JP3972411B2 - Lithium battery - Google Patents

Lithium battery Download PDF

Info

Publication number
JP3972411B2
JP3972411B2 JP15057497A JP15057497A JP3972411B2 JP 3972411 B2 JP3972411 B2 JP 3972411B2 JP 15057497 A JP15057497 A JP 15057497A JP 15057497 A JP15057497 A JP 15057497A JP 3972411 B2 JP3972411 B2 JP 3972411B2
Authority
JP
Japan
Prior art keywords
battery
heat
negative electrode
positive electrode
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15057497A
Other languages
Japanese (ja)
Other versions
JPH10340740A (en
Inventor
一弥 岡部
敏明 小島
健吉 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP15057497A priority Critical patent/JP3972411B2/en
Publication of JPH10340740A publication Critical patent/JPH10340740A/en
Application granted granted Critical
Publication of JP3972411B2 publication Critical patent/JP3972411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気自動車、据置式電源等に使用される大容量の電源装置に使用される大型リチウム電池の電池容器に関する。
【0002】
【従来の技術】
大型リチウム電池は、充放電によって発熱し、温度上昇による寿命の低下及び充放電特性の低下が生じる。しかし、従来の電極の積層では、正極又は負極の片側のみが谷折りして積層されており、極群内部に発熱した熱は熱伝導性の低い活物質層、及びセパレータ層によって封じ込められて蓄熱し、極群内部の温度が上昇するなどの問題があった。
【0003】
【発明が解決しようとする課題】
このため、従来の大型リチウム電池の場合、極群内部で発熱した熱を放熱するために、電池容器端子にフィンをつけるなどしていた。しかし、放熱するためのフィンによる、体積増加及びフィンが高価なためコスト増が問題となっていた。また、この構造では集電体を通って熱を伝導するため、大きな極板では充分な熱伝導、及び放熱は行われず、蓄熱性の大きい極群平面中心部の熱を効率良く廃熱することが出来なかった。
【0004】
このため、電池各部の温度に差が発生し、通常行われている電池電圧による充放電制御では、電極各部における制御電圧が不適切になるため、温度検出した温度と大きく温度に差が出た部分によっては、その部分が過放電若しくは過充電されてサイクル寿命性能低下の原因となっていた。
【0005】
【課題を解決するための手段】
本発明の第1は、集電体に活物質を塗布した正極シート及び負極シートをセパレータ層を介して接合して形成した電極シートを、正極側、負極側の面が接するように交互に谷折りして極群を形成し、且つこの極群の山折りの部分が電池容器内側面に接していることを特徴とするリチウム電池である。
【0006】
本発明の第2は、前記電池容器の外側面に放熱フィン又は凸溝が形成されているリチウム電池である。
【0007】
本発明の第3は、前記極群の谷折りした面に熱伝導性の放熱フィルムを挟み込み、且つこの熱伝導性放熱フィルムが電池容器内側面に接しているリチウム電池である。
【0008】
本発明の第4は、前記電池容器と極群の隙間に熱伝導性のゲル又は固体を配置しているリチウム電池である。
【0009】
【発明の実施の形態】
本発明は以下の形態で実施することができる。即ち、金属箔集電体の片面にゲル電解質を含む活物質層を配した片面作用の正負電極をセパレータとしてゲル電解質を用いて、正極側、負極側の面に交互に谷折りして積層した極群と、この極群を収納する金属製角形電池容器からなる大型リチウム電池において、極群の山折りされた部分が電池容器内側面に密着するように電池容器に配置する。正極側、負極側の接触する電池容器外側面にいずれも放熱フィン又は凸溝が1面若しくは複数面に配置されており、更に谷折りされた面に熱伝導性の放熱フィルムを挟み込んで、且つこの熱伝導性フィルムが電池容器内側面に接する様に電池容器に配置する。更に、これら極群と電池容器との隙間に熱伝導性のゲルを配置して、大型リチウム電池とした。
【0010】
【実施例】
以下、本発明の一実施例を図面に基づいて説明する。なお、本発明の電極、電池容器のサイズ、材料、その他の極群材料などは以下に示した実施例に限定されるものではない。
【0011】
図1は本発明に用いる極群の要部断面図、図2は本発明に用いる極群の谷折りした面に放熱フィルムを挟み込んだ状態の要部断面図、図3は本発明のリチウム電池の要部断面図、図4は本発明の単電池の分解図、図5は図4の単電池の斜視図、図6は単電池の集合モジュールの斜視図である。
【0012】
正極1は、幅120mm×17.8mのアルミニウム箔からなる集電体1aの片面にコバルト酸リチウム(LiCoO2 )等の活物質粉末と、アセチレンブラック等の電導剤と結着剤及びゲル電解質である例えばポリエチレンオキサイド(PEO)と電解液である例えば6フッ化リン酸リチウム(LiPF6 )のプロピレンカーボネート(PC)溶液からなる電解液の混合物からなる合剤(活物質層)が配置されている。
【0013】
負極2は、123mm×17.9mの銅箔からなる集電体2bの片面に、炭素粉末とPEO及び電解液の混合物からなる合剤(活物質層)が配置されている。ゲル電解質層3(セパレータ層)は正極1と負極2の間に配置されており、これら正極側と負極側を交互に、正極を127回谷折りして積層し、負極を128回谷折りして積層して106Ahの極群10を得た。
【0014】
角形電池容器11は厚さ2mmのアルミニウムからなる角形缶であり、極群の平行面に幅3mm、高さ1mm、長さ130mmの円弧状の電池容器外側面に突出した凸溝をプレス成形した。尚、この電池容器には、モジュール組立を容易にするために電池容器の極群と平行な面にモジュール組み付け位置決め用突起の凸凹をプレス成形してもよい。この極群の平行面にプレス成形済みの容器に、同様にして極群の平行でない面に幅3mm、高さ1mm、長さ130mmの電池容器外側面に突出する凸溝をプレス成形した。なお、前記の電池容器内面には、極群の正極と負極が電池容器を介してショートしないように厚さ40μmのポリプロピレンの樹脂コーティングが施されている。尚、極群を非電子伝導性の樹脂で包み込んでも良い。
【0015】
次に、前記角形電池容器11に極群10を挿入し、アルミニウムからなる蓋8をはめ込み、レーザー溶接を行い封口した。なお、端子9にはポリエチレン製のパッキンを用いてボルト・ナット7によって封口してある。
【0016】
以上のようにして高さ147mm、横107mm、幅80mmの本発明電池1を得た。尚、本発明電池1の端子6は図6に示したように縦方向に配置しており、端子の高さは5mmである。
【0017】
次に、上記電極を用いて、極群の山折りの部分が電池容器内側面に接していない比較電池1を得た。
【0018】
更に、上記電極を用いて、負極を通常の渦巻き式とし、正極のみが谷折りして積層された極群を作成し、これを極群の山折りされた部分が電池容器内側面に接するようにして、電池容器に挿入して比較電池2を得た。
【0019】
これらの電池を4個直列にして配置し、下側から一定圧力の空気で強制冷却を行った状態で、1C充電を1時間行った。この充電1時間後の極群中心部と電池容器内側面の温度は、比較電池2では中心部6℃、容器内側面3℃の温度上昇となり、中心部及び電池内側面の温度差は3℃にも達した。また、比較電池1では中心部9℃、容器内側面0.5℃となり、温度上昇は比較電池2よりも大きい9℃となった。これは、電池容器に電極が接していないため、空気の断熱層ができ、効率的な熱伝導ができなくなったことによるものと考えられる。本発明電池1では、中心部4℃、容器内側面2℃の温度上昇となり効率的な熱伝導ができていることが確認された。なお、強制冷却を行わない場合では、本発明電池1の電池温度は、中心部11℃、電池容器内側面8℃となり、強制冷却を行う冷却風が通過できる、電槽外面に設けた凸溝が有効であることが確認された。この凸溝は、単電池で使用する場合、冷却フィンなどで代用可能である。
【0020】
この本発明電池1の谷折りした面に熱伝導性の放熱フィルム4として、正極側にアルミ箔、負極側に銅箔は挟み込み、且つこのそれぞれのフィルムが、電池容器内側面に接する様に配置した本発明電池2を作成した。これによって、本発明電池2の幅は83mmの電池となったが、下側から一定圧力の空気で強制冷却を行った状態で、1C充電を1時間行った時の電池温度は、中心部3℃、容器内側面1℃となり最も低い中心部分の温度を示した。
【0021】
更に、本発明電池2の電池容器と極群との隙間に、熱伝導性の固体5として、正極側は粉末のアルミニウムを含有するポリエチレン樹脂、負極側に粉末の銅を含有するポリエチレン樹脂を注入し、本発明電池3を作成した。この本発明電池3を用いて下側から一定圧力の空気で強制冷却を行った状態で、1C充電を1時間行った時の電池温度は、中心部2.5℃、容器内側面0.5℃となりわずかであるが、本発明電池2よりも低い温度を示した。
【0022】
【発明の効果】
以上詳述したように、本発明は、次に記載する効果を奏する。
【0023】
(1)請求項1記載のリチウム電池は極群が正極側、負極側の面に交互に谷折りして積層し、山折りの部分が電池容器内側面に接しているため、極群内部に発生した熱を効率よく電池容器の内側面にまで伝えることができる。
【0024】
(2)請求項2記載のリチウム電池は電池容器の正極側、負極側のいずれにも1面もしくは複数の外側面に放熱フィン、又は外側面に突出する凸溝が配置されていることより、電池容器の内側面に伝えられた熱を効率よく廃熱し、電池内部の温度を低く保つことができる。
【0025】
(3)請求項3記載のリチウム電池は、極群の谷折りした面に熱伝導性の放熱フィルムを挟み込み、且つ熱伝導性放熱フィルムが電池容器内側面に接していることにより、極群内部に発生した熱を効率よく電池容器の内側面にまで伝えることができる。
【0026】
(4)請求項4記載のリチウム電池は、電池容器と極群の隙間に熱伝導性のゲル又は固体を配置していることにより、極群周囲に伝えられた熱を効率よく電池容器の内側面にまで伝えることができる。
【図面の簡単な説明】
【図1】本発明に用いる極群の要部断面図である。
【図2】本発明に用いる極群の谷折りした面に放熱フィルムを挟み込んだ状態の要部断面図である。
【図3】本発明のリチウム電池の要部断面図である。
【図4】本発明の単電池の分解図である。
【図5】図4の単電池の斜視図である。
【図6】単電池の集合モジュールの斜視図である。
【符号の説明】
1 正極
2 負極
1a,2b 集電体
3 ゲル電解質層(セパレータ層)
4 放熱フィルム
5 熱伝導固体
6 安全弁
7 端子固定ボルト・ナット
8 蓋
9 端子
10 極群
11 角形電池容器
12 モジュール組み付け位置決め用凸凹突起
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery container for a large-sized lithium battery used in a large-capacity power supply device used for an electric vehicle, a stationary power supply, or the like.
[0002]
[Prior art]
A large-sized lithium battery generates heat by charging and discharging, resulting in a decrease in life and charging / discharging characteristics due to temperature rise. However, in conventional electrode lamination, only one side of the positive electrode or negative electrode is folded in a valley, and the heat generated inside the electrode group is confined by an active material layer having low thermal conductivity and a separator layer to store heat. However, there is a problem that the temperature inside the pole group rises.
[0003]
[Problems to be solved by the invention]
For this reason, in the case of the conventional large-sized lithium battery, in order to dissipate the heat generated inside the pole group, a fin is attached to the battery container terminal. However, the increase in volume due to the fins for radiating heat and the cost of the fins are high, and thus cost increases. In addition, since heat is conducted through the current collector in this structure, sufficient heat conduction and heat dissipation are not performed with a large electrode plate, and the heat at the center of the electrode group plane with high heat storage is efficiently wasted. I couldn't.
[0004]
For this reason, a difference occurs in the temperature of each part of the battery, and in the charge / discharge control by the battery voltage that is normally performed, the control voltage in each part of the electrode becomes inappropriate, so there is a large difference in temperature from the detected temperature. Depending on the part, the part was overdischarged or overcharged, causing a decrease in cycle life performance.
[0005]
[Means for Solving the Problems]
In the first aspect of the present invention, an electrode sheet formed by joining a positive electrode sheet and a negative electrode sheet coated with an active material to a current collector through a separator layer is alternately arranged so that the positive electrode side and the negative electrode side surface are in contact with each other. The lithium battery is characterized in that it is folded to form a pole group, and a mountain-folded portion of the pole group is in contact with the inner surface of the battery case.
[0006]
2nd of this invention is a lithium battery by which the heat sink fin or the convex groove is formed in the outer surface of the said battery container.
[0007]
A third aspect of the present invention is a lithium battery in which a heat conductive heat radiating film is sandwiched between the valley-folded surfaces of the pole group, and the heat conductive heat radiating film is in contact with the inner surface of the battery container.
[0008]
4th of this invention is a lithium battery which has arrange | positioned heat conductive gel or solid in the clearance gap between the said battery container and a pole group.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention can be implemented in the following forms. That is, using a gel electrolyte as a separator with a single-sided positive / negative electrode in which an active material layer containing a gel electrolyte is disposed on one side of a metal foil current collector, the positive electrode side and the negative electrode side are alternately folded and stacked. In a large-sized lithium battery including a pole group and a metal rectangular battery container that accommodates the pole group, the pole group is disposed in the battery container so that a mountain-folded portion thereof is in close contact with the inner surface of the battery container. Both the positive electrode side and the negative electrode side are in contact with the outer surface of the battery case, heat dissipation fins or convex grooves are arranged on one surface or a plurality of surfaces, and a heat conductive heat dissipation film is sandwiched between the valley-folded surfaces, and It arrange | positions in a battery container so that this heat conductive film may contact the battery container inner surface. Further, a heat conductive gel was disposed in the gap between the electrode group and the battery container to obtain a large lithium battery.
[0010]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, the electrode of this invention, the size of a battery container, material, other pole group materials, etc. are not limited to the Example shown below.
[0011]
1 is a cross-sectional view of a main part of a pole group used in the present invention, FIG. 2 is a cross-sectional view of a main part in a state in which a heat dissipation film is sandwiched between valley-folded surfaces of the pole group used in the present invention, and FIG. 4 is an exploded view of the unit cell of the present invention, FIG. 5 is a perspective view of the unit cell of FIG. 4, and FIG. 6 is a perspective view of the assembly module of the unit cell.
[0012]
The positive electrode 1 is made of an active material powder such as lithium cobaltate (LiCoO 2 ), a conductive material such as acetylene black, a binder, and a gel electrolyte on one surface of a current collector 1a made of an aluminum foil having a width of 120 mm × 17.8 m. For example, a mixture (active material layer) made of a mixture of polyethylene oxide (PEO) and an electrolytic solution made of a propylene carbonate (PC) solution of lithium hexafluorophosphate (LiPF 6 ) that is an electrolytic solution is arranged. .
[0013]
In the negative electrode 2, a mixture (active material layer) made of a mixture of carbon powder, PEO, and an electrolytic solution is disposed on one surface of a current collector 2 b made of a 123 mm × 17.9 m copper foil. The gel electrolyte layer 3 (separator layer) is disposed between the positive electrode 1 and the negative electrode 2, and the positive electrode side and the negative electrode side are alternately layered by stacking the positive electrode 127 times and then the negative electrode 128 times. Thus, a pole group 10 of 106 Ah was obtained.
[0014]
The rectangular battery container 11 is a rectangular can made of aluminum having a thickness of 2 mm, and a convex groove protruding from the outer surface of the arc-shaped battery container having a width of 3 mm, a height of 1 mm, and a length of 130 mm is press-formed on a parallel surface of the pole group. . In order to facilitate module assembly, the battery container may be formed by pressing the protrusions for positioning the module assembly on a surface parallel to the pole group of the battery container. Similarly, a convex groove projecting on the outer surface of the battery container having a width of 3 mm, a height of 1 mm and a length of 130 mm was press-molded on the non-parallel surface of the pole group on the parallel surface of the pole group. The inner surface of the battery case is coated with a polypropylene resin coating having a thickness of 40 μm so that the positive electrode and the negative electrode of the pole group do not short-circuit through the battery case. The pole group may be encased in a non-electron conductive resin.
[0015]
Next, the pole group 10 was inserted into the rectangular battery container 11, and the lid 8 made of aluminum was fitted, and sealed by laser welding. The terminals 9 are sealed with bolts and nuts 7 using polyethylene packing.
[0016]
As described above, the battery 1 of the present invention having a height of 147 mm, a width of 107 mm, and a width of 80 mm was obtained. In addition, the terminal 6 of this invention battery 1 is arrange | positioned longitudinally as shown in FIG. 6, and the height of a terminal is 5 mm.
[0017]
Next, using the above electrode, a comparative battery 1 in which the mountain fold portion of the pole group was not in contact with the inner surface of the battery container was obtained.
[0018]
Furthermore, using the above electrode, the negative electrode is made into a normal spiral type, and only the positive electrode is folded in a valley so as to create a pole group, so that the mountain-folded portion of the pole group is in contact with the inner surface of the battery case Thus, a comparative battery 2 was obtained by being inserted into a battery container.
[0019]
Four of these batteries were arranged in series, and 1C charging was performed for 1 hour in a state where forced cooling was performed with air at a constant pressure from the lower side. The temperature at the center of the polar group and the inner surface of the battery case after 1 hour of charging is a temperature rise of 6 ° C. at the center and 3 ° C. at the inner surface of the battery in the comparative battery 2, and the temperature difference between the center and the inner surface of the battery is 3 ° Also reached. Further, in the comparative battery 1, the central portion was 9 ° C. and the inner side surface of the container was 0.5 ° C., and the temperature increase was 9 ° C., which was larger than that of the comparative battery 2. This is considered to be due to the fact that since the electrode is not in contact with the battery container, a heat insulating layer of air is formed and efficient heat conduction cannot be performed. In the battery 1 of the present invention, it was confirmed that the temperature rose to 4 ° C. at the center and 2 ° C. on the inner surface of the container, and efficient heat conduction was achieved. In the case where forced cooling is not performed, the battery temperature of the battery 1 of the present invention is 11 ° C. in the center and 8 ° C. on the inner surface of the battery container, and the convex grooves provided on the outer surface of the battery case through which cooling air for forced cooling can pass. Was confirmed to be effective. This convex groove can be replaced by a cooling fin or the like when used in a single cell.
[0020]
As the heat conductive heat dissipation film 4 on the valley-folded surface of the battery 1 of the present invention, an aluminum foil is sandwiched between the positive electrode side and a copper foil is sandwiched between the negative electrode side, and the respective films are arranged in contact with the inner surface of the battery container. The present invention battery 2 was produced. As a result, the width of the battery 2 of the present invention was 83 mm, but the battery temperature when the 1C charge was performed for 1 hour in the state where forced cooling was performed with air at a constant pressure from the lower side was 3 The lowest temperature of the central part was 1 ° C on the inner surface of the container.
[0021]
Further, a polyethylene resin containing powdered aluminum on the positive electrode side and a polyethylene resin containing copper powder on the negative electrode side are injected as a heat conductive solid 5 into the gap between the battery container and the electrode group of the battery 2 of the present invention. And this invention battery 3 was created. In the state where forced cooling was performed with air of constant pressure from the lower side using the battery 3 of the present invention, the battery temperature when 1C charging was performed for 1 hour was 2.5 ° C. at the center and 0.5% on the inner surface of the container. The temperature was slightly lower than that of the battery 2 of the present invention.
[0022]
【The invention's effect】
As described above in detail, the present invention has the following effects.
[0023]
(1) In the lithium battery according to claim 1, the pole group is alternately valley-folded and laminated on the positive electrode side and the negative electrode side, and the mountain fold portion is in contact with the inner surface of the battery container. The generated heat can be efficiently transmitted to the inner surface of the battery container.
[0024]
(2) In the lithium battery according to claim 2, the heat radiation fin or the protruding groove protruding on the outer surface is arranged on one surface or a plurality of outer surfaces on both the positive electrode side and the negative electrode side of the battery container. The heat transferred to the inner surface of the battery container can be efficiently wasted and the temperature inside the battery can be kept low.
[0025]
(3) The lithium battery according to claim 3, wherein the heat conductive heat dissipation film is sandwiched between the valley-folded surfaces of the electrode group, and the heat conductive heat dissipation film is in contact with the inner surface of the battery container, thereby The heat generated in the battery can be efficiently transferred to the inner surface of the battery case.
[0026]
(4) The lithium battery according to claim 4 is configured such that a heat conductive gel or solid is disposed in a gap between the battery container and the electrode group, so that the heat transferred to the periphery of the electrode group is efficiently contained in the battery container. I can tell you to the side.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a pole group used in the present invention.
FIG. 2 is a cross-sectional view of a principal part in a state where a heat dissipation film is sandwiched between valley-folded surfaces of a pole group used in the present invention.
FIG. 3 is a cross-sectional view of a main part of the lithium battery of the present invention.
FIG. 4 is an exploded view of the unit cell of the present invention.
5 is a perspective view of the unit cell of FIG. 4;
FIG. 6 is a perspective view of a battery module assembly module.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 1a, 2b Current collector 3 Gel electrolyte layer (separator layer)
4 Heat-dissipating film 5 Heat conducting solid 6 Safety valve 7 Terminal fixing bolt / nut 8 Lid 9 Terminal 10 Polar group 11 Rectangular battery container 12 Convex and convex protrusion for module assembly positioning

Claims (4)

集電体の片面に活物質を塗布した正極シートと集電体の片面に活物質を塗布した負極シートをセパレータ層を介して接合して形成した電極シートを、正極集電体の面同士、負極集電体の面同士それぞれ接するように交互に谷折りして極群を形成し、前記極群の谷折りした面に熱伝導性の放熱フィルムを挟み込み、且つ、前記熱伝導性放熱フィルムが電池容器内側面に接していることを特徴とするリチウム電池。The electrode sheet and negative electrode sheet and the active material was applied to one side of one surface active material coated with the positive electrode sheet and the current collector is formed by bonding via a separator layer of the current collector, the surface of the positive electrode current collector to each other The poles are alternately folded so that the surfaces of the negative electrode current collectors are in contact with each other , a heat conductive heat dissipation film is sandwiched between the valleys of the pole groups, and the heat conductive heat dissipation A lithium battery, wherein the film is in contact with the inner surface of the battery container. 前記熱伝導性の放熱フィルムは、正極側がアルミニウム箔、負極側が銅箔である請求項1記載のリチウム電池。 Heat dissipation film of the heat conductivity, the aluminum foil positive electrode side, a lithium battery according to claim 1, wherein the negative electrode side Ru copper foil der. 前記極群の山折りの部分が電池容器内側面に接していると共に、前記電池容器と極群の隙間に、正極側にはアルミニウムを含有する樹脂、負極側には銅を含有する樹脂を配置している請求項1又は2記載のリチウム電池。 The mountain fold portion of the pole group is in contact with the inner surface of the battery case, and a resin containing aluminum on the positive electrode side and a resin containing copper on the negative electrode side are arranged in the gap between the battery case and the electrode group The lithium battery according to claim 1 or 2 . 前記電池容器の外側面に放熱フィン又は凸溝が形成されている請求項1〜3のいずれかに記載のリチウム電池。The lithium battery according to claim 1, wherein heat radiating fins or convex grooves are formed on an outer surface of the battery container.
JP15057497A 1997-06-09 1997-06-09 Lithium battery Expired - Fee Related JP3972411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15057497A JP3972411B2 (en) 1997-06-09 1997-06-09 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15057497A JP3972411B2 (en) 1997-06-09 1997-06-09 Lithium battery

Publications (2)

Publication Number Publication Date
JPH10340740A JPH10340740A (en) 1998-12-22
JP3972411B2 true JP3972411B2 (en) 2007-09-05

Family

ID=15499872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15057497A Expired - Fee Related JP3972411B2 (en) 1997-06-09 1997-06-09 Lithium battery

Country Status (1)

Country Link
JP (1) JP3972411B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837155B2 (en) * 1998-11-27 2011-12-14 パナソニック株式会社 Storage battery
JP4642179B2 (en) * 1999-10-08 2011-03-02 パナソニック株式会社 Collective secondary battery
KR20020029487A (en) * 2000-10-13 2002-04-19 김순택 Lithium secondary battery and Eletrode plate assembly thereof
US6716552B2 (en) * 2000-11-30 2004-04-06 Celgard Inc. Secondary lithium battery construction for improved heat transfer
JP4361229B2 (en) 2001-07-04 2009-11-11 日産自動車株式会社 Battery system
US7629077B2 (en) 2004-02-26 2009-12-08 Qinetiq Limited Pouch cell construction
JP4873883B2 (en) * 2005-05-17 2012-02-08 東洋製罐株式会社 Three-piece rectangular can and manufacturing method thereof
JP4839955B2 (en) * 2006-05-11 2011-12-21 トヨタ自動車株式会社 Battery pack and vehicle
JP5016866B2 (en) * 2006-08-09 2012-09-05 川崎重工業株式会社 battery
JP5371979B2 (en) * 2008-06-23 2013-12-18 シャープ株式会社 Lithium ion secondary battery
WO2010150397A1 (en) * 2009-06-26 2010-12-29 トヨタ自動車株式会社 Electropositive plate, battery, vehicle, battery-mounted device, and electropositive plate manufacturing method
JP6114515B2 (en) 2012-08-09 2017-04-12 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6097030B2 (en) * 2012-08-09 2017-03-15 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6037713B2 (en) 2012-08-09 2016-12-07 三洋電機株式会社 Nonaqueous electrolyte secondary battery
GB2543827A (en) * 2015-10-30 2017-05-03 Sharp Kk Metal ion battery current collector

Also Published As

Publication number Publication date
JPH10340740A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
JP5534264B2 (en) Power storage device
US6117584A (en) Thermal conductor for high-energy electrochemical cells
JP3972411B2 (en) Lithium battery
US9887404B2 (en) Secondary battery
JP3799463B2 (en) Battery module
JP3998736B2 (en) Flat battery module
JP4661020B2 (en) Bipolar lithium ion secondary battery
JP5458898B2 (en) Solid battery stack
JP2007273350A (en) Stacked battery and manufacturing method therefor
KR20180058370A (en) Electrode Assembly Comprising Separator Having Insulation-enhancing Part Formed on Edge Portion of Electrode
CN110098429B (en) Battery, power utilization device and battery core installation method
JP2008293771A (en) Battery pack
JP2004047262A (en) Thin battery and battery pack
JP5989405B2 (en) Power supply
JPH10294098A (en) Lithium battery
JP2001185225A (en) Lithium secondary battery
JP5415009B2 (en) Power storage device module
JP2005135743A (en) Secondary battery and battery pack
US20220158223A1 (en) Electrochemical cell module
JP3804701B2 (en) Lithium battery for assembled battery and assembled battery
KR20220141743A (en) Secondary battery and battery module including the same
JPH10106531A (en) Packaged flat battery
JP2001256942A (en) Battery module and flat-type battery
JP2004031269A (en) Secondary battery
US20240014518A1 (en) Secondary Battery and Battery Module Including the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees