JP3974212B2 - Semiconductor chip having anisotropic conductive film, mounting method thereof, and mounting structure - Google Patents

Semiconductor chip having anisotropic conductive film, mounting method thereof, and mounting structure Download PDF

Info

Publication number
JP3974212B2
JP3974212B2 JP01156097A JP1156097A JP3974212B2 JP 3974212 B2 JP3974212 B2 JP 3974212B2 JP 01156097 A JP01156097 A JP 01156097A JP 1156097 A JP1156097 A JP 1156097A JP 3974212 B2 JP3974212 B2 JP 3974212B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
conductive film
anisotropic conductive
circuit board
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01156097A
Other languages
Japanese (ja)
Other versions
JPH10209617A (en
Inventor
和孝 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP01156097A priority Critical patent/JP3974212B2/en
Publication of JPH10209617A publication Critical patent/JPH10209617A/en
Priority to US09/383,640 priority patent/US6461890B1/en
Application granted granted Critical
Publication of JP3974212B2 publication Critical patent/JP3974212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83051Forming additional members, e.g. dam structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Description

【0001】
【発明の属する技術分野】
本願発明は、異方性導電膜を有する半導体チップ、その実装方法ならびに実装構造に関し、具体的には、いわゆるチップ・オン・ボード実装方式でICなどの半導体チップを回路基板などに好適に実装しうる半導体チップ、およびこの半導体チップをチップ・オン・ボード実装方式で実装する方法ならびに実装構造に関する。
【0002】
【従来の技術】
図8は、チップ・オン・ボード方式で半導体チップ10を回路基板20上に実装した状態の拡大図である。半導体チップ10の表面には、複数の電極パッド11がやや突出状に形成されている。一方、回路基板20の表面には、上記半導体チップ10の電極パッド11の配置と対応して複数の導体パッド21が露出形成させられている。チップ・オン・ボード方式とは、上記半導体チップ10の表面を異方性導電膜30を介して回路基板20に対向させてこれに加熱圧接させるなどして、対向する電極パッド11と導体パッド21とを導電接続し、その余の領域を絶縁性を保ったまま相互圧着する方式である。
【0003】
上記異方性導電膜30は、接着性の樹脂膜31内に導電性の粒子32を分散させた構造をもっている。上記導電性の粒子32としては、金属球のほか、たとえば樹脂製ボールの表面にニッケルメッキを施したもの、あるいはニッケルメッキの上にさらに金メッキを施したものなどが使用される。
【0004】
加熱状態において相互間に上記の異方性導電膜30を介在させた上で上記半導体チップ10と回路基板20との間に所定の圧力を加えると、図8に表れているように、半導体チップ10の電極パッド11と回路基板10上の導体パッド21との間で軟化させられた異方性導電膜30が圧し潰され、上記導電性の粒子32が上記電極パッド11と上記導体パッド21との間の電気的接続が図られる。異方性導電膜30のうち、上記のようにして圧し潰されない領域は、依然として導電性の粒子32が分散状態にあるため、この領域で絶縁性が維持される。同時に、半導体チップ10と回路基板20との間は、上記異方性導電膜30のもつ接着力によって相互に接着される。このように、上記した実装方法においては、上記異方性導電膜30を介在させた状態で半導体チップ10と回路基板20とを押圧するという簡単な操作をするだけで、必要箇所のみの電気的導通を図りながら、半導体チップ10を上記回路基板20に実装することができるのであり、いわゆるチップボンディングとワイヤボンディングによって回路基板20などに半導体チップ10を実装する場合に比較して、著しく簡便な方法である。
【0005】
【発明が解決しようとする課題】
上記チップ・オン・ボード方式で上記回路基板20などに実装される半導体チップ10に限らず、通常の半導体チップ10は、半導体チップ10を外部から保護するためにウエハから得られた一個体の半導体チップ10に対して樹脂パッケージングを行う必要がある。特に、チップ・オン・ボード方式で回路基板20などに樹脂パッケージングを行っていない半導体チップ10を実装した場合には、実装状態において、上記半導体チップ10に形成された電子回路を完全に外部から遮断してシールドすることができない。したがって、上記電子回路に水分や外気などが進入してしまい、上記半導体チップ10が本来有する特性を十分に発揮することができない。
【0006】
本願発明は、上記した事情のもとで考え出されたものであって、ウエハから得られた一個体の半導体チップを直接回路基板などに実装できるとともに、実装状態において半導体チップ、特にこの半導体チップに形成された電子回路が外部から保護されている異方性導電膜を有する半導体チップ、その実装方法ならびに実装構造を提供することをその課題とする。
【0007】
【発明の開示】
上記の課題を解決するため、本願発明では、次の技術的手段を講じている。
【0008】
すなわち、本願発明の第1の側面によれば、表面に所定の電子回路および電極パッドが形成されている半導体チップを有し、上記電極パッドは突出状に形成されているとともに、上記半導体チップの表面には、上記半導体チップの表面よりも大の面積を有し、かつ接着性の樹脂膜内に導電性の粒子を分散させた構造をもつ異方性導電膜が、その周縁が上記半導体チップの表面の周縁から延出するようにして貼着されており、かつ、上記異方性導電膜における上記半導体チップの表面周縁から延出する部分の裏面側に、上記半導体チップの側面に沿うようにして、上記半導体チップの表面周縁と上記異方性導電膜との境界を覆う保護コーティングが施されていることを特徴とする、異方性導電膜を有する半導体チップが提供される。
【0009】
上記半導体チップは、その表面よりも大の面積を有する異方性導電膜が、その周縁が上記半導体チップの表面の周縁から延出するようにして貼着されている。すなわち、たとえば上記半導体チップを加熱状態において押圧することにより回路基板などに実装した場合に、上記異方性導電膜の樹脂膜が軟化させられ、さらに押圧した場合には、上記半導体チップが軟化した樹脂膜内に嵌入させられる。言い換えれば、上記半導体チップの側面が上記異方性導電膜の樹脂膜によって覆われて上記半導体チップの電子回路が外部から完全に遮断されてシールドさることが期待できる。特に、本願発明においては、上記異方性導電膜を上記半導体チップの周縁から延出するようにして貼着しているので、より確実に上記半導体チップの側面が上記異方性導電膜の樹脂膜によって覆われうることとなる。
【0010】
したがって、上記半導体チップの側面が上記異方性導電膜の樹脂膜によって覆われることにより、上記半導体チップに対して樹脂パッケージングを施したのと同様の効果が得られる。すなわち、上記半導体チップに樹脂パッケージングを施すまでもなく、上記異方性導電膜の樹脂膜を利用して上記半導体チップの電子回路に水分や外気などが進入してしまうことを回避することができ、上記半導体チップが本来有する特性を十分に発揮させることができる。
【0011】
また、上記した異方性導電膜を有する半導体チップは、上記異方性導電膜における上記半導体チップの表面周縁から延出する部分の裏面側に、上記半導体チップの側面に沿うようにして、上記半導体チップの表面周縁と上記異方性導電膜との境界を覆う保護コーティングが施されている。
【0012】
上記保護コーティングは、上記半導体チップの側面に沿うようにして施されているので、このような半導体チップを回路基板などに実装した場合には、上述したように上記異方性導電膜の樹脂膜によって、さらに上記保護コーティングによって上記半導体チップの電子回路が外部から遮断されてシールドされる。したがって、上述した効果をさらに期待することができる。
【0013】
本願発明の第2の側面によれば、上記した第1の側面に係る異方性導電膜を有する半導体チップの実装方法であって、上記異方性導電膜を有する半導体チップを、その表面側を下にして、回路基板またはリードフレーム上に載置し、加熱状態において押圧することを特徴とする、半導体チップの実装方法が提供される。
【0014】
上記異方性導電膜は、従来のチップ・オン・ボード方式で半導体チップを回路基板などに実装する場合に用いられるものと基本的に同じである。すなわち、接着性の樹脂膜中に導電性の粒子を分散させた構造をもったものである。導電性の粒子は、樹脂中に分散されているが故に、自然状態においては、各導電性の粒子は絶縁性の樹脂によって互いに隔絶されており、したがって、この異方性導電膜の両面間は、絶縁状態にある。しかし、この異方性導電膜の選択された領域に好ましくは加熱状態において厚み方向の圧迫力を加えてこの膜を圧し潰すと、上記導電性の粒子の表面が、圧し潰されて厚みが減少した膜の両面に露出するようになり、この粒子を挟むようにして対向する面が互いに電気的に導通させられる。
【0015】
本願発明に係る実装方法においては、加熱状態において厚み方向に圧迫力を加えてこの膜を圧し潰すと、軟化させられた上記異方性導電膜の樹脂膜が上記半導体チップの側面に回り込み、この樹脂膜が固化して上記半導体チップが実装された状態においては、上記樹脂膜によって上記半導体チップの電子回路が外部から遮断されて保護された状態となり得る。また、上記半導体チップの側面に沿うようにして保護コーティングが施されている半導体チップを用いて上記半導体チップを上記回路基板などに実装した場合には、より確実に上記半導体チップの電子回路を保護することができる。
【0016】
したがって、本願発明に係る半導体チップの実装方法において、ウエハから得られた半導体チップに樹脂パッケージングを施すまでもなく上記半導体チップ、特にこの半導体チップに形成された電子回路を保護することができる。このため、半導体チップの製造から回路基板などへの実装までの工程数を減らすことができ、作業性が極めて向上する。
【0017】
好ましくは、上記半導体チップの実装方法は、上記半導体チップを上記回路基板またはリードフレームに加熱状態において押圧するに際し、超音波振動を付与することを特徴としている。
【0018】
本願発明においては、上記半導体チップと上記回路基板などとの間に介在させられる上記異方性導電膜を加熱状態において圧迫力を加えるだけではなく、超音波振動を加えている。また、好ましくは、上記回路基板に形成された導体パッドが突出状に形成されている。上記電極パッドと上記導体パッドとの相互間に超音波振動を与えると、これらの間に圧し潰された恰好で介在する異方性導電膜中の導電性の粒子と各パッド間は、振動摩擦によって確実な電気的接続が図られるとともに、両パッドおよび導電性の粒子の材質を選択することにより、これらの相互接触部分は、共晶合金化が生成され、これにより、両パッドと導電性の粒子間のより確実な電気的接続が図られる。
【0019】
また、上記半導体チップと上記回路基板との互いの各対向面は、異方性導電膜による接着により相互に固定される。その結果、本側面に係る半導体チップの実装方法によれば、従来の異方性導電膜を用いた実装方法に比べて上記各パッド間の電気的接続の安定性が高まる。
【0020】
本願発明の第3の側面によれば、上記した第1の側面に係る異方性導電膜を有する半導体チップが、その表面側を下にして、回路基板またはリードフレーム上に熱圧着されていることを特徴とする、異方性導電膜を有する半導体チップの実装構造が提供される。
【0021】
すなわち、本側面に係る異方性導電膜を有する半導体チップの実装構造においても、上記異方性導電膜の樹脂膜、好ましくは、これに加えて保護コーティングによって上記半導体チップ、特にこの半導体チップに形成された電子回路が保護されているため、上記半導体チップの特性を十分に発揮させることができる。
【0022】
本願発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
【0023】
【発明の実施の形態】
以下、本願発明の好ましい実施の形態を、図面を参照して具体的に説明する。
【0024】
図1は、本願発明の参考例に係る異方性導電膜を有する半導体チップの断面図である。図2および図3は、上記半導体チップ10を回路基板20に実装する工程を説明するための図である。図4は、上記半導体チップ10が回路基板20に実装された状態の図であり、図5は、図4の要部拡大図である。なお、これらの図において、図8に示した従来例と同等の部材および部分には同一符号を付してある。
【0025】
上記半導体チップ10の表面には、所定の電子回路(図示せず)が形成されているとともに、図1に示すように、この電子回路と導通する突出状の電極パッド11が複数形成されている。また、上記半導体チップ10の表面には、異方性導電膜30が貼着されている。なお、上記半導体チップ10は、周知の方法によって製造されたものでよく、たとえばICなどであっても、その他であってもよい。
【0026】
上記異方性導電膜30は、上記半導体チップ10の表面よりも大の面積を有するとともに、その周縁が上記半導体チップ10の表面から周縁が延出するようにして上記半導体チップ10に貼着されている。また、上記異方性導電膜30は、接着性の樹脂膜31内に導電性の粒子32を分散させた構造をもっている。上記導電性の粒子32としては、金属球のほか、たとえば樹脂製ボールの表面にニッケルメッキを施したもの、あるいはニッケルメッキの上にさらに金メッキを施したものなどが使用される。上記異方性導電膜30の自然状態での厚みは、たとえば30〜50μm、上記導電性の粒子32の球径は、たとえば5μmである。
【0027】
上記のような異方性導電膜30を有する半導体チップ10においては、上記半導体チップ10は、その表面よりも大の面積を有する異方性導電膜30が、その周縁が上記半導体チップ10の表面の周縁から延出するようにして貼着されている。すなわち、たとえば上記半導体チップ10を加熱状態において押圧することにより回路基板20などに実装した場合に、上記異方性導電膜30の樹脂膜31が軟化させられ、さらに押圧した場合には、上記半導体チップ10が軟化した樹脂膜31内に嵌入させられる。言い換えれば、上記半導体チップ10の側面が上記異方性導電膜30の樹脂膜31によって覆われて上記半導体チップ10の電子回路が外部から完全に遮断されてシールドされることが期待できる。特に、本実施形態においては、上記異方性導電膜30を上記半導体チップ10の周縁から延出するようにして貼着しているので、より確実に上記半導体チップ10の側面が上記異方性導電膜30の樹脂膜31によって覆われうることとなる。
【0028】
したがって、上記半導体チップ10の側面が上記異方性導電膜30の樹脂膜31によって覆われることにより、上記半導体チップ10に対して樹脂パッケージングを施したのと同様の効果が得られる。すなわち、上記半導体チップ10に樹脂パッケージングを施すまでもなく、上記異方性導電膜30を利用して上記半導体チップ10の電子回路に水分や外気などが進入してしまうことを回避することができ、上記半導体チップ10が本来有する特性を十分に発揮させることができる。
【0029】
なお、異方性導電膜30を有する半導体チップ10の回路基板20への実装は以下のようにして行われる。
【0030】
上記半導体チップ10が搭載されるべき回路基板20は、ガラスエポキシなどの基材の表面に銅被膜を形成するとともに、これに対して所定のパターンエッチングを施すなどして配線パターンが形成されており、この配線パターンに導通するようにして、ニッケルメッキおよび金メッキが施された恰好で、上記電極パッド11と対応する複数の導体パッド21が露出形成されている。このようにして露出させられる導体パッド21以外の基板上の領域は、通常グリーンレジストと呼ばれる絶縁性の樹脂被膜によって覆われる。導体パッド21は、ニッケルメッキおよび金メッキが施されているが故に、基板表面に対してやや突出状となる。
【0031】
図2に示すように、上記のようにして製造された異方性導電膜30を有する半導体チップ10は、異方性導電膜30を下向きにして電極パッド11と上記回路基板20の導体パッド21とが対応するようにして位置決めされながら、所定の圧力で押圧される。このとき、回路基板20が載置される支持台40は、その内部に組み込まれたヒータ(図示せず)によって、たとえば180℃程度に加熱させられる。
【0032】
図3に示すように、上記半導体チップ10の上記回路基板20への押圧は、超音波ホーン50を用いて行われる。すなわち、本実施形態においては、上記半導体チップ10は基板に対して単に熱圧着されるだけではなく、超音波振動を与えられる。
【0033】
異方性導電膜30は、その選択された領域が厚み方向に加熱圧迫させられると、樹脂成分が軟化して圧し潰される。上記の例においては、半導体チップ10側の電極パッド11および回路基板20側の導体パッド21がともに突出状となっているので、異方性導電膜30のうち、上記対向状の電極パッド11と導体パッド21との間に挟まれる領域が選択的に圧し潰され、その結果、図4および図5に示すように、樹脂中に分散させられている導電性粒子32が半導体チップ10側の電極パッド11と回路基板20側の導体パッド21に接触させられる。それだけではなく、本願発明においては、回路基板20と半導体チップ10との間に所定のエネルギによる超音波振動を与えている。そのため、上記導電性粒子32と上記電極パッド11間、および導電性粒子32と上記導体パッド21間に振動摩擦による確実な導電接触状態が得られる。異方性導電膜30のうち、上記電極パッド11と上記導体パッド21とに挟まれない領域は、圧し潰されないか、または圧し潰される程度が低いため、内部の導電性粒子32は依然として異方性導電膜30の厚み方向に分散された状態となり、したがって、半導体チップ10と回路基板20の両表面における上記パッド11,21以外の領域間の絶縁性が維持される。
【0034】
上記の例では、電極パッド11、導体パッド21および異方性導電膜30中の導電性粒子32の表面がともに金であるため、上記のような超音波エネルギの付与により、これらの金表面が原子レベルで再結晶し、相互間に高度な電気的導通性が得られる。
【0035】
たとえば、上記電極パッド11または導体パッド21の表面を錫、アルミ、または銅とすると、導電性粒子32の金表面との間に共晶合金部分が形成され、この場合もまた、相互に高度な電気的導通性が得られる。
【0036】
また、図4に示すように、加熱状態において厚み方向に圧迫力を加えてこの異方性導電膜30を圧し潰すと、軟化させられた上記異方性導電膜30の樹脂膜31が上記半導体チップ10の側面に回り込み、この樹脂膜31が固化して上記半導体チップ10が実装された状態においては、上記樹脂膜31によって上記半導体チップ10の電子回路が外部から遮断されて保護された状態となる。
【0037】
したがって、この半導体チップの実装方法において、ウエハから得られた半導体チップ10に樹脂パッケージングを施すまでもなく上記半導体チップ10、特にこの半導体チップ10に形成された電子回路を保護することができる。このため、半導体チップ10の製造から回路基板20などへの実装までの工程数を減らすことができ、作業性が極めて向上する。
【0038】
次に、本願発明の実施形態に係る異方性導電膜を有する半導体チップを図6および図7を参照して説明する。
【0039】
図6は、上記異方性導電膜30を有する半導体チップ10の断面図である。図7は、上記半導体チップ10を回路基板20に実装した状態の図である。
【0040】
図6に示すように、本実施形態に係る異方性導電膜を有する半導体チップの基本的な構成は、上述した参考例に係る異方性導電膜を有する半導体チップ10と略同様である。上記参考例と異なる点は、上記異方性導電膜30における上記半導体チップ10の表面周縁から延出する部分の裏面側に、上記半導体チップ10の側面に沿うようにして、保護コーティングが施されて、保護層5が形成されている点である。この保護コーティングは、たとえばシリコーン系の樹脂を塗布することにより形成することができる。
【0041】
したがって、基本的には、上述した参考例に係る異方性導電膜を有する半導体チップ10の効果を享受することができる。加えて、上記半導体チップ10の側面に沿って保護層5を形成することにより、上記半導体チップ10に形成された電子回路を確実に保護することができる。
【0042】
また、図7に示すように、上記半導体チップ10が回路基板20に実装された状態においては、上記異方性導電膜30の樹脂膜31が上記保護層5の周りに回り込んで固化することとなる。したがって、実装状態では、上記保護層5によって、加えてこの保護層5の周りに回り込んで固化した樹脂膜31によって第1の実施形態に比べてより確実に上記半導体チップ10に形成された電子回路を保護することができる。本実施形態においても、ウエハから得られた半導体チップ10の樹脂パッケージッグ行う工程を削減することが可能となり、半導体チップ10の製造から回路基板20などへの実装までの工程数を減らすことができ、作業性が極めて向上する。
【0043】
上記した実施形態において、半導体チップ10を回路基板20に実装する場合に本願発明を適用したものであるが、本願発明はこれに限らず、半導体チップ10をリードフレーム上にボンディングする場合にも適用できる。この場合、上記リードフレームに形成された内部リードが上記回路基板20の導体パッド21と同様の役割を果たし、好ましくは、その表面には金メッキが施される。このようにして接続された半導体チップ10の電極パッド11とリードフレームの内部リードとが、上述した例と同様に電気的に導通させらているとともに、確実に接続される。
【図面の簡単な説明】
【図1】 本願発明の参考例に係る異方性導電膜を有する半導体チップの断面図である。
【図2】 上記半導体チップの回路基板に対する位置決めを行っている状態の図である。
【図3】 上記半導体チップと上記回路基板とを相互に圧し付けるとともに、超音波振動を供給している状態の図である。
【図4】 上記半導体チップが回路基板に実装された状態の図である。
【図5】 図4の要部拡大図である。
【図6】 本願発明の実施形態に係る異方性導電膜を有する半導体チップの断面図である。
【図7】 上記半導体チップが回路基板に実装された状態の図である。
【図8】 従来例の説明図である。
【符号の説明】
4 ウエハ
5 保護層
10 半導体チップ
11 電極パッド
20 回路基板
21 導体パッド
30 異方性導電膜
31 樹脂膜
32 導電性粒子
40 支持台
50 超音波ホーン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor chip having an anisotropic conductive film, a mounting method thereof, and a mounting structure. Specifically, a semiconductor chip such as an IC is suitably mounted on a circuit board by a so-called chip-on-board mounting method. The present invention relates to a semiconductor chip, a method for mounting the semiconductor chip by a chip-on-board mounting method, and a mounting structure.
[0002]
[Prior art]
FIG. 8 is an enlarged view of a state in which the semiconductor chip 10 is mounted on the circuit board 20 by the chip-on-board method. On the surface of the semiconductor chip 10, a plurality of electrode pads 11 are formed in a slightly protruding shape. On the other hand, a plurality of conductor pads 21 are exposed and formed on the surface of the circuit board 20 corresponding to the arrangement of the electrode pads 11 of the semiconductor chip 10. In the chip-on-board method, the surface of the semiconductor chip 10 is opposed to the circuit board 20 through the anisotropic conductive film 30 and is heated and pressed against the circuit board 20, so that the opposing electrode pad 11 and conductor pad 21 are opposed. Are electrically connected to each other, and the remaining regions are bonded to each other while maintaining insulation.
[0003]
The anisotropic conductive film 30 has a structure in which conductive particles 32 are dispersed in an adhesive resin film 31. As the conductive particles 32, in addition to metal spheres, for example, the surface of a resin ball that is plated with nickel, or the surface of nickel that is further plated with gold is used.
[0004]
When a predetermined pressure is applied between the semiconductor chip 10 and the circuit board 20 with the anisotropic conductive film 30 interposed between them in a heated state, as shown in FIG. The anisotropic conductive film 30 softened between the ten electrode pads 11 and the conductor pads 21 on the circuit board 10 is crushed, and the conductive particles 32 become the electrode pads 11, the conductor pads 21, Are electrically connected. In the anisotropic conductive film 30, the region that is not crushed as described above is still in a state where the conductive particles 32 are in a dispersed state, and thus the insulating property is maintained in this region. At the same time, the semiconductor chip 10 and the circuit board 20 are bonded to each other by the adhesive force of the anisotropic conductive film 30. As described above, in the mounting method described above, only a necessary operation is performed by simply pressing the semiconductor chip 10 and the circuit board 20 with the anisotropic conductive film 30 interposed therebetween. The semiconductor chip 10 can be mounted on the circuit board 20 while conducting electricity, which is a significantly simpler method than when the semiconductor chip 10 is mounted on the circuit board 20 or the like by so-called chip bonding and wire bonding. It is.
[0005]
[Problems to be solved by the invention]
The normal semiconductor chip 10 is not limited to the semiconductor chip 10 mounted on the circuit board 20 or the like by the chip-on-board method, but a single semiconductor obtained from a wafer to protect the semiconductor chip 10 from the outside. It is necessary to perform resin packaging on the chip 10. In particular, when the semiconductor chip 10 that is not resin-packaged is mounted on the circuit board 20 or the like by a chip-on-board method, the electronic circuit formed on the semiconductor chip 10 is completely externally mounted in the mounted state. It cannot be blocked and shielded. Therefore, moisture, outside air, or the like enters the electronic circuit, and the characteristics inherent to the semiconductor chip 10 cannot be exhibited sufficiently.
[0006]
The present invention has been conceived under the circumstances described above, and a single semiconductor chip obtained from a wafer can be directly mounted on a circuit board or the like. It is an object of the present invention to provide a semiconductor chip having an anisotropic conductive film in which an electronic circuit formed on the outside is protected from the outside, a mounting method thereof, and a mounting structure.
[0007]
DISCLOSURE OF THE INVENTION
In order to solve the above problems, the present invention takes the following technical means.
[0008]
That is, according to the first aspect of the present invention, there is provided a semiconductor chip having a predetermined electronic circuit and electrode pads formed on the surface, the electrode pads are formed in a protruding shape, and the semiconductor chip on the surface, the than the semiconductor chip surface have a large area, and an anisotropic conductive film having a structure obtained by dispersing conductive particles in adhesive resin film is, whose periphery the semiconductor chip So as to extend from the peripheral edge of the surface of the semiconductor chip, and along the side surface of the semiconductor chip on the back side of the portion of the anisotropic conductive film extending from the peripheral edge of the surface of the semiconductor chip. Thus, a semiconductor chip having an anisotropic conductive film is provided, which is provided with a protective coating covering a boundary between the surface periphery of the semiconductor chip and the anisotropic conductive film.
[0009]
The semiconductor chip is attached with an anisotropic conductive film having an area larger than the surface of the semiconductor chip such that the peripheral edge extends from the peripheral edge of the surface of the semiconductor chip. That is, for example, when the semiconductor chip is mounted on a circuit board or the like by being pressed in a heated state, the resin film of the anisotropic conductive film is softened, and when further pressed, the semiconductor chip is softened It is made to fit in the resin film. In other words, it can be expected that the side surface of the semiconductor chip is covered with the resin film of the anisotropic conductive film and the electronic circuit of the semiconductor chip is completely cut off from the outside and shielded. In particular, in the present invention, since the anisotropic conductive film is attached so as to extend from the peripheral edge of the semiconductor chip, the side surface of the semiconductor chip is more reliably attached to the resin of the anisotropic conductive film. It can be covered with a film.
[0010]
Therefore, when the side surface of the semiconductor chip is covered with the resin film of the anisotropic conductive film, the same effect as that obtained by applying resin packaging to the semiconductor chip can be obtained. That is, it is not necessary to perform resin packaging on the semiconductor chip, and it is possible to prevent moisture, outside air, and the like from entering the electronic circuit of the semiconductor chip by using the resin film of the anisotropic conductive film. Thus, the characteristics inherent to the semiconductor chip can be sufficiently exhibited.
[0011]
Further, the semiconductor chip having an anisotropic conductive film described above, on the back side of the portion extending from the peripheral surfaces of the semiconductor chip in the anisotropic conductive film, so as to follow the side face of the semiconductor chip, the A protective coating is applied to cover the boundary between the surface periphery of the semiconductor chip and the anisotropic conductive film .
[0012]
Since the protective coating is applied along the side surface of the semiconductor chip, when the semiconductor chip is mounted on a circuit board or the like, the resin film of the anisotropic conductive film as described above. the further to the protective coating therefore electronic circuit of the semiconductor chip is shielded is shielded from the outside. Therefore, the effects described above can be further expected.
[0013]
According to a second aspect of the present invention, there is provided a method for mounting a semiconductor chip having an anisotropic conductive film according to the first aspect described above, wherein the semiconductor chip having the anisotropic conductive film is disposed on the surface side thereof. A semiconductor chip mounting method is provided, wherein the semiconductor chip is mounted on a circuit board or a lead frame and pressed in a heated state.
[0014]
The anisotropic conductive film is basically the same as that used when a semiconductor chip is mounted on a circuit board or the like by a conventional chip-on-board method. That is, it has a structure in which conductive particles are dispersed in an adhesive resin film. Since the conductive particles are dispersed in the resin, in the natural state, the conductive particles are isolated from each other by the insulating resin. Insulated state. However, when the film is crushed by applying a compressive force in the thickness direction to the selected region of the anisotropic conductive film, preferably in the heated state, the surface of the conductive particles is crushed and the thickness is reduced. The exposed surfaces of the film are exposed to each other, and the surfaces facing each other so as to sandwich the particles are electrically connected to each other.
[0015]
In the mounting method according to the present invention, when the film is crushed by applying a compressive force in the thickness direction in the heated state, the softened resin film of the anisotropic conductive film wraps around the side surface of the semiconductor chip. In a state where the resin film is solidified and the semiconductor chip is mounted, the electronic circuit of the semiconductor chip can be blocked from the outside and protected by the resin film. In addition, when the semiconductor chip is mounted on the circuit board or the like using a semiconductor chip having a protective coating along the side surface of the semiconductor chip, the electronic circuit of the semiconductor chip is more reliably protected. can do.
[0016]
Therefore, in the semiconductor chip mounting method according to the present invention, the semiconductor chip, particularly the electronic circuit formed on the semiconductor chip, can be protected without applying resin packaging to the semiconductor chip obtained from the wafer. For this reason, the number of steps from manufacturing of a semiconductor chip to mounting on a circuit board or the like can be reduced, and workability is greatly improved.
[0017]
Preferably, the semiconductor chip mounting method is characterized in that ultrasonic vibration is applied when the semiconductor chip is pressed against the circuit board or the lead frame in a heated state.
[0018]
In the present invention, not only a compressive force is applied to the anisotropic conductive film interposed between the semiconductor chip and the circuit board in a heated state, but also ultrasonic vibration is applied. Preferably, the conductor pad formed on the circuit board is formed in a protruding shape. When ultrasonic vibration is applied between the electrode pad and the conductor pad, the conductive particles in the anisotropic conductive film that is crushed between the electrode pad and the pad are subjected to vibration friction. By selecting the material of both pads and the conductive particles, the mutual contact portions are formed into a eutectic alloying, and thereby, conductive properties between the two pads and the conductive particles are selected. A more reliable electrical connection between the particles is achieved.
[0019]
The opposing surfaces of the semiconductor chip and the circuit board are fixed to each other by adhesion with an anisotropic conductive film. As a result, according to the mounting method of the semiconductor chip according to this aspect, the stability of the electrical connection between the pads is increased as compared with the conventional mounting method using the anisotropic conductive film.
[0020]
According to the third aspect of the present invention, the semiconductor chip having the anisotropic conductive film according to the first aspect described above is thermocompression-bonded on the circuit board or the lead frame with the surface side down. A semiconductor chip mounting structure having an anisotropic conductive film is provided.
[0021]
That is, also in the mounting structure of the semiconductor chip having the anisotropic conductive film according to this aspect, the resin film of the anisotropic conductive film, preferably, in addition to this, the semiconductor chip, particularly the semiconductor chip is formed by a protective coating. Since the formed electronic circuit is protected, the characteristics of the semiconductor chip can be fully exhibited.
[0022]
Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.
[0024]
FIG. 1 is a cross-sectional view of a semiconductor chip having an anisotropic conductive film according to a reference example of the present invention. 2 and 3 are views for explaining a process of mounting the semiconductor chip 10 on the circuit board 20. 4 is a view showing a state in which the semiconductor chip 10 is mounted on the circuit board 20, and FIG. 5 is an enlarged view of a main part of FIG. Note that, in these drawings, members and portions equivalent to those in the conventional example shown in FIG.
[0025]
On the surface of the semiconductor chip 10, a predetermined electronic circuit (not shown) is formed, and as shown in FIG. 1, a plurality of protruding electrode pads 11 that are electrically connected to the electronic circuit are formed. . An anisotropic conductive film 30 is adhered to the surface of the semiconductor chip 10. The semiconductor chip 10 may be manufactured by a known method, and may be an IC or the like, for example.
[0026]
The anisotropic conductive film 30 has an area larger than the surface of the semiconductor chip 10 and is attached to the semiconductor chip 10 such that the peripheral edge extends from the surface of the semiconductor chip 10. ing. The anisotropic conductive film 30 has a structure in which conductive particles 32 are dispersed in an adhesive resin film 31. As the conductive particles 32, in addition to metal spheres, for example, the surface of a resin ball that is plated with nickel, or the surface of nickel that is further plated with gold is used. The thickness of the anisotropic conductive film 30 in the natural state is, for example, 30 to 50 μm, and the spherical diameter of the conductive particles 32 is, for example, 5 μm.
[0027]
In the semiconductor chip 10 having the anisotropic conductive film 30 as described above, the semiconductor chip 10 has the anisotropic conductive film 30 having an area larger than the surface thereof, and the periphery thereof is the surface of the semiconductor chip 10. It is stuck so as to extend from the periphery. That is, for example, when the semiconductor chip 10 is mounted on the circuit board 20 or the like by pressing the semiconductor chip 10 in a heated state, the resin film 31 of the anisotropic conductive film 30 is softened. The chip 10 is inserted into the softened resin film 31. In other words, it can be expected that the side surface of the semiconductor chip 10 is covered with the resin film 31 of the anisotropic conductive film 30 and the electronic circuit of the semiconductor chip 10 is completely cut off from the outside and shielded. In particular, in the present embodiment, since the anisotropic conductive film 30 is attached so as to extend from the peripheral edge of the semiconductor chip 10, the side surface of the semiconductor chip 10 is more reliably attached to the anisotropic chip. The conductive film 30 can be covered with the resin film 31.
[0028]
Therefore, when the side surface of the semiconductor chip 10 is covered with the resin film 31 of the anisotropic conductive film 30, the same effect as that obtained when the semiconductor chip 10 is subjected to resin packaging can be obtained. That is, it is not necessary to perform resin packaging on the semiconductor chip 10, and use of the anisotropic conductive film 30 can prevent moisture and outside air from entering the electronic circuit of the semiconductor chip 10. Thus, the characteristics inherent to the semiconductor chip 10 can be sufficiently exhibited.
[0029]
The semiconductor chip 10 having the anisotropic conductive film 30 is mounted on the circuit board 20 as follows.
[0030]
The circuit board 20 on which the semiconductor chip 10 is to be mounted has a copper film formed on the surface of a base material such as glass epoxy, and a wiring pattern is formed by performing predetermined pattern etching on the copper film. A plurality of conductor pads 21 corresponding to the electrode pads 11 are exposed so as to be conductive with the wiring pattern and subjected to nickel plating and gold plating. The region on the substrate other than the conductor pads 21 exposed in this manner is covered with an insulating resin film usually called a green resist. Since the conductor pad 21 is nickel-plated and gold-plated, it has a slightly protruding shape with respect to the substrate surface.
[0031]
As shown in FIG. 2, the semiconductor chip 10 having the anisotropic conductive film 30 manufactured as described above includes the electrode pad 11 and the conductor pad 21 of the circuit board 20 with the anisotropic conductive film 30 facing downward. Are pressed at a predetermined pressure while being positioned so as to correspond to each other. At this time, the support base 40 on which the circuit board 20 is placed is heated to, for example, about 180 ° C. by a heater (not shown) incorporated therein.
[0032]
As shown in FIG. 3, the semiconductor chip 10 is pressed against the circuit board 20 using an ultrasonic horn 50. In other words, in the present embodiment, the semiconductor chip 10 is not only thermocompression bonded to the substrate, but is also subjected to ultrasonic vibration.
[0033]
When the selected region of the anisotropic conductive film 30 is heated and pressed in the thickness direction, the resin component is softened and crushed. In the above example, both the electrode pad 11 on the semiconductor chip 10 side and the conductor pad 21 on the circuit board 20 side are protruding, so that the opposing electrode pad 11 in the anisotropic conductive film 30 The region sandwiched between the conductor pads 21 is selectively crushed. As a result, as shown in FIGS. 4 and 5, the conductive particles 32 dispersed in the resin are electrodes on the semiconductor chip 10 side. The pads 11 are brought into contact with the conductor pads 21 on the circuit board 20 side. In addition, in the present invention, ultrasonic vibration with a predetermined energy is applied between the circuit board 20 and the semiconductor chip 10. Therefore, a reliable conductive contact state by vibration friction is obtained between the conductive particles 32 and the electrode pads 11 and between the conductive particles 32 and the conductor pads 21. The region of the anisotropic conductive film 30 that is not sandwiched between the electrode pad 11 and the conductor pad 21 is not crushed or is less crushed, so that the conductive particles 32 inside are still anisotropic. Thus, the conductive film 30 is dispersed in the thickness direction, so that the insulation between the regions other than the pads 11 and 21 on both surfaces of the semiconductor chip 10 and the circuit board 20 is maintained.
[0034]
In the above example, since the surfaces of the conductive particles 32 in the electrode pad 11, the conductor pad 21, and the anisotropic conductive film 30 are all gold, the application of ultrasonic energy as described above causes these gold surfaces to be Recrystallization at the atomic level provides a high degree of electrical continuity between them.
[0035]
For example, when the surface of the electrode pad 11 or the conductor pad 21 is made of tin, aluminum, or copper, a eutectic alloy portion is formed between the gold surfaces of the conductive particles 32. Electrical conductivity is obtained.
[0036]
As shown in FIG. 4, when the anisotropic conductive film 30 is crushed by applying a pressing force in the thickness direction in a heated state, the softened resin film 31 of the anisotropic conductive film 30 becomes the semiconductor. In a state in which the resin film 31 is solidified by being wrapped around the side surface of the chip 10 and the semiconductor chip 10 is mounted, the electronic circuit of the semiconductor chip 10 is blocked from the outside by the resin film 31 and protected. Become.
[0037]
Therefore, in this semiconductor chip mounting method, the semiconductor chip 10, particularly the electronic circuit formed on the semiconductor chip 10, can be protected without applying resin packaging to the semiconductor chip 10 obtained from the wafer. For this reason, the number of steps from manufacture of the semiconductor chip 10 to mounting on the circuit board 20 or the like can be reduced, and workability is greatly improved.
[0038]
Next, a semiconductor chip having an anisotropic conductive film according to the implementation embodiments of the present invention with reference to FIGS. 6 and 7 will be described.
[0039]
FIG. 6 is a cross-sectional view of the semiconductor chip 10 having the anisotropic conductive film 30. FIG. 7 is a diagram of the semiconductor chip 10 mounted on the circuit board 20.
[0040]
As shown in FIG. 6, the basic configuration of the semiconductor chip having the anisotropic conductive film according to this embodiment is substantially the same as that of the semiconductor chip 10 having the anisotropic conductive film according to the reference example described above. The difference from the reference example is that a protective coating is applied to the back surface side of the portion of the anisotropic conductive film 30 that extends from the peripheral edge of the semiconductor chip 10 along the side surface of the semiconductor chip 10. Thus, the protective layer 5 is formed. This protective coating can be formed, for example, by applying a silicone-based resin.
[0041]
Therefore, basically, the effect of the semiconductor chip 10 having the anisotropic conductive film according to the reference example described above can be enjoyed. In addition, by forming the protective layer 5 along the side surface of the semiconductor chip 10, the electronic circuit formed on the semiconductor chip 10 can be reliably protected.
[0042]
In addition, as shown in FIG. 7, in the state where the semiconductor chip 10 is mounted on the circuit board 20, the resin film 31 of the anisotropic conductive film 30 goes around the protective layer 5 and solidifies. It becomes. Accordingly, in the mounted state, the electrons formed more reliably on the semiconductor chip 10 than the first embodiment by the protective layer 5 and additionally by the resin film 31 which goes around the protective layer 5 and solidifies. The circuit can be protected. Also in this embodiment, it becomes possible to reduce the process of performing resin packaging of the semiconductor chip 10 obtained from the wafer, and the number of processes from manufacturing the semiconductor chip 10 to mounting on the circuit board 20 can be reduced. Workability is greatly improved.
[0043]
In the implementation form described above, when it is obtained by applying the present invention when mounting the semiconductor chip 10 to the circuit board 20, the present invention is to not restricted to this, bonding the semiconductor chip 10 on the lead frame It can also be applied to. In this case, the internal lead formed on the lead frame plays a role similar to that of the conductor pad 21 of the circuit board 20, and preferably its surface is plated with gold. The electrode pads 11 of the semiconductor chip 10 connected in this way and the internal leads of the lead frame are electrically connected in the same manner as in the above-described example and are securely connected.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semiconductor chip having an anisotropic conductive film according to a reference example of the present invention.
FIG. 2 is a diagram showing a state in which the semiconductor chip is positioned with respect to a circuit board.
FIG. 3 is a view showing a state in which the semiconductor chip and the circuit board are pressed against each other and ultrasonic vibrations are supplied.
FIG. 4 is a view showing a state where the semiconductor chip is mounted on a circuit board.
FIG. 5 is an enlarged view of a main part of FIG. 4;
6 is a cross-sectional view of a semiconductor chip having an anisotropic conductive film according to the implementation embodiments of the present invention.
FIG. 7 is a view showing a state where the semiconductor chip is mounted on a circuit board.
FIG. 8 is an explanatory diagram of a conventional example.
[Explanation of symbols]
4 Wafer 5 Protective Layer 10 Semiconductor Chip 11 Electrode Pad 20 Circuit Board 21 Conductor Pad 30 Anisotropic Conductive Film 31 Resin Film 32 Conductive Particle 40 Support Stand 50 Ultrasonic Horn

Claims (4)

表面に所定の電子回路および電極パッドが形成されている半導体チップを有し、
上記電極パッドは突出状に形成されているとともに、上記半導体チップの表面には、上記半導体チップの表面よりも大の面積を有し、かつ接着性の樹脂膜内に導電性の粒子を分散させた構造をもつ異方性導電膜が、その周縁が上記半導体チップの表面の周縁から延出するようにして貼着されており、かつ、
上記異方性導電膜における上記半導体チップの表面周縁から延出する部分の裏面側に、上記半導体チップの側面に沿うようにして、上記半導体チップの表面周縁と上記異方性導電膜との境界を覆う保護コーティングが施されていることを特徴とする、異方性導電膜を有する半導体チップ。
A semiconductor chip having a predetermined electronic circuit and electrode pads formed on the surface,
Together with the electrode pads are formed to protrude on the surface of the semiconductor chip, it has a large area than the surface of the semiconductor chip, and the particles of the electrically conductive adhesive resin film is dispersed An anisotropic conductive film having the above structure is attached so that the peripheral edge extends from the peripheral edge of the surface of the semiconductor chip, and
A boundary between the surface periphery of the semiconductor chip and the anisotropic conductive film on the back side of the portion of the anisotropic conductive film extending from the surface periphery of the semiconductor chip along the side surface of the semiconductor chip A semiconductor chip having an anisotropic conductive film, characterized in that a protective coating is applied to cover the film.
請求項1に記載の異方性導電膜を有する半導体チップの実装方法であって、上記異方性導電膜を有する半導体チップを、その表面側を下にして、回路基板またはリードフレーム上に載置し、加熱状態において押圧することを特徴とする、半導体チップの実装方法。  A method for mounting a semiconductor chip having an anisotropic conductive film according to claim 1, wherein the semiconductor chip having the anisotropic conductive film is mounted on a circuit board or a lead frame with its front side facing down. A method for mounting a semiconductor chip, comprising placing and pressing in a heated state. 請求項2に記載の実装方法において、上記半導体チップを上記回路基板またはリードフレームに加熱状態において押圧するに際し、超音波振動を付与することを特徴とする、半導体チップの実装方法。  3. The semiconductor chip mounting method according to claim 2, wherein ultrasonic vibration is applied when the semiconductor chip is pressed against the circuit board or the lead frame in a heated state. 請求項1に記載の異方性導電膜を有する半導体チップが、その表面側を下にして、回路基板またはリードフレーム上に熱圧着されていることを特徴とする、異方性導電膜を有する半導体チップの実装構造。  A semiconductor chip having the anisotropic conductive film according to claim 1, wherein the semiconductor chip is thermocompression-bonded on a circuit board or a lead frame with the surface side down. Semiconductor chip mounting structure.
JP01156097A 1996-12-27 1997-01-24 Semiconductor chip having anisotropic conductive film, mounting method thereof, and mounting structure Expired - Fee Related JP3974212B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP01156097A JP3974212B2 (en) 1997-01-24 1997-01-24 Semiconductor chip having anisotropic conductive film, mounting method thereof, and mounting structure
US09/383,640 US6461890B1 (en) 1996-12-27 1999-08-26 Structure of semiconductor chip suitable for chip-on-board system and methods of fabricating and mounting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01156097A JP3974212B2 (en) 1997-01-24 1997-01-24 Semiconductor chip having anisotropic conductive film, mounting method thereof, and mounting structure

Publications (2)

Publication Number Publication Date
JPH10209617A JPH10209617A (en) 1998-08-07
JP3974212B2 true JP3974212B2 (en) 2007-09-12

Family

ID=11781332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01156097A Expired - Fee Related JP3974212B2 (en) 1996-12-27 1997-01-24 Semiconductor chip having anisotropic conductive film, mounting method thereof, and mounting structure

Country Status (1)

Country Link
JP (1) JP3974212B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417252B1 (en) * 2012-02-24 2014-07-08 엘지이노텍 주식회사 Device for bonding pcb to module

Also Published As

Publication number Publication date
JPH10209617A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
JP4058642B2 (en) Semiconductor device
US6461890B1 (en) Structure of semiconductor chip suitable for chip-on-board system and methods of fabricating and mounting the same
TW392262B (en) Electric parts and semiconductor device and the manufacturing method thereof, and the assembled circuit board, and the electric device using the same
JP3967133B2 (en) Manufacturing method of semiconductor device and electronic device
JP3152180B2 (en) Semiconductor device and manufacturing method thereof
US6917107B2 (en) Board-on-chip packages
JP3134815B2 (en) Semiconductor device
JP3420917B2 (en) Semiconductor device
KR950704838A (en) TAB TESTING OF AREA ARRAY INTERCONNECTED CHIPS
JP2000269369A (en) Semiconductor device
KR20030051159A (en) Semiconductor device
JP4418177B2 (en) Manufacturing method of heat spreader for high voltage BGA package
CN1071493C (en) Semiconductor apparatus
JP2000277649A (en) Semiconductor and manufacture of the same
JP3974212B2 (en) Semiconductor chip having anisotropic conductive film, mounting method thereof, and mounting structure
JPH10189657A (en) Connection between terminals, mounting of semiconductor chip, bonding of semiconductor chip and connection structure between terminals
US6291893B1 (en) Power semiconductor device for “flip-chip” connections
JPH05326817A (en) Multichip package
KR100833937B1 (en) Anisotropic conductive adhesive
JP3336235B2 (en) Semiconductor device and manufacturing method thereof
JPS60100441A (en) Semiconductor device
JP3337922B2 (en) Semiconductor device and manufacturing method thereof
JP3604250B2 (en) Semiconductor device package
JP3964319B2 (en) Semiconductor device
JPH07254632A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070614

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees