JP3973305B2 - High oil absorption silica gel and method for producing the same - Google Patents

High oil absorption silica gel and method for producing the same Download PDF

Info

Publication number
JP3973305B2
JP3973305B2 JP31240098A JP31240098A JP3973305B2 JP 3973305 B2 JP3973305 B2 JP 3973305B2 JP 31240098 A JP31240098 A JP 31240098A JP 31240098 A JP31240098 A JP 31240098A JP 3973305 B2 JP3973305 B2 JP 3973305B2
Authority
JP
Japan
Prior art keywords
silica gel
oil absorption
high oil
ion
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31240098A
Other languages
Japanese (ja)
Other versions
JP2000143228A (en
JP2000143228A5 (en
Inventor
広雄 森
良 日下
真樹 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP31240098A priority Critical patent/JP3973305B2/en
Publication of JP2000143228A publication Critical patent/JP2000143228A/en
Publication of JP2000143228A5 publication Critical patent/JP2000143228A5/ja
Application granted granted Critical
Publication of JP3973305B2 publication Critical patent/JP3973305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリカゲルおよびその製造方法に関する。特に、高吸油量のシリカゲルおよびその製造方法に関する。
【0002】
【従来の技術】
粉体が油性の液体を吸収して保持する性質は、吸油量で表される。例えば、高吸油量のシリカは、医農薬等の担体、化粧品・トイレタリー原料、新聞紙の裏抜け防止材、インクジェットプリンタ用記録媒体のコーティング材またはフィラー、電池のセパレータ、塗料添加剤、触媒担体などに使用されている。
【0003】
従来、代表的な高吸油量シリカとして、いわゆる沈降性シリカが知られている。沈降性シリカは、例えば、ケイ酸アルカリ水溶液に硫酸を加えて中和し、生成した粒子を分離洗浄して製造されている。沈降性シリカは、比表面積が300m2 /g以下であることが特徴である。アルカリ性で比較的高温の条件を経ることから、500m2 /g以上の比表面積を持つ沈降性シリカを得ることはできない。沈降性シリカの一次粒子径は通常15nm以上である。
【0004】
特開平6−40714号公報には、沈降性シリカを超臨界乾燥することにより乾燥時のシリカの収縮を防止して、吸油量が350ml/100g以上の高吸油量のシリカを得る方法が開示されている。しかし、これも本質的に沈降性シリカであり比表面積は概略400m2 /gである。
【0005】
国際特許公開WO97/45366号には、沈降性シリカを電池のセパレータに使用することが開示されている。この沈降性シリカの比表面積は60〜200m2 /g、吸油量は180〜300ml/100gである。
一方、乾燥剤などに用いる通常のシリカゲルは、比表面積は350〜700m2 /gと沈降性シリカより高いが、吸油量は100〜170ml/g程度である。
【0006】
【発明が解決しようとする課題】
従来高吸油量の沈降性シリカが使用されていた分野で、機能を改善するため、または新規な機能を得るためには、より高吸油量でかつ高比表面積のシリカが望まれている。本発明の目的は、高吸油量、かつ高比表面積のシリカゲルを提供することである。
【0007】
【課題を解決するための手段】
本発明は、窒素吸着法による細孔半径1〜100nmの範囲の細孔容積が1.5〜3.5ml/g、比表面積が500〜1000m2 /g、吸油量が300ml/100g以上のシリカゲルであって、電気伝導度が1μS/cm以下の水にこのシリカゲルを1重量%を分散した後分離し、さらに静置式乾燥機を用いて120℃で5時間乾燥して得られるシリカゲルの、窒素吸着法による細孔半径1〜100nmの範囲の細孔容積および吸油量が、それぞれ水に分散する前の値の90%以上である高吸油量シリカゲルを提供する。
【0008】
本発明のシリカゲルは、窒素吸着法による細孔半径1〜100nmの範囲の細孔容積が1.5〜3.5ml/gである。以下、単に細孔容積というときは、窒素吸着法による細孔半径1〜100nmの範囲の細孔容積を意味するものとする。細孔容積が1.8〜3.5ml/gである場合はさらに好ましい。細孔容積は、窒素吸着法により窒素相対圧0〜0.99で測定した結果を、BJH法で解析して求める。測定には、例えばカンタクローム社製、商品名カンタクロームオートソーブを用いることができる。
【0009】
本発明のシリカゲルは、比表面積は500〜1000m2 /gである。比表面積が大きい方が表面の吸着サイトが増えるので好ましい。比表面積が600〜1000m2 /gである場合はさらに好ましい。従来の沈降性シリカは、前述のとおりその比表面積は概ね400m2 /g以下であるが、本発明のシリカゲルはそれに比べて高い比表面積を有する。このシリカゲルの一次粒子径は、シリカの真比重を2.2g/cm3 の球形の無孔質粒子と仮定して計算すると4〜7nmであり、一次粒子径が15nm以上の沈降性シリカと区別できる。比表面積も細孔容積の場合と同様、窒素吸着法により窒素相対圧0〜0.99で測定した結果を、BET法で解析して求める。
【0010】
本発明のシリカゲルは、吸油量が300ml/100g以上である。吸油量が350ml/100g以上である場合はさらに好ましい。吸油量は、JIS K5101に準じて測定する。すなわち、試料全体が一かたまりとなるまで、練りながら試料に煮アマニ油を加えていく。吸油量は、試料100gあたりの煮アマニ油の容積で表わす。以下、この測定法による吸油量を、単に吸油量という。
【0011】
本発明のシリカゲルは、電気伝導度が1μS/cm以下の水にこのシリカゲルを1重量%を分散した後分離し、さらに静置式乾燥機を用いて120℃で5時間乾燥して得られるシリカゲルの、窒素吸着法による細孔半径1〜100nmの範囲の細孔容積および吸油量が、それぞれ水に分散する前の値の90%以上である。
【0012】
従来、超臨界乾燥により高吸油量のシリカは得られているが、このシリカは、水などの溶媒に入れて再度乾燥すると、その細孔容積、吸油量は極端に小さくなる。本発明のシリカゲルは高吸油量であり、水などの溶媒に入れて再度乾燥しても、その細孔容積、吸油量はほとんど変化しない。したがって、紙などのフィラーやコート材として使用した場合、乾燥時の、細孔容積の減少やみかけの体積の収縮がなく、吸油量も大きいまま維持できるのこれらの用途に好適である。
【0013】
本発明のシリカゲルの平均粒子径は、その使用方法により任意に選べるが、1〜100μmであることが好ましい。平均粒子径が、1〜70μmである場合は、さらに好ましい。さらに、シリカゲルの粒子形状が球状である場合は、樹脂、塗料に配合するときの分散性の向上、化粧品に配合したときの感触の向上、医農薬などの担体として使用するときの流動性の向上などの点で好ましい。ここで、球状とは真球状だけでなく、多少いびつなものも含む。この場合、長径に対する短径の比は、0.8〜1.0であることが好ましい。
【0014】
この球状の高吸油量シリカゲルは、ケイ酸アルカリ水溶液中のケイ酸成分をSiO2 に換算したとき、該SiO2 1モルに対して、塩化物イオン、硫酸イオン、硝酸イオンおよびフッ化物イオンからなる群より選ばれるアニオンの1種以上を合計で0.1〜0.5当量の割合で含有するケイ酸アルカリ水溶液を、有機溶媒中で乳化し、炭酸ガスでゲル化させることにより製造するのが好ましい。
【0015】
【発明の実施の形態】
本発明のシリカゲルは、アルカリ金属塩またはアルカリ土類金属塩を含有したケイ酸アルカリ水溶液を有機溶媒中で乳化し、炭酸ガスでゲル化させることにより得られる。
ケイ酸アルカリとしては、ケイ酸ナトリウム、ケイ酸カリウムなどが使用できる。ケイ酸ナトリウムが経済的である点で好ましい。以下、ケイ酸ナトリウムを例にとって説明するが、ケイ酸カリウムを用いる場合も同様である。
【0016】
ケイ酸ナトリウム水溶液中のケイ酸成分は、SiO2 に換算して3〜20重量%であることが好ましい。以下、ケイ酸成分の量はSiO2 に換算して示すものとする。ケイ酸ナトリウム水溶液中のSiO2 濃度のより好ましい範囲は5〜15重量%である。ケイ酸ナトリウム水溶液のSiO2 /Na2 O比は1〜4であることが好ましい。SiO2 /Na2 O比のより好ましい範囲は2.5〜3.5である。
【0017】
ケイ酸ナトリウム水溶液中には、塩化物イオン、硫酸イオン、硝酸イオンおよびフッ化物イオンからなる群より選ばれるアニオンの1種以上を、ケイ酸ナトリウム水溶液中のSiO2 1モルに対して0.1〜0.5当量の割合で含むことが好ましい。より好ましい範囲は、0.2〜0.4当量である。
【0018】
ケイ酸ナトリウム水溶液中に上記アニオンを含ませるには、水可溶性の金属塩化物、金属硫酸塩、金属硝酸塩、金属フッ化物を添加することにより行うのが好ましい。具体的には、アルカリ金属塩化物、アルカリ金属硫酸塩、アルカリ金属硝酸塩、アルカリ金属フッ化物、アルカリ土類金属塩化物、アルカリ土類金属硝酸塩が好ましい。特に、塩化ナトリウム、塩化カリウム、硫酸ナトリウムなどのアルカリ金属塩化物、アルカリ金属硫酸塩が好ましい。
【0019】
ケイ酸ナトリウム水溶液を乳化させる有機溶剤としては、炭酸ガスが溶解できる物質が好ましい。このような有機溶媒として、例えば、ヘキサン、オクタンなどの脂肪族炭化水素、キシレン、トルエンなどの芳香族炭化水素、クロロホルム、トリクロロエチレン、テトラクロロエチレンなどの塩素化炭化水素、トリクロロトリフルオロエタン、ジクロロトリフルオロエタン、ジクロロフルオロエタン、ジクロロペンタフルオロプロパンなどの塩素化フッ素化炭化水素が好ましい。
【0020】
有機溶媒には、界面活性剤を溶解して使用するのが好ましい。界面活性剤としては、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステルが好ましい。その使用量は、有機溶媒に対して0.05〜10重量%が好ましい。
【0021】
ケイ酸ナトリウム水溶液を有機溶剤に加えて乳化する場合、W/O型の乳化液が形成されるように、有機溶剤に対しケイ酸ナトリウム水溶液を容積比で0.1〜1の範囲で加えるのが好ましい。乳化は、タービン式撹拌機、高速せん断式乳化機などの手段によって行うのが好ましい。乳化液において、ケイ酸ナトリウム水溶液の液滴は、平均粒子径が1〜100μmであることが好ましい。
【0022】
次に、乳化液に炭酸ガスを導入することにより、ケイ酸アルカリ水溶液をゲル化させる。乳化させた状態でゲル化させるため、球状のシリカゲルが得られる。炭酸ガスの分圧、流量などは適宜選定できる。
ゲル化終了後は、有機溶媒を除去し、適宜加熱処理や薬液処理し、洗浄し乾燥する。ゲル化終了時にすでに高吸油量、高比表面積のシリカゲルが生成しているので、従来高吸油量のシリカを得るために行われているアルカリ条件下での加熱処理や水熱処理はここでは行わない。
【0023】
乾燥方法としては、公知の方法が使用できるが、乾燥時の細孔の収縮を防止するために、気流乾燥、スプレードライ、凍結乾燥、超臨界乾燥などが好適に使用できる。また、乾燥前に、水と相溶性があり表面張力の低い有機溶媒で水を置換した後乾燥することもできる。こうすることにより乾燥時の細孔の収縮を防止することができる。
このようにして得られる高吸油量シリカゲルは、さらに焼成してもよい。焼成温度、焼成時間は、比表面積が500m2 /g以下にならないように適宜選択できる。
【0024】
本発明の高吸油量シリカゲルは、無機塩類、またはその加水分解物で表面処理することができる。例えば、塩化アルミニウム水溶液中に入れ、ろ過、乾燥することにより塩化アルミニウム処理をすることができる。またこれを加水分解すると水酸化アルミニウム処理された高吸油量シリカゲルを得ることができる。この他、カルシウム塩、マグネシウム塩などでも同様に処理できる。
また、シランカップリング剤、シリコーンオイル、フッ素系表面処理剤、チタネート系カップリング剤、アルコール、界面活性剤、その他の表面処理剤、表面改質剤によって表面処理することができる。
【0025】
本発明の球状シリカゲルは、粉砕して使用してもよい。粉砕方法としてはジェット粉砕機のような公知の方法を採用できる。粉砕した場合も、高い吸油量と、高い比表面積を維持したシリカゲルとして使用することができる。
【0026】
【実施例】
例1
SiO2 濃度10.0重量%、SiO2 /Na2 Oモル比2.7のケイ酸ナトリウム水溶液240mlに、塩化ナトリウムを塩化物イオンがSiO2 1モルに対して0.36当量となるように溶解した。この水溶液を、トリクロロトリフルオロエタン960mlにソルビタンモノオレイン酸エステル3.36gを溶解した溶液に投入し、ホモミキサーで乳化させた。
【0027】
この乳化液に、空気で希釈した炭酸ガス(CO2 濃度30容積%)を吹き込み、15℃でゲル化させた。炭酸ガスを15分間吹き込んだ後、トリクロロトリフルオロエタンを分離し、球状シリカと水からなるスラリーを得た。このスラリーのpHは9.0であった。このスラリーに硫酸を加え、pH2.5に調整し、60℃で1時間加熱処理した。
【0028】
このスラリーを濾過し、そのケーキを固形分の100倍のイオン交換水で洗浄し、スプレードライヤーで乾燥し、球状シリカゲルを得た。細孔容積は2.8ml/g、比表面積は758m2 /g、吸油量は550ml/100g、平均粒子径は4.8μmであった。この球状シリカゲルの長径に対する短径の比は、0.9以上であった。
【0029】
この球状シリカゲル1gを電気伝導度が0.5μS/cmのイオン交換水99gに分散し、さらに静置式乾燥機を用いて120℃で5時間乾燥してシリカゲルを得た。この処理の後のシリカゲルについて同様に細孔特性を評価したところ、細孔容積は2.8ml/g、比表面積は760m2 /g、吸油量は553ml/100gであった。
【0030】
例2
例1の塩化ナトリウムを、硫酸ナトリウム(硫酸イオンがSiO2 1モルに対して0.30当量となる量)に変更し、球状シリカゲルを得た。細孔容積は2.3ml/g、比表面積は810m2 /g、吸油量は440ml/100g、平均粒子径は5.2μmであった。この球状シリカゲルの長径に対する短径の比は、0.9以上であった。
【0031】
この球状シリカゲル1gを電気伝導度が0.5μS/cmのイオン交換水99gに分散し、さらに静置式乾燥機を用いて120℃で5時間乾燥してシリカゲルを得た。この処理の後のシリカゲルについて同様に細孔特性を評価したところ、細孔容積、比表面積、吸油量は、実質的に変化していなかった。すなわち、それぞれ水に分散する前の値の90%以上であった。
【0032】
例3
例1の塩化ナトリウムの添加量を、塩化物イオンがSiO2 1モルに対して0.32当量となる量に変更して、球状シリカゲルを得た。細孔容積は2.1ml/g、比表面積は797m2 /g、吸油量は420ml/100g、平均粒子径は4.6μmであった。この球状シリカゲルの長径に対する短径の比は、0.9以上であった。
【0033】
この球状シリカゲル1gを電気伝導度が0.5μS/cmのイオン交換水99gに分散し、さらに静置式乾燥機を用いて120℃で5時間乾燥してシリカゲルを得た。この処理の後のシリカゲルについて同様に細孔特性を評価したところ、細孔容積、比表面積、吸油量は、実質的に変化していなかった。すなわち、それぞれ水に分散する前の値の90%以上であった。
【0034】
例4
例1で得られた球状シリカゲルを、ジェット粉砕機で処理し、微粉末シリカゲルを得た。このシリカゲルは、細孔容積は2.3ml/g、比表面積は743m2 /g、吸油量は450ml/100g、平均粒子径は1.2μmであった。
【0035】
このシリカゲル1gを電気伝導度が0.5μS/cmのイオン交換水99gに分散し、さらに静置式乾燥機を用いて120℃で5時間乾燥してシリカゲルを得た。この処理の後のシリカゲルについて同様に細孔特性を評価したところ、細孔容積は2.3ml/g、比表面積は755m2 /g、吸油量は443ml/100gであった。
【0036】
例5(比較例)
テトラエチルシリケートをエタノール中で酸性条件下で加水分解した後、水をエタノールで置換し、圧力、温度をエタノールの超臨界点以上にした後、その温度を維持したまま超臨界乾燥したシリカゲルについて、同様に細孔特性を評価した。細孔容積は6.9ml/g、比表面積は453m2 /g、吸油量は640ml/100g、平均粒子径は1.2μmであった。
【0037】
このシリカゲル1gを電気伝導度が0.5μS/cmのイオン交換水99gに分散し、さらに静置式乾燥機を用いて120℃で5時間乾燥してシリカゲルを得た。この処理の後のシリカゲルについて同様に細孔特性を評価したところ、細孔容積は1.8ml/g、比表面積は475m2 /g、吸油量は265ml/100gであった。
【0038】
【発明の効果】
本発明の高吸油量シリカゲルは、従来の沈降性シリカと比較して大きな比表面積を有し、医農薬等の担体、化粧品・トイレタリー原料、新聞紙の裏抜け防止材、インクジェットプリンタ用記録媒体のコーティング材またはフィラー、電池のセパレータ、塗料添加剤、触媒担体、軽量化材、断熱材、樹脂・ゴムへの充填剤などの用途に好適に使用される。
【0039】
本発明の球状シリカゲルを使用したインクジェットプリンタ用記録媒体は、インクの吸収速度が速く、色濃度が高い。また、本発明の球状シリカゲルを使用した電池のセパレータは、電気抵抗が低い。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to silica gel and a method for producing the same. In particular, the present invention relates to a high oil absorption silica gel and a method for producing the same.
[0002]
[Prior art]
The property that the powder absorbs and retains the oily liquid is represented by the oil absorption. For example, high oil-absorbing silica is used as a carrier for medicines and agrochemicals, cosmetics and toiletry materials, anti-back-through materials for newspapers, coating materials or fillers for recording media for inkjet printers, battery separators, paint additives, catalyst carriers, etc. in use.
[0003]
Conventionally, so-called precipitated silica is known as a typical high oil absorption silica. Precipitating silica is produced, for example, by adding sulfuric acid to an aqueous alkali silicate solution to neutralize it, and separating and washing the generated particles. Precipitated silica is characterized by a specific surface area of 300 m 2 / g or less. Precipitating silica having a specific surface area of 500 m 2 / g or more cannot be obtained because it is alkaline and undergoes relatively high temperature conditions. The primary particle size of precipitated silica is usually 15 nm or more.
[0004]
Japanese Patent Application Laid-Open No. 6-40714 discloses a method of obtaining silica having a high oil absorption amount of 350 ml / 100 g or more by preventing the silica from shrinking during drying by supercritical drying of the precipitated silica. ing. However, this is also essentially precipitated silica with a specific surface area of approximately 400 m 2 / g.
[0005]
International Patent Publication No. WO 97/45366 discloses the use of precipitated silica in battery separators. The sedimentary silica has a specific surface area of 60 to 200 m 2 / g and an oil absorption of 180 to 300 ml / 100 g.
On the other hand, a normal silica gel used as a desiccant has a specific surface area of 350 to 700 m 2 / g, which is higher than that of precipitated silica, but has an oil absorption of about 100 to 170 ml / g.
[0006]
[Problems to be solved by the invention]
In order to improve the function or obtain a new function in a field where a high oil absorption amount of precipitating silica has been used, a silica having a higher oil absorption amount and a higher specific surface area is desired. An object of the present invention is to provide a silica gel having a high oil absorption and a high specific surface area.
[0007]
[Means for Solving the Problems]
The present invention is a silica gel having a pore volume in the range of pore radius of 1 to 100 nm by a nitrogen adsorption method of 1.5 to 3.5 ml / g, a specific surface area of 500 to 1000 m 2 / g, and an oil absorption of 300 ml / 100 g or more. The silica gel obtained by dispersing 1% by weight of this silica gel in water having an electric conductivity of 1 μS / cm or less and then separating the silica gel and further drying it at 120 ° C. for 5 hours using a stationary dryer. Provided is a high oil absorption silica gel in which the pore volume and the oil absorption amount in the pore radius range of 1 to 100 nm by the adsorption method are each 90% or more of the value before being dispersed in water.
[0008]
The silica gel of the present invention has a pore volume of 1.5 to 3.5 ml / g in a pore radius range of 1 to 100 nm by a nitrogen adsorption method. Hereinafter, the simple pore volume means a pore volume within a pore radius range of 1 to 100 nm by a nitrogen adsorption method. More preferably, the pore volume is 1.8 to 3.5 ml / g. The pore volume is obtained by analyzing the result of measurement at a nitrogen relative pressure of 0 to 0.99 by the nitrogen adsorption method by the BJH method. For the measurement, for example, a product name Cantachrome Autosorb manufactured by Cantachrome Co., Ltd. can be used.
[0009]
The silica gel of the present invention has a specific surface area of 500 to 1000 m 2 / g. A larger specific surface area is preferred because the number of adsorption sites on the surface increases. More preferably, the specific surface area is 600 to 1000 m 2 / g. As described above, the conventional precipitated silica has a specific surface area of approximately 400 m 2 / g or less, but the silica gel of the present invention has a higher specific surface area. The primary particle diameter of this silica gel is 4 to 7 nm when calculated on the assumption that the true specific gravity of silica is 2.2 g / cm 3 of spherical nonporous particles, and is distinguished from precipitated silica having a primary particle diameter of 15 nm or more. it can. Similarly to the case of the pore volume, the specific surface area is obtained by analyzing the result of measurement by the nitrogen adsorption method at a nitrogen relative pressure of 0 to 0.99 by the BET method.
[0010]
The silica gel of the present invention has an oil absorption of 300 ml / 100 g or more. More preferably, the oil absorption is 350 ml / 100 g or more. The oil absorption is measured according to JIS K5101. That is, boiled linseed oil is added to the sample while kneading until the whole sample becomes a lump. Oil absorption is expressed as the volume of boiled linseed oil per 100 g of sample. Hereinafter, the oil absorption amount by this measuring method is simply referred to as the oil absorption amount.
[0011]
Silica gel of the present invention, silica gel electrical conductivity separated was dispersed 1 by weight% of the silica gel in the following water 1 [mu] S / cm, obtained by further dried for 5 hours at 120 ° C. using a stationary type dryer The pore volume and the oil absorption amount in the range of the pore radius of 1 to 100 nm by the nitrogen adsorption method are 90% or more of the values before being dispersed in water, respectively.
[0012]
Conventionally, high oil absorption silica has been obtained by supercritical drying, but when this silica is dried again in a solvent such as water, its pore volume and oil absorption become extremely small. The silica gel of the present invention has a high oil absorption, and even if it is dried again in a solvent such as water, its pore volume and oil absorption hardly change. Therefore, when used as a filler or a coating material such as paper, there is no reduction in pore volume or shrinkage of the apparent volume during drying, and it is suitable for these applications because the oil absorption amount can be kept large.
[0013]
Although the average particle diameter of the silica gel of the present invention can be arbitrarily selected depending on the method of use, it is preferably 1 to 100 μm. The average particle size is more preferably 1 to 70 μm. In addition, when the silica gel particle shape is spherical, it improves dispersibility when blended with resins and paints, improves feel when blended with cosmetics, and improves fluidity when used as a carrier for pharmaceuticals and agricultural chemicals. It is preferable at such points. Here, the spherical shape includes not only a true spherical shape but also a somewhat irregular shape. In this case, the ratio of the minor axis to the major axis is preferably 0.8 to 1.0.
[0014]
High oil absorption silica gel This spherical, when converted to silicic acid component in the aqueous alkali silicate solution into SiO 2, relative to the SiO 2 1 mol, consists of chloride ions, sulfate ions, nitrate ions and fluoride ions It is produced by emulsifying an alkali silicate aqueous solution containing at least one kind of anion selected from the group in a proportion of 0.1 to 0.5 equivalent in an organic solvent and gelling with carbon dioxide gas. preferable.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The silica gel of the present invention can be obtained by emulsifying an alkali silicate aqueous solution containing an alkali metal salt or an alkaline earth metal salt in an organic solvent and gelling it with carbon dioxide gas.
As the alkali silicate, sodium silicate, potassium silicate and the like can be used. Sodium silicate is preferred because it is economical. Hereinafter, although it demonstrates taking sodium silicate as an example, it is the same also when using potassium silicate.
[0016]
Silicic acid component in an aqueous sodium silicate solution is preferably from 3 to 20% by weight in terms of SiO 2. Hereinafter, the amount of the silicic acid component is shown in terms of SiO 2 . A more preferable range of the SiO 2 concentration in the aqueous sodium silicate solution is 5 to 15% by weight. The SiO 2 / Na 2 O ratio of the aqueous sodium silicate solution is preferably 1 to 4. A more preferable range of the SiO 2 / Na 2 O ratio is 2.5 to 3.5.
[0017]
In the sodium silicate aqueous solution, one or more anions selected from the group consisting of chloride ion, sulfate ion, nitrate ion and fluoride ion are added in an amount of 0.1 to 1 mol of SiO 2 in the sodium silicate aqueous solution. It is preferable to contain in the ratio of -0.5 equivalent. A more preferable range is 0.2 to 0.4 equivalent.
[0018]
In order to include the anion in the aqueous sodium silicate solution, it is preferable to add a water-soluble metal chloride, metal sulfate, metal nitrate, or metal fluoride. Specifically, alkali metal chloride, alkali metal sulfate, alkali metal nitrate, alkali metal fluoride, alkaline earth metal chloride, and alkaline earth metal nitrate are preferable. In particular, alkali metal chlorides such as sodium chloride, potassium chloride and sodium sulfate, and alkali metal sulfates are preferred.
[0019]
As the organic solvent for emulsifying the sodium silicate aqueous solution, a substance capable of dissolving carbon dioxide gas is preferable. Examples of such organic solvents include aliphatic hydrocarbons such as hexane and octane, aromatic hydrocarbons such as xylene and toluene, chlorinated hydrocarbons such as chloroform, trichloroethylene, and tetrachloroethylene, trichlorotrifluoroethane, and dichlorotrifluoroethane. Chlorinated fluorinated hydrocarbons such as dichlorofluoroethane and dichloropentafluoropropane are preferred.
[0020]
The organic solvent is preferably used after dissolving the surfactant. As the surfactant, polyethylene glycol fatty acid ester, polyoxyethylene alkylphenyl ether, polyoxyethylene alkyl ether, sorbitan fatty acid ester, and polyoxyethylene sorbitan fatty acid ester are preferable. The amount used is preferably 0.05 to 10% by weight with respect to the organic solvent.
[0021]
When emulsifying by adding an aqueous sodium silicate solution to an organic solvent, the aqueous sodium silicate solution is added to the organic solvent in a volume ratio of 0.1 to 1 so that a W / O type emulsion is formed. Is preferred. The emulsification is preferably carried out by means such as a turbine type stirrer or a high speed shearing type emulsifier. In the emulsion, the droplets of the aqueous sodium silicate solution preferably have an average particle size of 1 to 100 μm.
[0022]
Next, the aqueous alkali silicate solution is gelled by introducing carbon dioxide into the emulsion. Since gelation is performed in the emulsified state, spherical silica gel is obtained. Carbon dioxide partial pressure, flow rate, and the like can be selected as appropriate.
After the gelation is completed, the organic solvent is removed, and heat treatment or chemical treatment is appropriately performed, followed by washing and drying. Since silica gel with high oil absorption and high specific surface area has already been generated at the end of gelation, heat treatment and hydrothermal treatment under alkaline conditions that have been conventionally used to obtain silica with high oil absorption are not performed here. .
[0023]
As a drying method, a known method can be used, but airflow drying, spray drying, freeze drying, supercritical drying and the like can be preferably used in order to prevent pore shrinkage during drying. Moreover, it is also possible to dry after replacing water with an organic solvent that is compatible with water and has a low surface tension before drying. By doing so, shrinkage of the pores during drying can be prevented.
The high oil absorption silica gel thus obtained may be further baked. The firing temperature and firing time can be appropriately selected so that the specific surface area does not become 500 m 2 / g or less.
[0024]
The high oil absorption silica gel of the present invention can be surface-treated with inorganic salts or a hydrolyzate thereof. For example, the aluminum chloride treatment can be performed by placing in an aluminum chloride aqueous solution, filtering and drying. When this is hydrolyzed, a high oil absorption silica gel treated with aluminum hydroxide can be obtained. In addition, the same treatment can be performed with calcium salt, magnesium salt and the like.
Moreover, it can surface-treat with a silane coupling agent, silicone oil, a fluorine-type surface treatment agent, a titanate-type coupling agent, alcohol, surfactant, another surface treatment agent, and a surface modifier.
[0025]
The spherical silica gel of the present invention may be used after being pulverized. As the pulverization method, a known method such as a jet pulverizer can be employed. Even when pulverized, it can be used as silica gel maintaining a high oil absorption and a high specific surface area.
[0026]
【Example】
Example 1
Sodium chloride is added to 240 ml of an aqueous solution of sodium silicate having a SiO 2 concentration of 10.0% by weight and a SiO 2 / Na 2 O molar ratio of 2.7 so that the chloride ion is 0.36 equivalent to 1 mol of SiO 2 Dissolved. This aqueous solution was put into a solution obtained by dissolving 3.36 g of sorbitan monooleate in 960 ml of trichlorotrifluoroethane, and emulsified with a homomixer.
[0027]
Carbon dioxide gas diluted with air (CO 2 concentration: 30% by volume) was blown into the emulsified liquid, and gelled at 15 ° C. After blowing carbon dioxide gas for 15 minutes, trichlorotrifluoroethane was separated to obtain a slurry composed of spherical silica and water. The pH of this slurry was 9.0. Sulfuric acid was added to this slurry, adjusted to pH 2.5, and heat-treated at 60 ° C. for 1 hour.
[0028]
This slurry was filtered, and the cake was washed with ion exchange water having a solid content of 100 times and dried with a spray dryer to obtain spherical silica gel. The pore volume was 2.8 ml / g, the specific surface area was 758 m 2 / g, the oil absorption was 550 ml / 100 g, and the average particle size was 4.8 μm. The ratio of the minor axis to the major axis of the spherical silica gel was 0.9 or more.
[0029]
1 g of this spherical silica gel was dispersed in 99 g of ion-exchanged water having an electric conductivity of 0.5 μS / cm, and further dried at 120 ° C. for 5 hours using a stationary dryer to obtain silica gel. The silica gel after this treatment was similarly evaluated for pore characteristics. As a result, the pore volume was 2.8 ml / g, the specific surface area was 760 m 2 / g, and the oil absorption was 553 ml / 100 g.
[0030]
Example 2
The sodium chloride in Example 1 was changed to sodium sulfate (amount of sulfate ions to be 0.30 equivalent to 1 mol of SiO 2 ) to obtain spherical silica gel. The pore volume was 2.3 ml / g, the specific surface area was 810 m 2 / g, the oil absorption was 440 ml / 100 g, and the average particle size was 5.2 μm. The ratio of the minor axis to the major axis of the spherical silica gel was 0.9 or more.
[0031]
1 g of this spherical silica gel was dispersed in 99 g of ion-exchanged water having an electric conductivity of 0.5 μS / cm, and further dried at 120 ° C. for 5 hours using a stationary dryer to obtain silica gel. When the pore characteristics of the silica gel after this treatment were similarly evaluated, the pore volume, specific surface area, and oil absorption amount were not substantially changed. That is, it was 90% or more of the value before being dispersed in water.
[0032]
Example 3
The amount of sodium chloride added in Example 1 was changed to an amount such that the chloride ion was 0.32 equivalent to 1 mol of SiO 2 to obtain spherical silica gel. The pore volume was 2.1 ml / g, the specific surface area was 797 m 2 / g, the oil absorption was 420 ml / 100 g, and the average particle size was 4.6 μm. The ratio of the minor axis to the major axis of the spherical silica gel was 0.9 or more.
[0033]
1 g of this spherical silica gel was dispersed in 99 g of ion-exchanged water having an electric conductivity of 0.5 μS / cm, and further dried at 120 ° C. for 5 hours using a stationary dryer to obtain silica gel. When the pore characteristics of the silica gel after this treatment were similarly evaluated, the pore volume, specific surface area, and oil absorption amount were not substantially changed. That is, it was 90% or more of the value before being dispersed in water.
[0034]
Example 4
The spherical silica gel obtained in Example 1 was treated with a jet pulverizer to obtain fine powder silica gel. This silica gel had a pore volume of 2.3 ml / g, a specific surface area of 743 m 2 / g, an oil absorption of 450 ml / 100 g, and an average particle size of 1.2 μm.
[0035]
1 g of this silica gel was dispersed in 99 g of ion-exchanged water having an electric conductivity of 0.5 μS / cm, and further dried at 120 ° C. for 5 hours using a stationary drier to obtain silica gel. The silica gel after this treatment was similarly evaluated for pore characteristics. As a result, the pore volume was 2.3 ml / g, the specific surface area was 755 m 2 / g, and the oil absorption was 443 ml / 100 g.
[0036]
Example 5 (comparative example)
After hydrolyzing tetraethyl silicate in ethanol under acidic conditions, water was replaced with ethanol, the pressure and temperature were made higher than the supercritical point of ethanol, and the same was applied to silica gel that was supercritically dried while maintaining the temperature. The pore characteristics were evaluated. The pore volume was 6.9 ml / g, the specific surface area was 453 m 2 / g, the oil absorption was 640 ml / 100 g, and the average particle size was 1.2 μm.
[0037]
1 g of this silica gel was dispersed in 99 g of ion-exchanged water having an electric conductivity of 0.5 μS / cm, and further dried at 120 ° C. for 5 hours using a stationary dryer to obtain silica gel. When the pore characteristics of the silica gel after this treatment were similarly evaluated, the pore volume was 1.8 ml / g, the specific surface area was 475 m 2 / g, and the oil absorption was 265 ml / 100 g.
[0038]
【The invention's effect】
The high oil absorption silica gel of the present invention has a large specific surface area compared to conventional precipitated silica, a carrier such as medical and agricultural chemicals, cosmetics / toiletries raw material, anti-back-through material for newspapers, and coating for recording media for ink jet printers. It is suitably used for applications such as materials or fillers, battery separators, paint additives, catalyst carriers, lightening materials, heat insulating materials, and fillers for resins and rubbers.
[0039]
The recording medium for an ink jet printer using the spherical silica gel of the present invention has a high ink absorption speed and a high color density. Moreover, the battery separator using the spherical silica gel of the present invention has a low electric resistance.

Claims (4)

窒素吸着法による細孔半径1〜100nmの範囲の細孔容積が1.5〜3.5ml/g、比表面積が500〜1000m2 /g、吸油量が300ml/100g以上のシリカゲルであって、電気伝導度が1μS/cm以下の水にこのシリカゲルを1重量%を分散した後分離し、さらに静置式乾燥機を用いて120℃で5時間乾燥して得られるシリカゲルの、窒素吸着法による細孔半径1〜100nmの範囲の細孔容積および吸油量が、それぞれ水に分散する前の値の90%以上である高吸油量シリカゲル。A silica gel having a pore volume in the range of a pore radius of 1 to 100 nm by a nitrogen adsorption method of 1.5 to 3.5 ml / g, a specific surface area of 500 to 1000 m 2 / g, and an oil absorption of 300 ml / 100 g or more, The silica gel obtained by dispersing 1% by weight of this silica gel in water having an electric conductivity of 1 μS / cm or less and then separating it and further drying it at 120 ° C. for 5 hours using a stationary drier is used to refine the silica gel by a nitrogen adsorption method. A high oil absorption silica gel having a pore volume in the range of 1 to 100 nm in pore diameter and an oil absorption amount of 90% or more of the value before being dispersed in water. 平均粒子径が1〜100μmで、粒子形状が球状である請求項1に記載の高吸油量シリカゲル。2. The high oil absorption silica gel according to claim 1, wherein the average particle diameter is 1 to 100 [mu] m and the particle shape is spherical. ケイ酸アルカリ水溶液中のケイ酸成分をSiO2 に換算したとき、該SiO2 1モルに対して、塩化物イオン、硫酸イオン、硝酸イオンおよびフッ化物イオンからなる群より選ばれるアニオンの1種以上を合計で0.1〜0.5当量の割合で含有するケイ酸アルカリ水溶液を、有機溶媒中で乳化し、炭酸ガスでゲル化させることを特徴とする、請求項1または2に記載のシリカゲルの製造方法。When converted to silicic acid component in the aqueous alkali silicate solution into SiO 2, relative to the SiO 2 1 mole, chloride ions, one or more anion selected from the group consisting of sulfate ions, nitrate ions and fluoride ions The silica gel according to claim 1 or 2, wherein an aqueous alkali silicate solution containing 0.1 to 0.5 equivalents in total is emulsified in an organic solvent and gelled with carbon dioxide gas. Manufacturing method. ケイ酸アルカリ水溶液に、アルカリ金属の塩化物、硫酸塩、硝酸塩およびフッ化物、ならびに、アルカリ土類金属の塩化物、硫酸塩、硝酸塩およびフッ化物からなる群より選ばれる1種以上を添加して、塩化物イオン、硫酸イオン、硝酸イオンおよびフッ化物イオンからなる群より選ばれるアニオンの1種以上を含有させる請求項3に記載の高吸油量シリカゲルの製造方法。Adding at least one selected from the group consisting of alkali metal chlorides, sulfates, nitrates and fluorides, and alkaline earth metal chlorides, sulfates, nitrates and fluorides to an aqueous alkali silicate solution The method for producing a high oil-absorbing silica gel according to claim 3, further comprising at least one anion selected from the group consisting of chloride ion, sulfate ion, nitrate ion and fluoride ion.
JP31240098A 1998-11-02 1998-11-02 High oil absorption silica gel and method for producing the same Expired - Fee Related JP3973305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31240098A JP3973305B2 (en) 1998-11-02 1998-11-02 High oil absorption silica gel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31240098A JP3973305B2 (en) 1998-11-02 1998-11-02 High oil absorption silica gel and method for producing the same

Publications (3)

Publication Number Publication Date
JP2000143228A JP2000143228A (en) 2000-05-23
JP2000143228A5 JP2000143228A5 (en) 2005-08-04
JP3973305B2 true JP3973305B2 (en) 2007-09-12

Family

ID=18028797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31240098A Expired - Fee Related JP3973305B2 (en) 1998-11-02 1998-11-02 High oil absorption silica gel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3973305B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1627629A4 (en) * 2003-02-05 2006-11-29 Miyoshi Kasei Inc Skin lotion
JP2007517770A (en) * 2003-10-03 2007-07-05 ザ プロクター アンド ギャンブル カンパニー Topical composition
JP4515824B2 (en) 2004-05-27 2010-08-04 Ntn株式会社 High precision plain bearing
JP4960534B1 (en) 2010-10-25 2012-06-27 株式会社トクヤマ Airgel and method for producing the same
EP2703348B1 (en) * 2011-04-28 2023-06-28 Tokuyama Corporation Metal oxide powder and method for producing same
JP6196462B2 (en) * 2013-04-11 2017-09-13 株式会社トクヤマ Porous spherical metal oxide
JP6247067B2 (en) * 2013-09-27 2017-12-13 株式会社トクヤマ Silicone filler and silicone composition
JP6241252B2 (en) * 2013-12-16 2017-12-06 旭硝子株式会社 Method for producing spherical silica
KR101901196B1 (en) * 2017-07-17 2018-09-21 휴먼켐 주식회사 the high oil-uptake ball shaped silica making method and the silica

Also Published As

Publication number Publication date
JP2000143228A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
US6221326B1 (en) Method for preparing hollow silica particles
CN1307095C (en) Porous, fine inorganic particles
CN101796145B (en) Surface-treated metal oxide particles
TWI516447B (en) Aerogel and method for manufacture thereof
EP1118584B1 (en) Dispersion of silica particle agglomerates and process for producing the same
JP5525385B2 (en) Dispersion of fine porous inorganic oxide particles and method for producing the same
JP3723113B2 (en) Precipitated silicic acid doped with aluminum, process for its production, use thereof and paint formulation containing precipitated silicic acid
KR100197149B1 (en) Concentrated suspension of precipitation silica, methods of preparation and utilization of said suspension
JP3973305B2 (en) High oil absorption silica gel and method for producing the same
KR100808037B1 (en) Highly-structured silica having a low water uptake, preparation method thereof and uses of same
TW201731581A (en) A particulate earth alkali carbonate-comprising material and/or particulate earth alkali phosphate-comprising material for NOx uptake
JP3876610B2 (en) Silica fine particle dispersion and production method thereof
JP2001089128A (en) Production of spherical silica particle
KR20110130450A (en) Catalyst carrier based on silica gel
KR950006634B1 (en) Silica its process of manufacture and especially the use as fillers for paper
JP5673957B2 (en) Porous secondary agglomerated silica sol and method for producing the same
JPH0435402B2 (en)
JPH10324517A (en) Silica gel particles by crushing method, their production and use
KR20050025135A (en) Inorganic oxide
JP6966247B2 (en) Spherical silica airgel, its manufacturing method, and its use
AU773624B2 (en) Dispersion of fine porous inorganic oxide particles and processes for preparing same
ES2435520T3 (en) Chemically Assisted Silica Grinding
JPH04338314A (en) Cosmetic
JP4093691B2 (en) Method for producing spherical silica gel
CN100572456C (en) Nano inner core sandwich type structural silica dioxide delustring agent and preparation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160622

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees