JP3971965B2 - Method and apparatus for supplying material gas to ion source - Google Patents

Method and apparatus for supplying material gas to ion source Download PDF

Info

Publication number
JP3971965B2
JP3971965B2 JP2002196060A JP2002196060A JP3971965B2 JP 3971965 B2 JP3971965 B2 JP 3971965B2 JP 2002196060 A JP2002196060 A JP 2002196060A JP 2002196060 A JP2002196060 A JP 2002196060A JP 3971965 B2 JP3971965 B2 JP 3971965B2
Authority
JP
Japan
Prior art keywords
ion source
gas cylinder
high voltage
gas
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002196060A
Other languages
Japanese (ja)
Other versions
JP2004039475A (en
Inventor
成人 足立
誠 木村
正彦 四方田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002196060A priority Critical patent/JP3971965B2/en
Publication of JP2004039475A publication Critical patent/JP2004039475A/en
Application granted granted Critical
Publication of JP3971965B2 publication Critical patent/JP3971965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イオン源への材料ガスの供給方法及びその装置に関し、詳細には、半導体を初めとする各種材料の定量、組成分析に用いる分析装置分野、もしくは、イオンを材料に注入するイオン注入分野、イオンを照射することで殺菌、その他の効果があるイオン照射分野などで用いるイオン源に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
例えば、特開平10−275695号公報、特開平11−149881号公報にはイオン源への材料ガスの供給方法が改善、提案されている。そして、これらの公報にも記載されているように、従来のイオン源への材料ガスの供給方法は、イオン源に供給する材料ガスを充填したガスボンベをイオン源と同じ高電圧部に設置して行う方法と、大地電位に設置して行う方法とがある。
【0003】
前者のガスボンベをイオン源と同じ高電圧部に設置して行う方法では、ガスボンベ自体が高電圧部に設置されイオン源チャンバと同電位であることから配管に金属管を用いることができ配管が施工しやすくなるなどの利点を有する。しかし、イオン源に供給する材料ガスを充填したガスボンベ及び、このガスボンベをイオン源に接続するバルブや流量制御器等を備える配管を高電圧部に一緒に設置しなければならず、高電圧部のスペースを広げることが難しいことからガスボンベを出来る限り小さくする必要があった。ガスボンベが小さいと、ガスボンベの交換頻度が多くなる。しかし、ガスボンベの交換は、ガスボンベが高電圧部に設置されているため、その都度、イオン源の稼動を停止し電圧を下げてから交換する必要があり、簡単には交換ができない。
【0004】
一方、後者のガスボンベを大地電位に設置して行う方法では、ガスボンベが大地電位に設置できることから、上記高電圧部に設置する場合のような設置スペースの制約が無くなり、ガスボンベを大きくできる。また、個数も多く設置でき切り替えて使用できるなどの利点を有する。しかし、大地電位に設置されたガスボンベと高電圧部との間の配管は、高電圧部側に絶縁管を接続しガスボンベ側と絶縁する必要があるが、絶縁管とガスボンベ側の金属管との継手部分から材料ガスが外部へ漏れることが懸念される。
【0005】
また、高電圧が100kV以上の高い電圧のイオン源を対象とする場合には、高電圧を絶縁するために、図3、4に示すように、高電圧部21を含め高電圧電源22、更には加速管23をタンク24で覆い、タンク24の内部にSF6ガス等を高圧力で封入することが行われている。この場合、ガスボンベ25を高電圧部21に設置する形式の場合(図3)には、上記ガスボンベを高電圧部に設置する形式と同様の問題を有する上に、更にガスボンベ25を交換する都度、タンク24内のSF6ガスを回収し、タンク24を開け閉めし、再度SF6ガスを加圧して投入する必要がある。
【0006】
また一方、大地電位に設置する形式の場合(図4)にも、上記ガスボンベを大地電位に設置する形式の場合と同様の問題が懸念されるが、それ以上に、ガスボンベ25及び配管26がタンク24内に設置されるため、ガスボンベ25を大きくしたりガスボンベ25の個数を多くした場合にはタンク24も大きくする必要がある。タンク24を大きくした場合には、封入するSF6ガス等のガスも多く必要となり、全体にコストアップとなる。また、絶縁管27はある程度の長さが必要で短い場合には沿面放電を発生するため、有効な絶縁とはならない。また、ガスボンベ25を交換する都度、タンク24内のSF6ガスを回収し、タンク24を開け閉めし、再度SF6ガスを加圧して投入する必要がある。なお、図3、4において、28はイオン源、29はバルブ、30は材料ガスの流量調整弁などで構成されるマスフロー部、31は引き出し電極である。
【0007】
本発明は、上述の如き事情に着目してなしたものであって、その目的は、絶縁管を有効に用いることで、ガスボンベを高電圧部の外部、更にはタンクの外部に設置し得るイオン源への材料ガスの供給方法及びその装置を提供するものである。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明は以下の構成を備える。
【0009】
請求項1に係る発明は、ガスボンベからイオン源に材料ガスを供給する方法であって、ガスボンベが大地電位部に配置されるとともに、ガスボンベからイオン源に至る間の材料ガス供給配管が途中に絶縁管を備え、この絶縁管が高圧電源の外周に巻き付けられてなる配管を通してガスボンベからイオン源に材料ガスを供給するイオン源への材料ガスの供給方法を要旨とするものである。
【0010】
通常、大気中での沿面距離は空間に比べ3倍、SF6ガス中での沿面距離は4〜6倍と言われている。従って、絶縁管を通じての沿面放電を防止するためには絶縁管の長さは、高電圧部から大地電位部までの空間距離に比べ5倍以上の長さを持たせる必要があり、そのままの長さで絶縁管を配管したのでは、高電圧部から大地電位部までの距離が長いものとなる。そのため、本発明では、絶縁管を高圧電源の外周に巻き付けてらせん状に形成して高電圧部から大地電位部までの空間に配管することで、絶縁管を通じての沿面放電を防止するようにしたものである。このように、絶縁管の沿面放電を防止して高電圧部と大地電位部までの空間を短くできるので、コンパクトな装置でもって安全に材料ガスをイオン源に供給することができる。特に、100kV以上の高電圧を用いるイオン源の場合には、タンクの外部にガスボンベを設置し得ると同時に、高電圧部と大地電位のタンクとの間隔が狭くできることから、高電圧部に加えてタンク自体も小さく形成でき、装置全体がコンパクトにできる。また、ガスボンベがタンクの外部に設置されることから、ガスボンベを大きくでき、また設置個数を多くできるため、タンクの開閉頻度を少なくでき、タンク内のSF6ガスの回収及び投入といった作業回数も少なくできる。
【0016】
請求項に係る発明は、上記請求項1に記載のイオン源への材料ガスの供給方法において、絶縁管を高圧電源の外周に巻き付けるときに、高電圧と大地電位との間にあり、かつ高圧電源についている、複数の金属の近傍もしくは内側を通すイオン源への材料ガスの供給方法を要旨とするものである
【0017】
このように、高圧電源の外周に巻き付ける場合に、それについている、複数の金属の近傍もしくは内側を通すことにより、単に高圧電源に巻き付けた場合よりも、絶縁管の長さを短くして沿面放電を防止することができる。
【0018】
請求項に係る発明は、ガスボンベからイオン源に材料ガスを供給する装置であって、大地電位部に配置されたガスボンベと、ガスボンベからイオン源に至る間の材料ガス供給配管と、この材料ガス供給配管の途中に接続された絶縁管とを備え、絶縁管が高圧電源の外周に巻き付けられてなるイオン源への材料ガスの供給装置を要旨とするものである。
【0019】
通常、大気中での沿面距離は空間に比べ3倍、SF6ガス中での沿面距離は4〜6倍と言われている。従って、絶縁管を通じての沿面放電を防止するためには絶縁管の長さは、高電圧部から大地電位部までの空間距離に比べ5倍以上の長さを持たせる必要があり、そのままの長さで絶縁管を配管したのでは、高電圧部から大地電位部までの距離が長いものとなり、特にタンクを備えるイオン源への材料ガスの供給装置にあっては、タンクの外部にガスボンベが設置できたとしても、装置全体が大きくなる。そこで、本発明では、絶縁管を高圧電源の外周に巻き付けてらせん状に形成し、その絶縁管を高電圧部から大地電位部までの空間に配管することで、絶縁管を通じての沿面放電を防止させ、装置全体をコンパクトに構成したものである。特に、100kV以上の高電圧を用いるイオン源の場合には、タンクの外部にガスボンベを設置し得ると同時に、高電圧部と大地電位のタンクとの間隔が狭くできることから、高電圧部に加えてタンク自体も小さく形成でき、装置全体がコンパクトにできる。また、ガスボンベがタンクの外部に設置されることから、ガスボンベを大きくでき、また設置個数を多くできるため、タンクの開閉頻度を少なくでき、タンク内のSF6ガスの回収及び投入といった作業回数も少なくできる。
【0023】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係るイオン源への材料ガスの供給装置の概念図である。
【0024】
イオン源1と引き出し電極2は高電圧部3内に設置されている。高電圧部3は高電圧電源4に接続されて高電圧(例えば、数百kV〜数MV)に保持されている。また高電圧部3の引き出し電極2の先には加速管5が取付けられている。高電圧部3、高電圧電源4及び加速管5は、タンク6内に設置されている。
【0025】
一方、イオン源への材料ガスの供給装置7は、ガスボンベ8と配管9とで基本的に構成され、配管9の一端はガスボンベ8に他端はイオン源1に接続されている。ガスボンベ8は、タンク6の外部の大地電位部に設置されている。配管9は、ガスボンベ8の引き出し部に設けられたバルブ10と、材料ガスの流量調整弁などで構成されるマスフロー部11と、絶縁管12とを備えている。そして、本例では、絶縁管12は、高電圧電源4の外周に巻き付けられている。その絶縁管12の一端は、イオン源1に接続されマスフロー部11を含めて高電圧部3内に取付けられた金属管13に、高電圧部3を出る所で接続され、また他端は、ガスボンベ8に接続された金属管14に、タンク6の内部で接続されている。
【0026】
上記構成では、絶縁管12をらせん状に形成して高電圧電源4の外周に巻き付けて高電圧部3から大地電位部(金属管14)までの空間に配管9しているので、沿面放電を発生させない長さの絶縁管12をコンパクトに形成できると同時に、絶縁管12を通じての沿面放電を防止することができる。また、このように絶縁管12の沿面放電を防止して高電圧部3と大地電位部(金属管14)までの空間を短くできるので、コンパクトな装置でもって安全に材料ガスをガスボンベ8からイオン源1に供給することができる。また、高電圧部3と大地電位のタンク6との間隔が狭くできることから、高電圧部3はもとよりタンク6自体も小さく形成でき、装置全体がコンパクトにできる。また、ガスボンベ8がタンク6の外部に設置されることから、ガスボンベ6を大きくでき、また設置個数を多くできるため、タンク6の開閉頻度を少なくでき、タンク6内のSF6ガスの回収及び投入といった作業回数が少なくできると同時に、SF6ガスが漏れる可能性も少なく環境にもやさしい。
【0027】
図2は、本発明に係る別の実施形態のイオン源への材料ガスの供給装置の概念図である。この図2に示す装置は、高電圧電源4がその外周に高電圧と大地電位との間にほぼ等距離で均等電界で配置されている金属リング15を備える構造のものであるとともに、絶縁管12が、その金属リング15の近傍もしくは内側を通るようにしてらせん状に設けられている外は、上記図1に示す装置と実質的に同構成の装置である。
【0028】
上記図2に示す装置であっても、上記図1に示す装置と同様の作用効果(段落番号[0026])を享受することができる上に、更に高電圧電源4がその外周に高電圧と大地電位との間にほぼ等距離で均等電界で配置されている金属リング15を備え、その金属リング15を介在させて絶縁管12をらせん状に巻き付けているので、均等割りされた金属リング15、15間の電位に対応する絶縁管12の長さで済むことになり、金属リング15を設けずに高電圧と大地電位との間に絶縁管12を巻き付けるときよりも短くして沿面放電を防止できる。この理由は以下のことによる。すなわち、沿面放電の開始電圧(フラッシュオーバ電圧)は、絶縁物の厚さが増すに伴い大きくなるが直線比とはならず、より大きくなるためである。例えば、10kVの電圧に耐えるためには2mm以上の絶縁物の厚さが必要であるが30kVの電圧に耐えるには2mmの3倍の6mmでは足りず、28mmもの厚さが必要となる。しかし、30kVの電位を10kVずつに金属リングでほぼ均等に分割し、2mmの絶縁物を3つの金属リング間に入れることで絶縁物の厚さを6mmで済ませることができる。
【0029】
なお、上記の実施形態では、マスフロー部11を、高電圧部3内に取付けられた金属管13に設ける場合を例に説明したが、大地電位に置かれたガスボンベ8に接続された金属管14に設けてもよい。このように設けることで、マスフロー部11を設けるスペースが狭くできることから、高電圧部8が狭くでき、装置全体をよりコンパクトにできる。
【0030】
また、上記の実施形態では、絶縁管12を、高電圧電源4に巻き付ける場合、あるいは高電圧電源4の金属リング15を通す場合を例に説明したが、加速管5に巻き付けてもよいし、あるいは加速管5の金属リングを通すようにしてもよい。
【0031】
【発明の効果】
以上説明したように、本発明に係るイオン源への材料ガスの供給方法によれば、絶縁管を高圧電源の外周に巻き付けてらせん状に形成して高電圧部から大地電位部までの空間に配管しているので、絶縁管の沿面放電を防止して高電圧部と大地電位部までの空間を短くでき、コンパクトな装置でもって安全に材料ガスをイオン源に供給することができる。
【0032】
本発明に係るイオン源への材料ガスの供給装置によれば、絶縁管を高圧電源の外周に巻き付けてらせん状に形成し、その絶縁管を高電圧部から大地電位部までの空間に配管することで、絶縁管を通じての沿面放電を防止させ、装置全体をコンパクトに構成できる。特に、100kV以上の高電圧を用いるイオン源の場合には、タンクの外部にガスボンベを設置し得ると同時に、高電圧部と大地電位のタンクとの間隔が狭くできることから、高電圧部に加えてタンク自体も小さく形成でき、装置全体がコンパクトにできる。また、ガスボンベがタンクの外部に設置されることから、ガスボンベを大きくでき、また設置個数を多くできるため、タンクの開閉頻度を少なくでき、タンク内のSF6ガスの回収及び投入といった作業回数も少なくできる。
【図面の簡単な説明】
【図1】本発明に係るイオン源への材料ガスの供給装置の概念図である。
【図2】本発明に係る別の実施形態のイオン源への材料ガスの供給装置の概念図である。
【図3】従来のイオン源への材料ガスの供給装置の概念図である。
【図4】従来のイオン源への材料ガスの供給装置の概念図である。
【符号の説明】
1:イオン源 2:引き出し電極 3:高電圧部
4:高電圧電源 5:加速管 6:タンク
7:イオン源への材料ガスの供給装置 8:ガスボンベ
9:配管 10:バルブ 11:マスフロー部
12:絶縁管 13、14:金属管 15:金属リング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of supplying a material gas to an ion source and an apparatus therefor, and more particularly, to the field of analyzers used for quantitative determination and composition analysis of various materials including semiconductors, or ion implantation for injecting ions into materials. The present invention relates to an ion source used in the field, an ion irradiation field having other effects such as sterilization by irradiating ions.
[0002]
[Prior art and problems to be solved by the invention]
For example, Japanese Patent Application Laid-Open No. 10-275695 and Japanese Patent Application Laid-Open No. 11-149981 have improved and proposed a method for supplying a material gas to an ion source. As described in these publications, the conventional method of supplying the material gas to the ion source is to install a gas cylinder filled with the material gas supplied to the ion source at the same high voltage unit as the ion source. There are a method to perform and a method to perform by installing at the earth potential.
[0003]
In the former method, where the gas cylinder is installed in the same high-voltage part as the ion source, the gas cylinder itself is installed in the high-voltage part and has the same potential as the ion source chamber, so a metal pipe can be used for the piping. It has the advantage that it becomes easy to do. However, a gas cylinder filled with a material gas to be supplied to the ion source, and a pipe including a valve and a flow rate controller for connecting the gas cylinder to the ion source must be installed together in the high voltage section. Because it was difficult to expand the space, it was necessary to make the gas cylinder as small as possible. When the gas cylinder is small, the replacement frequency of the gas cylinder increases. However, since the gas cylinder is installed in the high voltage section, it is necessary to replace the gas cylinder after stopping the operation of the ion source and lowering the voltage each time.
[0004]
On the other hand, in the method in which the latter gas cylinder is installed at the ground potential, the gas cylinder can be installed at the ground potential. Therefore, there is no restriction on the installation space as in the case where the gas cylinder is installed at the high voltage portion, and the gas cylinder can be enlarged. In addition, there is an advantage that a large number can be installed and used by switching. However, the pipe between the gas cylinder installed at the earth potential and the high voltage part needs to be insulated from the gas cylinder side by connecting the insulation pipe to the high voltage part side. There is a concern that the material gas leaks from the joint portion to the outside.
[0005]
In addition, in the case where a high voltage ion source having a high voltage of 100 kV or higher is targeted, in order to insulate the high voltage, as shown in FIGS. The accelerating tube 23 is covered with a tank 24, and SF6 gas or the like is sealed inside the tank 24 at a high pressure. In this case, in the case of the type in which the gas cylinder 25 is installed in the high voltage unit 21 (FIG. 3), the gas cylinder 25 has the same problem as the type in which the gas cylinder is installed in the high voltage unit, and each time the gas cylinder 25 is replaced, It is necessary to recover the SF6 gas in the tank 24, open and close the tank 24, and pressurize the SF6 gas again.
[0006]
On the other hand, in the case of the type in which the gas cylinder is installed at the ground potential (FIG. 4), the same problem as in the case of the type in which the gas cylinder is installed at the earth potential is concerned, but more than that, the gas cylinder 25 and the pipe 26 are connected to the tank. Since the gas cylinder 25 is enlarged or the number of gas cylinders 25 is increased, the tank 24 needs to be enlarged. When the tank 24 is enlarged, a large amount of gas such as SF6 gas to be sealed is required, which increases the cost as a whole. Further, when the insulating tube 27 is required to have a certain length and is short, creeping discharge is generated, so that the insulating tube 27 does not provide effective insulation. Further, each time the gas cylinder 25 is replaced, it is necessary to collect the SF6 gas in the tank 24, open and close the tank 24, and pressurize and supply the SF6 gas again. In FIGS. 3 and 4, 28 is an ion source, 29 is a valve, 30 is a mass flow unit composed of a material gas flow rate adjusting valve, and the like, and 31 is an extraction electrode.
[0007]
The present invention has been made by paying attention to the above-described circumstances, and the purpose thereof is to effectively use an insulating tube so that a gas cylinder can be installed outside the high-voltage section and further outside the tank. A method and apparatus for supplying a material gas to a source are provided.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention comprises the following arrangement.
[0009]
The invention according to claim 1 is a method of supplying a material gas from a gas cylinder to an ion source, wherein the gas cylinder is arranged at the ground potential portion, and the material gas supply pipe between the gas cylinder and the ion source is insulated in the middle. A gist is a method of supplying a material gas to an ion source that includes a tube and supplies the material gas from the gas cylinder to the ion source through a pipe in which the insulating tube is wound around the outer periphery of the high-voltage power source.
[0010]
Usually, it is said that the creepage distance in the atmosphere is 3 times that of space, and the creepage distance in SF6 gas is 4 to 6 times. Therefore, in order to prevent creeping discharge through the insulating tube, the length of the insulating tube needs to be at least five times longer than the spatial distance from the high voltage portion to the ground potential portion. If the insulating tube is piped, the distance from the high voltage portion to the ground potential portion is long. Therefore, in the present invention, by a pipe to the space to ground potential portion of the insulating tube from the high voltage portion formed in al linearly wound around the outer peripheral of the high voltage power supply, and to prevent creeping discharge through the insulating tube Is. Thus, the creeping discharge of the insulating tube can be prevented and the space between the high voltage portion and the ground potential portion can be shortened, so that the material gas can be safely supplied to the ion source with a compact device. In particular, in the case of an ion source using a high voltage of 100 kV or higher, a gas cylinder can be installed outside the tank, and at the same time, the interval between the high voltage part and the tank of the ground potential can be narrowed. The tank itself can be made small, and the entire apparatus can be made compact. In addition, since the gas cylinder is installed outside the tank, the gas cylinder can be enlarged and the number of installation can be increased, so that the frequency of opening and closing of the tank can be reduced, and the number of operations such as recovery and injection of SF6 gas in the tank can be reduced. .
[0016]
The invention according to claim 2 is the method of supplying a material gas to the ion source according to claim 1, wherein when the insulating tube is wound around the outer periphery of the high-voltage power source, it is between the high voltage and the ground potential, and The gist of the present invention is a method of supplying a material gas to an ion source passing through the vicinity or inside of a plurality of metals, which is attached to a high voltage power source .
[0017]
Thus, when wrapped around the outer periphery of the high pressure supply, attached to Re its, by passing near or inside the plurality of metal simply than when wound around the high pressure supply, reducing the length of the insulating tube Thus, creeping discharge can be prevented.
[0018]
According to a third aspect of the present invention, there is provided an apparatus for supplying a material gas from a gas cylinder to an ion source, a gas cylinder arranged at a ground potential portion, a material gas supply pipe between the gas cylinder and the ion source, and the material gas The gist of the present invention is an apparatus for supplying a material gas to an ion source that includes an insulating pipe connected in the middle of a supply pipe, and the insulating pipe is wound around the outer periphery of a high-voltage power source.
[0019]
Usually, it is said that the creepage distance in the atmosphere is 3 times that of space, and the creepage distance in SF6 gas is 4 to 6 times. Therefore, in order to prevent creeping discharge through the insulating tube, the length of the insulating tube needs to be at least five times longer than the spatial distance from the high voltage portion to the ground potential portion. If the insulation pipe is installed, the distance from the high voltage section to the ground potential section is long. Especially in the device for supplying the material gas to the ion source equipped with the tank, a gas cylinder is installed outside the tank. Even if it can be done, the entire device becomes larger. Therefore, in the present invention, the insulating tube is formed in al linearly wound around the outer peripheral of the high-voltage power source, by piping the insulating tube in the space from the high-voltage unit to the ground potential portion, preventing the creeping discharge through the insulating tube The entire apparatus is configured compactly. In particular, in the case of an ion source using a high voltage of 100 kV or higher, a gas cylinder can be installed outside the tank, and at the same time, the interval between the high voltage part and the tank of the ground potential can be narrowed. The tank itself can be made small, and the entire apparatus can be made compact. In addition, since the gas cylinder is installed outside the tank, the gas cylinder can be enlarged and the number of installation can be increased, so that the frequency of opening and closing of the tank can be reduced, and the number of operations such as recovery and injection of SF6 gas in the tank can be reduced. .
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram of an apparatus for supplying a material gas to an ion source according to the present invention.
[0024]
The ion source 1 and the extraction electrode 2 are installed in the high voltage unit 3. The high voltage unit 3 is connected to a high voltage power supply 4 and is held at a high voltage (for example, several hundred kV to several MV). An acceleration tube 5 is attached to the tip of the extraction electrode 2 of the high voltage unit 3. The high voltage unit 3, the high voltage power source 4, and the acceleration tube 5 are installed in the tank 6.
[0025]
On the other hand, the material gas supply device 7 to the ion source basically includes a gas cylinder 8 and a pipe 9, and one end of the pipe 9 is connected to the gas cylinder 8 and the other end is connected to the ion source 1. The gas cylinder 8 is installed in a ground potential portion outside the tank 6. The pipe 9 includes a valve 10 provided at a drawing portion of the gas cylinder 8, a mass flow portion 11 including a material gas flow rate adjustment valve, and an insulating tube 12. In this example, the insulating tube 12 is wound around the outer periphery of the high voltage power supply 4. One end of the insulating tube 12 is connected to a metal tube 13 connected to the ion source 1 and mounted in the high voltage unit 3 including the mass flow unit 11 at a place where the high voltage unit 3 exits, and the other end is A metal pipe 14 connected to the gas cylinder 8 is connected inside the tank 6.
[0026]
In the above configuration, the insulating tube 12 is formed in a spiral shape and is wound around the outer periphery of the high voltage power source 4 and is piped 9 in the space from the high voltage portion 3 to the ground potential portion (metal tube 14). The insulating tube 12 having a length that does not occur can be formed compactly, and creeping discharge through the insulating tube 12 can be prevented. Further, since the creeping discharge of the insulating tube 12 can be prevented and the space between the high voltage portion 3 and the ground potential portion (metal tube 14) can be shortened, the material gas can be safely ionized from the gas cylinder 8 with a compact device. Source 1 can be supplied. Further, since the distance between the high voltage unit 3 and the tank 6 having the ground potential can be narrowed, not only the high voltage unit 3 but also the tank 6 itself can be formed small, and the entire apparatus can be made compact. Further, since the gas cylinder 8 is installed outside the tank 6, the gas cylinder 6 can be enlarged and the number of installation can be increased, so that the frequency of opening and closing of the tank 6 can be reduced, and the SF6 gas in the tank 6 is recovered and charged. At the same time as the number of operations can be reduced, the possibility of leaking SF6 gas is low and it is environmentally friendly.
[0027]
FIG. 2 is a conceptual diagram of an apparatus for supplying a material gas to an ion source according to another embodiment of the present invention. The apparatus shown in FIG. 2 has a structure in which a high voltage power source 4 is provided with a metal ring 15 arranged at an equal electric field at a substantially equal distance between a high voltage and a ground potential on the outer periphery thereof. 1 is a device having substantially the same configuration as the device shown in FIG. 1 except that 12 is spirally provided so as to pass near or inside the metal ring 15.
[0028]
Even in the apparatus shown in FIG. 2, the same effect (paragraph number [0026]) as that of the apparatus shown in FIG. 1 can be enjoyed, and the high voltage power source 4 has a high voltage on its outer periphery. Since the metal ring 15 is disposed with a uniform electric field at an approximately equal distance from the ground potential, and the insulating tube 12 is spirally wound with the metal ring 15 interposed, the equally divided metal ring 15 is provided. Therefore, the length of the insulating tube 12 corresponding to the potential between 15 and 15 is sufficient, and the creeping discharge is made shorter than when the insulating tube 12 is wound between the high voltage and the ground potential without providing the metal ring 15. Can be prevented. The reason is as follows. That is, the creeping discharge start voltage (flashover voltage) increases as the thickness of the insulator increases, but does not become the linear ratio but increases. For example, in order to withstand a voltage of 10 kV, an insulator thickness of 2 mm or more is required, but in order to withstand a voltage of 30 kV, 6 mm which is three times 2 mm is not sufficient, and a thickness of 28 mm is required. However, the thickness of the insulator can be reduced to 6 mm by dividing the potential of 30 kV almost equally into 10 kV by the metal ring and inserting a 2 mm insulator between the three metal rings.
[0029]
In the above embodiment, the case where the mass flow part 11 is provided in the metal pipe 13 attached in the high voltage part 3 has been described as an example. However, the metal pipe 14 connected to the gas cylinder 8 placed at the ground potential. May be provided. By providing in this way, the space for providing the mass flow part 11 can be narrowed, so that the high voltage part 8 can be narrowed and the entire apparatus can be made more compact.
[0030]
In the above embodiment, the case where the insulating tube 12 is wound around the high voltage power source 4 or the case where the metal ring 15 of the high voltage power source 4 is passed has been described as an example, but the insulating tube 12 may be wound around the acceleration tube 5, Or you may make it let the metal ring of the acceleration tube 5 pass.
[0031]
【The invention's effect】
As described above, the space according to the method of supplying the material gas into the ion source of the present invention, the insulating tube is wound around the outer periphery of the high-voltage power source is formed in a spiral shape from the high-voltage unit to the ground potential portion Therefore, the creeping discharge of the insulating tube can be prevented, the space between the high voltage portion and the ground potential portion can be shortened, and the material gas can be safely supplied to the ion source with a compact device.
[0032]
According to the feeder of the material gas to the ion source of the present invention, pipe insulation tube is wound around the outer periphery of the high-voltage power source is formed in a spiral shape, the space that the insulating tube from the high voltage unit to the ground potential portion By doing so, creeping discharge through the insulating tube can be prevented, and the entire apparatus can be configured compactly. In particular, in the case of an ion source using a high voltage of 100 kV or higher, a gas cylinder can be installed outside the tank, and at the same time, the interval between the high voltage part and the tank of the ground potential can be narrowed. The tank itself can be made small, and the entire apparatus can be made compact. In addition, since the gas cylinder is installed outside the tank, the gas cylinder can be enlarged and the number of installation can be increased, so that the frequency of opening and closing of the tank can be reduced, and the number of operations such as recovery and injection of SF6 gas in the tank can be reduced. .
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a material gas supply device to an ion source according to the present invention.
FIG. 2 is a conceptual diagram of an apparatus for supplying a material gas to an ion source according to another embodiment of the present invention.
FIG. 3 is a conceptual diagram of a conventional apparatus for supplying a material gas to an ion source.
FIG. 4 is a conceptual diagram of a conventional apparatus for supplying a material gas to an ion source.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1: Ion source 2: Extraction electrode 3: High voltage part 4: High voltage power supply 5: Acceleration pipe 6: Tank 7: Supply apparatus of material gas to an ion source 8: Gas cylinder 9: Piping 10: Valve 11: Mass flow part 12 : Insulating tube 13, 14: Metal tube 15: Metal ring

Claims (3)

ガスボンベからイオン源に材料ガスを供給する方法であって、ガスボンベが大地電位部に配置されるとともに、ガスボンベからイオン源に至る間の材料ガス供給配管が途中に絶縁管を備え、この絶縁管が高圧電源の外周に巻き付けられてなる配管を通してガスボンベからイオン源に材料ガスを供給することを特徴とするイオン源への材料ガスの供給方法。  A method of supplying a material gas from a gas cylinder to an ion source, wherein the gas cylinder is disposed at a ground potential portion, and a material gas supply pipe between the gas cylinder and the ion source is provided with an insulating pipe in the middle, and the insulating pipe is A material gas supply method to an ion source, characterized in that material gas is supplied from a gas cylinder to an ion source through a pipe wound around an outer periphery of a high-voltage power source. 絶縁管を高圧電源の外周に巻き付けるときに、高電圧と大地電位との間にあり、かつ高圧電源についている、複数の金属の近傍もしくは内側を通す請求項1に記載のイオン源への材料ガスの供給方法。  2. The material gas to the ion source according to claim 1, wherein when the insulating tube is wound around the outer periphery of the high-voltage power source, the gas passes between the high voltage power source and the ground potential and passes through the vicinity of or inside the plurality of metals. Supply method. ガスボンベからイオン源に材料ガスを供給する装置であって、大地電位部に配置されたガスボンベと、ガスボンベからイオン源に至る間の材料ガス供給配管と、この材料ガス供給配管の途中に接続された絶縁管とを備え、絶縁管が高圧電源の外周に巻き付けられてなることを特徴とするイオン源への材料ガスの供給装置。  An apparatus for supplying a material gas from a gas cylinder to an ion source, which is connected to a gas cylinder arranged at a ground potential portion, a material gas supply pipe from the gas cylinder to the ion source, and a middle of the material gas supply pipe An apparatus for supplying a material gas to an ion source, comprising: an insulating tube, wherein the insulating tube is wound around an outer periphery of a high-voltage power source.
JP2002196060A 2002-07-04 2002-07-04 Method and apparatus for supplying material gas to ion source Expired - Fee Related JP3971965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196060A JP3971965B2 (en) 2002-07-04 2002-07-04 Method and apparatus for supplying material gas to ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196060A JP3971965B2 (en) 2002-07-04 2002-07-04 Method and apparatus for supplying material gas to ion source

Publications (2)

Publication Number Publication Date
JP2004039475A JP2004039475A (en) 2004-02-05
JP3971965B2 true JP3971965B2 (en) 2007-09-05

Family

ID=31704267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196060A Expired - Fee Related JP3971965B2 (en) 2002-07-04 2002-07-04 Method and apparatus for supplying material gas to ion source

Country Status (1)

Country Link
JP (1) JP3971965B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355336B2 (en) * 2010-11-30 2018-07-11 インテグリス・インコーポレーテッド Ion implanter system including a remote dopant source and method comprising the ion implanter system
US10847339B2 (en) 2018-01-22 2020-11-24 Axcelis Technologies, Inc. Hydrogen generator for an ion implanter
US11062873B2 (en) * 2018-05-11 2021-07-13 Axcelis Technologies, Inc. Hydrogen bleed gas for an ion source housing
TWI729801B (en) * 2020-05-08 2021-06-01 晨碩國際有限公司 Gas transmission adapting device of remote doping gas supply system

Also Published As

Publication number Publication date
JP2004039475A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
TW366589B (en) Improved microelectronic field emission device with breakdown inhibiting insulated gate electrode and method for realization
PL1836752T3 (en) Lightning arrester comprising two divergent electrodes and a spark gap acting between the electrodes
JP3971965B2 (en) Method and apparatus for supplying material gas to ion source
JP5449166B2 (en) High voltage insulator and ion accelerator provided with the high voltage insulator
JPH10144499A (en) Particle accelerator
JP6765582B1 (en) Water treatment equipment and water treatment method
JPH10275695A (en) Gas supplying method to plasma device, plasma processing device, and ion beam device
JPH11158627A (en) Ion beam irradiating device
CN107197585B (en) Plasma generator, preparation method thereof and air purifying device
CN111180298B (en) Radio frequency ion source starts filament device
US8698402B2 (en) Pulsed electron source, power supply method for pulsed electron source and method for controlling a pulsed electron source
KR101692218B1 (en) Dielectric barrier plasma generation device for removing volatile organic compounds and method for removing them using same
CN208589641U (en) A kind of field distortion type high pressure gas switch of electron beam irradiation
JP2004340035A (en) Exhaust emission control device
KR20030095443A (en) Method and apparatus for generating of temperature plasma
JP2002052309A (en) Discharge gas treating device
CN114501760B (en) Multi-medium unsteady-state strong ion tube with three-electrode structure
KR100811450B1 (en) The Insulator protect apparatus of source head in Ion Implanter
CN215249564U (en) Discharge body, electric field device and ozone generator
US2428000A (en) Baffle arrangement for vapor electric devices
CN209997031U (en) atmospheric pressure low temperature plasma emitter and therapeutic instrument based on same
US11482394B2 (en) Bidirectional gas discharge tube
JP4940053B2 (en) Charged particle beam equipment
EP0087523A1 (en) Equipment for the heating of a gas fluid by means of an electric arc
Dolgushin et al. Status of high-current tandem accelerator for the neutron therapy facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3971965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees