-03-23 本田技研工業株式会社 Vehicle and its traveling lane departure prevention device
JP2869888B2 (en) * 1995-11-21 1999-03-10 本田技研工業株式会社 Vehicle collision prevention device
JPH10143245A (en) * 1996-11-07 1998-05-29 Komatsu Ltd Obstacle collision preventing device for mobile object

Also Published As

Publication number Publication date
JP2000067394A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
JP3986683B2 (en) Vehicle travel safety device
US6317692B2 (en) Safety running system for vehicle
RU2694878C1 (en) Driving assistance system
JP4648282B2 (en) Vehicle travel control device
JP3645988B2 (en) Vehicle obstacle detection device
JP4007723B2 (en) Vehicle travel safety device
US6269307B1 (en) Travel safety system for vehicle
EP1982898B1 (en) Steering assist system and vehicle mounted with the same
JP3975009B2 (en) Vehicle travel safety device
US20060282218A1 (en) Vehicle travel safety apparatus
JP6763327B2 (en) Collision avoidance device
JP2004299455A (en) Braking control system for vehicle
JPH10119673A (en) Automatic alarm actuator for vehicle
JP2004224309A (en) Collision prevention support device for vehicle
JP2007304069A (en) Object detection device
US20220176948A1 (en) Collision avoidance apparatus
JP3986681B2 (en) Vehicle travel safety device
JP5566445B2 (en) Driving assistance device
JP3986682B2 (en) Vehicle travel safety device
JP2002002426A (en) Traveling safety device for vehicle
JP2000062555A (en) Running safety device for vehicle
JP5147511B2 (en) Vehicle contact avoidance support device
JP3923191B2 (en) Vehicle travel safety device
JP3980765B2 (en) Vehicle travel safety device
EP4112345B1 (en) Drop-off assist device, drop-off assist method, and non-transitory storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140622

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees