JP3971679B2 - Material end fixing structure for reinforced concrete buildings - Google Patents

Material end fixing structure for reinforced concrete buildings Download PDF

Info

Publication number
JP3971679B2
JP3971679B2 JP2002225718A JP2002225718A JP3971679B2 JP 3971679 B2 JP3971679 B2 JP 3971679B2 JP 2002225718 A JP2002225718 A JP 2002225718A JP 2002225718 A JP2002225718 A JP 2002225718A JP 3971679 B2 JP3971679 B2 JP 3971679B2
Authority
JP
Japan
Prior art keywords
component
main
region
cylinder
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002225718A
Other languages
Japanese (ja)
Other versions
JP2004068304A (en
Inventor
久廣 平石
正人 越路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tekko Co Ltd
Original Assignee
Tokyo Tekko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tekko Co Ltd filed Critical Tokyo Tekko Co Ltd
Priority to JP2002225718A priority Critical patent/JP3971679B2/en
Publication of JP2004068304A publication Critical patent/JP2004068304A/en
Application granted granted Critical
Publication of JP3971679B2 publication Critical patent/JP3971679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄筋コンクリート建造物における梁等の構成材の材端固定構造に関する。
【0002】
【従来の技術】
従来の鉄筋コンクリート建造物における梁(構成材)の柱・梁接合部(基部)への固定構造について、柱が側柱の場合を例にとって説明する。柱・梁接合部の両側に2つの梁が一直線をなして固定される。両梁の主筋が連続した鉄筋によって形成される場合には、この連続した鉄筋が柱・梁接合部を通っている。両梁の主筋が異なる鉄筋からなる場合には、柱・梁接合部内で筒体によって連結される。
【0003】
【発明が解決しようとする課題】
上記梁の固定構造において、梁の曲げ剛性は柱・梁接合部より小さく、梁の材端で曲げ剛性が急変する。大きな地震の際に、上記建造物が水平方向に揺れると、梁の材端近傍には大きな曲げモーメントが働く。この曲げモーメントにより、梁の主筋は引張,圧縮の交番荷重を受ける。詳述すると、建造物が一方向に傾いて、ある主筋に引張り荷重が付与されると、この主筋は材端位置に最も近い領域で降伏が開始される。この主筋の降伏すなわち伸びは、梁のコンクリートの損傷をもたらす。その後で、建造物が反対方向に傾くと、一旦伸びた主筋に圧縮荷重が付与されるが、この際、損傷したコンクリートにおいて主筋の外側にかぶっている部位(かぶりコンクリート)の剥落等の損傷が生じるため、場合によっては梁の材端近傍おいて主筋が外側にはみ出すのを阻止できず、その座屈をもたらす。このようにして梁の破損が生じる。また、主筋の降伏は接合部内にも進展し、接合部内の付着を劣化させ、場合によっては接合部内での主筋の滑りが生じる。
【0004】
【課題を解決するための手段】
本願の第1の発明は、構成材の材端を基部に固定するために、構成材の複数の主筋を基部内へ延ばすようにした鉄筋コンクリート建造物における構成材の材端固定構造において、
上記基部内には上記主筋と同軸をなす筒体が複数配され、これら筒体に上記主筋が挿入されて連結され、これら筒体の外周のほぼ全域にはコンクリートとの付着を高めるための凹凸が形成されており、筒体における構成材寄りの一方の端は上記構成材の材端より基部の奥側に位置しており、当該一方の端から構成材の材端までの所定領域における上記主筋と基部コンクリートとの付着強度が、上記主筋と構成材コンクリートとの付着強度より低く、この所定領域の主筋が地震の際に降伏する降伏予定部として提供されることを特徴とする。
【0005】
上記構成によれば、大きな地震の際には、筒体の端と構成材の材端との間の所定領域において主筋とコンクリートの付着強度が低いので、ここで優先的に主筋の降伏が生じる。これにより、構成材内、特に材端近傍での主筋の降伏領域の拡大を軽減でき、構成材の損傷を軽減できる。
また、主筋を挿入連結した筒体の外周には凹凸が形成されており、しかもこの筒体は鉄筋より径が大きく、外周の面積が広いので、基部コンクリートとの付着が高い。その結果、主筋が上記所定領域においてコンクリートとの付着強度が低くても、これを補なうことができ主筋の基部コンクリートへの定着性能を確保することができる。また、この筒体とコンクリートの高い付着強度により、主筋の基部内での長さを短くすることも可能である。
【0006】
上記第1発明の一態様として、上記筒体が構成材寄りの第1領域と構成材から離れた第2領域を有し、第1領域での主筋と筒体との連結強度が、第2領域での主筋と筒体との連結強度より低く、また上記主筋と構成材コンクリートとの付着強度よりも低くなっており、この第1領域の主筋も、地震の際に降伏する降伏予定部として提供される。
上記構成によれば、大きな地震の際に筒体の第1領域における主筋でも所定領域と同様に降伏が生じる。そのため、降伏長さを十分に確保でき、構成材の損傷をより一層確実に軽減できる。また、降伏長さを確保しながら筒体を長くすることができ、筒体と基部コンクリートとの付着性を高め、ひいては主筋の基部における定着性能を確保することができる。
【0007】
上記一態様において、構成材が基部の両側に一直線をなして固定される場合には、上記筒体の中央部が第2領域として提供され、上記筒体の両側部が上記第1領域としてそれぞれ提供され、上記筒体の両端と両構成材の材端との間がそれぞれ上記所定領域として提供される。この構成によれば、対峙する2つの構成材の破損を軽減できる。2つの構成材に対して筒体を1つで済ませることができ、構成を簡略化することができる。
【0008】
上記第1発明の他の態様として、上記主筋は筒体の全長にわたり、構成材のコンクリートとの付着強度より高い連結強度で連結されており、実質的に上記所定領域での主筋だけが降伏予定部として提供される。この構成によれば、筒体を比較的短くしてコストを低減することができる。
【0009】
上記他の態様において構成材が基部の両側に一直線をなして固定される場合には、上記筒体の両端と両構成材の材端との間がそれぞれ上記所定領域として提供されることを特徴とする。この構成によれば、対峙する2つの構成材の破損を軽減することができる。また、2つの構成材に対して筒体を1つで済ませることができ、構成を簡略化することができる。
【0010】
本願の第2の発明は、構成材の材端を基部に固定するために、構成材の複数の主筋を基部内へ延ばすようにした鉄筋コンクリート建造物における構成材の材端固定構造において、
上記基部内には上記主筋と同軸をなす筒体が複数配され、これら筒体に上記主筋が挿入されて連結され、これら筒体の外周のほぼ全域にはコンクリートとの付着を高めるための凹凸が形成されており、筒体における構成材寄りの一方の端は上記構成材の材端とほぼ一致した位置にあり、
上記筒体が構成材寄りの第1領域と構成材から離れた第2領域を有し、第1領域での主筋と筒体との連結強度が、第2領域での主筋と筒体との連結強度より低く、また上記主筋と構成材コンクリートとの付着強度よりも低くなっており、この第1領域の主筋が、地震の際に降伏する降伏予定部として提供されることを特徴とする。
【0011】
この構成によれば、大きな地震の際に筒体の第1領域における主筋で優先的に降伏が生じるので、構成材の損傷を軽減できる。また、降伏予定部を確保しながら筒体を最大限長くするので、筒体と基部コンクリートとの付着性を高め、ひいては主筋の基部における定着性能を確保することができる。
【0012】
上記第2発明において、上記構成材が基部の両側に一直線をなして固定される場合には、上記筒体の中央部が上記第2領域として提供され、上記筒体の両側部が上記第1領域としてそれぞれ提供され、上記筒体の両端と両構成材の材端との間がそれぞれ上記所定領域として提供される。この構成によれば、対峙する2つの構成材の破損を軽減できる。2つの構成材に対して筒体を1つで済ませることができ、構成を簡略化することができる。
【0013】
対峙する2つの構成材を固定する場合において、両構成材の主筋が異なる鉄筋で形成され、これら主筋の端部が上記筒体を介して互いに連結されている構成では、筒体が上述した役割のみならず、主筋同士を連結する役割をも果たすことができる。
【0014】 本発明は、梁固定構造に適用できる。すなわち、上記基部が柱・梁接合部であり、上記構成材が梁であり、上記主筋および筒体が水平をなしている。
【0015】
【発明の実施の形態】
以下、本発明の第1実施形態について図1,図2を参照しながら説明する。この実施形態は、建物の外周に位置する側柱1と2本の梁2(構成材)の柱・梁接合部3(基部)に、本発明を適用したものである。柱1は、垂直に延びる複数の主筋と、これら主筋を囲む環状の剪断補強筋(いずれも図示せず)と、これら主筋および剪断補強筋を埋め込むコンクリート1aとを有している。
【0016】
2本の梁2は一直線をなして水平に配置されていてその材端Eが柱・梁接合部3に固定されている。各梁2は、上下に複数ずつ配置されて水平に延びる主筋10と、これら主筋10を囲む環状の剪断補強筋(図示しない)と、これら主筋10および剪断補強筋を埋め込むコンクリート2aとを有している。なお、柱・梁接合部3のコンクリートを符号3aで示す。
【0017】
上記梁2の主筋10は、柱1の主筋と同様に異形鉄筋からなり、その外周にはフシが形成されており、コンクリート2aとの十分な付着を確保している。図2に示すように本実施形態では、主筋10はネジ鉄筋であり、ネジフシ11を有している。
【0018】
図1に戻って説明すると、両梁2の主筋10は、異なるネジ鉄筋により形成されており、柱・梁接合部3内まで延び、その端部が柱・梁接合部3の中央に達している。柱・梁接合部3内には、上下にそれぞれ複数ずつ鋳鉄等の金属製の筒体20が配置されている。各筒体20は、2つの梁2の対応する主筋10と一直線をなして水平をなしており、これら主筋10の端部が挿入され連結されている。
【0019】
上記筒体20は、従来の梁主筋連結のために用いられている筒体より遥かに長く形成されており、柱せい(柱1ないしは柱・梁接合部3の幅、すなわち主筋10の延び方向の寸法)の過半を占めている。本実施形態では柱せいより短く、その両端は梁2の材端Eから離れている。筒体20の左右両側部(梁2寄りの領域)が第1領域Yとして提供され、筒体20の中央部(梁2から離れた領域)が第2領域Nとして提供される。
【0020】
図2に示すように、筒体20の第2領域Nは雌ねじ21aを有する螺合部21となっている。螺合部21の中央は厚肉部21bとなっており、この厚肉部21bにモルタル注入口21cが形成されている。第1領域Yは内周面が円滑な円筒形状をなすスリーブ部22となっている。スリーブ部22は螺合部21と同軸をなし、その内径は螺合部21の雌ねじ21aの谷径より大きくなっている。スリーブ部22の周壁において螺合部21の近傍にはモルタル注入口22cが形成されている。
【0021】
上記スリーブ部22の外周には環状の凸部22aおよび軸方向に延びる凸部12bが形成されている。これら凸部22a,22bおよび上記厚肉部21bにより、筒体20の外周のほぼ全域が凹凸形状をなしている。これにより、コンクリート3aとの高い付着性を確保している。
【0022】
2本の主筋10は一直線をなした状態で、その端部が上記筒20の螺合部21に螺合され、強固に連結される。この連結状態において、モルタル注入口21cからモルタルを注入することにより、螺合部21の内周と主筋10の外周との間の隙間にモルタルを充填し、これにより連結強度をさらに高めている。
【0023】
また、スリーブ部22の注入口22cからモルタル25を注入することにより、スリーブ部22と主筋10との間にモルタル25を充填する。スリーブ部22の内周面は平滑であるので、主筋10とスリーブ部22とのモルタル25を介した連結強度(主筋10の軸方向の引張荷重に対する連結強度)は、螺合部21と主筋10との連結強度より遥かに低い。なお、この主筋11とスリーブ部22の連結強度は、主筋10と梁2のコンクリート2aの付着強度よりも低い。
【0024】
上記筒体11の両端と両梁2の材端Eとの間の所定領域Sでは、主筋10の外周にテープが巻かれたり粘度や樹脂が塗布されているため、柱・梁接合部3のコンクリート3aとの付着強度が非常に低く、実質的にゼロ(アンボンド状態)である。
【0025】
上記柱・梁接合部3において、鉄筋コンクリート建造物が地震によって横揺れした時には、従来構造と同様に梁2の材端Eの近傍に大きな曲げモーメントが付与される。この際、コンクリート2a,3a間に割れが生じる点では従来構造と似ているが、以下に述べる点で従来構造と大きく異なる。
【0026】
例えば柱1が図1(B)に示すように右に傾くと、右側の梁2の下側の主筋10と左側の梁2の上側の主筋10が引張り荷重を受ける。この際、主筋10は、所定領域Sにおいてコンクリート3aとの付着強度が実質的にゼロであり、梁2のコンクリート2aとの付着強度より遥かに低いので、この所定領域Sで優先的に降伏がなされる。また、主筋10は筒体20の第1領域Yでの連結強度が梁2のコンクリート2aとの付着強度より低いので、ここでも降伏がなされる。その結果、主筋10は梁2内において材端Eの近傍での降伏の進展を軽減でき、材端Eの近傍でのコンクリート2aの破損を軽減できる。
【0027】
上記とは逆に、柱1が左に傾くと、上記の伸びた部位が圧縮荷重を受けて元の長さに戻り、右側の梁2の上側の主筋10と左側の梁2の下側の主筋10が引張り荷重を受けて領域Y,Sで伸びる。このようにして、主筋10が引張り,圧縮の交番荷重を受け持ちながら、伸びと圧縮の変形を繰り返す。その結果、地震エネルギーを吸収することができ、建造物の耐震性を向上できる。
【0028】
次に、主筋10の柱・梁接合部3での定着性能について説明する。筒体20が広い外周面のほぼ全域に凹凸が形成されているので、コンクリート3aとの付着強度が高く、引張荷重を分散して受け止めることもできる。主筋10は筒体20に螺合により強固に連結されているから、筒体20とコンクリート3aの高い付着強度により、柱・梁接合部3での定着性能を確保することができる。所定領域Sで主筋10とコンクリート3aとの付着強度が低くても、上記筒体20がそれを補って、主筋10の定着性能を確保しているのである。
【0029】
次に、本発明の他の実施形態について説明する。これら実施形態において先行する実施形態に対応する構成部には同番号を付してその詳細な説明を省略する。図3を参照しながら本発明の第2実施形態を説明する。この実施形態では、筒体20の両端が梁2の材端Eと一致しているかその近傍に位置しており、その長さは柱せいとほぼ一致している。第1実施形態の領域Sは存在しない。筒体20を最大限に長くするので、コンクリート3aとの付着強度を高めることができ、ひいては主筋10の柱・梁接合部3での定着強度を高めることができる。主筋10の降伏の殆どは筒体20の第1領域Yの部分で担う。
【0030】
図4の第3実施形態では、第1実施形態の第1領域Yは存在しない。例えば筒体20の全長にわたって雌ねじが形成されており、2本の主筋10と強固に連結されている。すなわち、筒体20の全長が第1実施形態の第2領域Nと同様の連結状態となっている。筒体20の両端と両梁2の材端Eとの間の領域Sで主筋10は第1実施形態と同様に付着力が低くなっており、ここで地震時の降伏を担う。
【0031】
上記第1〜第3実施形態は柱1が側柱の場合について述べたが、柱1が中柱で梁が十字形に固定される場合についてもそのまま適用できる。この場合、柱・梁接合部に一直線をなす2本の梁が2組固定されることになる。
また、上記第1〜第3実施形態において、1本の連続した鉄筋が柱・梁接合部を通り2つの梁の中間部まで延び、これら2つの梁の主筋を構成していてもよい。この場合でも、筒体は第1〜第3実施形態と同様にして梁の主筋に連結される。なお各梁では、その中間部で主筋の端部同士をカプラーで連結される。これら実施形態では、図1〜図4において、筒体内で主筋が途切れずに連続した状態となるだけであり、容易に理解できるので、図示を省略する。
【0032】
図5に示す第4実施形態は柱1が隅柱の場合に本発明を適用したものである。この実施形態では、筒20は梁2寄りの第1領域Yと梁2から離れた第2領域Nとを有している。筒体20の一端と梁2の材端Eとの間は所定領域Sとなっている。これら領域Y,N,Sでの主筋10の連結強度,付着強度に関しては第1実施形態と殆ど同じであるので説明を省略する。なお、この隅柱での柱・梁接合部3において、第2実施形態と同様に筒20の一端を材端Eと一致させて所定領域Sを省略して、第1領域Yで殆どの降伏を担ってもよいし、第3実施形態と同様に筒20の第1領域Yを省略して、所定領域Sで殆どの降伏を担ってもよい。
【0033】
さらに本発明は上記実施形態に拘わらず、種々の形態を採用可能である。筒体20の外周の凹凸形状は上記実施形態に制約されず、コンクリート3aとの付着性を高めるためのあらゆる形状の凹凸を採用することができる。例えば外周面全域に細かい凹凸を多数形成してもよい。
【0034】
主筋10と筒体20の第2領域Nとは、螺合によらず、モルタルによる連結を採用してもよい。例えば、筒体20の第2領域Nの内周には、複数の環状の突起を軸方向に間隔をおいて形成する。この環状の突起と異形鉄筋からなる主筋のフシ(ねじ鉄筋の場合にはねじフシ)とがモルタルを介して連結されることになる。
第3実施形態において、筒体20の中央部で主筋10と螺合し、筒体20の左右部の内周に環状突起を形成して主筋10とモルタル結合してもよい。この場合、この左右部の連結強度は、主筋10と梁2内のコンクリート2aとの付着強度より高い。
【0035】
筒体20の第1領域Yにおいて、スリーブ部22の内周に粗く間隔をおいて環状の突起を形成し、付着強度を上記実施形態より高めてもよい。ただし、この場合の第1領域Yでの筒体20と主筋10の連結強度は、主筋10と梁2内のコンクリート2aとの付着強度より低い。
【0036】
第2領域Yにおいて主筋10の外周にテープを巻いたり粘度や樹脂等が塗布することにより、筒体20との連結強度を実質的にゼロ(アンボンド状態)にしてもよい。
【0037】
所定領域Sでの付着強度を低めたり、第1領域Yで筒体20との連結強度を低めるために、主筋10のフシをなくして丸棒部を形成することにより得てもよい。
【0038】
筒体20は、第2領域Nで主筋10にかしめ等により圧着させてもよい。第1領域Yでのモルタル充填は省いてもよい。
上記全ての実施形態において、一部の主筋たとえば上側の主筋だけに本発明を提供してもよい。
【0039】
本発明は、構成材が柱で基部が基礎コンクリートの場合にも適用でき、柱が構成材で基部が柱・梁接合部の場合にも適用できる。また、 本発明は鉄骨鉄筋コンクリート建造物にも適用される。また、プレキャスト構造にも適用できる。さらに、構成材としてプレストレストコンクリートを用いることもできる。
【0040】
【発明の効果】
以上説明したように本発明の固定構造によれば、地震の際の構成材の破損を著しく軽減でき、構成材主筋の基部への定着機能を著しく向上できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態をなす柱・梁接合部の縦断面図であり、(A)は通常時の状態、(B)は地震時の状態を示す。
【図2】同実施形態で用いられる筒体と梁主筋を示す図である。
【図3】本発明の第2実施形態をなす柱・梁接合部を示す縦断面図である。
【図4】本発明の第3実施形態をなす柱・梁接合部の縦断面図である。
【図5】本発明の第4実施形態をなす柱・梁接合部の縦断面図である。
【符号の説明】
E 材端位置
N 第1領域
Y 第2領域
S 所定領域
2 梁(構成材)
3 柱・梁接合部(基部)
2a,3a コンクリート
10 鉄筋
20 筒体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material end fixing structure for structural members such as beams in a reinforced concrete building.
[0002]
[Prior art]
A structure for fixing a beam (component) to a column / beam joint (base) in a conventional reinforced concrete building will be described taking a case where the column is a side column as an example. Two beams are fixed in a straight line on both sides of the column / beam joint. When the main bars of both beams are formed by continuous reinforcing bars, the continuous reinforcing bars pass through the column / beam joint. When the main bars of both beams are made of different reinforcing bars, they are connected by a cylinder in the column / beam joint.
[0003]
[Problems to be solved by the invention]
In the beam fixing structure, the bending stiffness of the beam is smaller than that of the column / beam joint, and the bending stiffness changes suddenly at the end of the beam. If the building shakes in the horizontal direction during a large earthquake, a large bending moment acts near the end of the beam. Due to this bending moment, the main bar of the beam receives an alternating load of tension and compression. More specifically, when a building is tilted in one direction and a tensile load is applied to a certain main reinforcement, the main reinforcement starts to yield in a region closest to the material end position. This yielding or elongation of the main reinforcement causes damage to the concrete of the beam. After that, when the building is tilted in the opposite direction, a compressive load is applied to the main bars that have been stretched once. However, at this time, damage such as peeling off of the part of the damaged concrete that covers the main bars (covering concrete) Therefore, in some cases, it is impossible to prevent the main bar from protruding outside in the vicinity of the end of the beam, resulting in buckling. In this way, the beam is broken. In addition, the yield of the main reinforcement also extends into the joint, deteriorating the adhesion in the joint, and in some cases, the main bars slip in the joint.
[0004]
[Means for Solving the Problems]
The first invention of the present application is a material end fixing structure of a component material in a reinforced concrete building in which a plurality of main bars of the component material are extended into the base portion in order to fix the material end of the component material to the base portion.
A plurality of cylinders that are coaxial with the main bars are arranged in the base, and the main bars are inserted into and connected to the cylinders, and unevenness for enhancing adhesion with concrete is provided in almost the entire outer periphery of the cylinders. Is formed, and one end of the cylindrical body near the constituent material is located on the back side of the base from the material end of the constituent material, and the above in a predetermined region from the one end to the material end of the constituent material The bond strength between the main reinforcement and the base concrete is lower than the adhesion strength between the main reinforcement and the component material concrete, and the main reinforcement in this predetermined region is provided as a planned yield portion that yields in the event of an earthquake.
[0005]
According to the above configuration, in the event of a large earthquake, the bond strength between the main reinforcement and the concrete is low in a predetermined region between the end of the cylinder and the end of the constituent material. . Thereby, the expansion of the yield region of the main reinforcement in the component material, particularly in the vicinity of the material end can be reduced, and damage to the component material can be reduced.
In addition, irregularities are formed on the outer periphery of the cylindrical body in which the main bars are inserted and connected, and the cylindrical body is larger in diameter than the reinforcing bars and has a larger area on the outer periphery, and therefore, the adhesion to the base concrete is high. As a result, even if the main reinforcement has low adhesion strength with concrete in the predetermined region, this can be compensated for and the fixing performance of the main reinforcement to the base concrete can be ensured. In addition, due to the high adhesion strength between the cylindrical body and the concrete, it is possible to shorten the length of the main bar in the base portion.
[0006]
As one aspect of the first invention, the cylindrical body has a first region closer to the constituent material and a second region separated from the constituent material, and the connection strength between the main bar and the cylindrical body in the first region is second. It is lower than the connection strength between the main reinforcement and the cylinder in the area, and lower than the bond strength between the main reinforcement and the concrete material. The main reinforcement in the first area is also a planned yielding part that yields in the event of an earthquake. Provided.
According to the above configuration, yielding also occurs in the main reinforcement in the first region of the cylindrical body in the event of a large earthquake, as in the predetermined region. Therefore, the yield length can be sufficiently secured, and damage to the constituent material can be further reliably reduced. In addition, the cylinder can be lengthened while ensuring the yield length, the adhesion between the cylinder and the base concrete can be improved, and as a result, the fixing performance at the base of the main bar can be ensured.
[0007]
In the one aspect, when the constituent material is fixed in a straight line on both sides of the base portion, the central portion of the cylindrical body is provided as a second region, and both side portions of the cylindrical body are respectively provided as the first region. Provided, and the space between both ends of the cylindrical body and the material ends of both components is provided as the predetermined region. According to this configuration, it is possible to reduce damage to the two constituent members facing each other. One cylindrical body can be used for two components, and the configuration can be simplified.
[0008]
As another aspect of the first invention, the main bars are connected with a connection strength higher than the adhesion strength of the constituent material to the concrete over the entire length of the cylindrical body, and only the main bars in the predetermined region are scheduled to yield. Offered as a part. According to this structure, a cylinder can be made comparatively short and cost can be reduced.
[0009]
In the other aspect, in the case where the constituent material is fixed in a straight line on both sides of the base, the predetermined region is provided between both ends of the cylindrical body and the material end of the two constituent materials. And According to this configuration, it is possible to reduce damage to the two constituent members facing each other. In addition, one cylindrical body can be used for the two components, and the configuration can be simplified.
[0010]
According to a second invention of the present application, in order to fix the material end of the constituent material to the base, in the material end fixing structure of the constituent material in the reinforced concrete building in which a plurality of main bars of the constituent material are extended into the base,
A plurality of cylinders that are coaxial with the main bars are arranged in the base, and the main bars are inserted into and connected to the cylinders, and unevenness for enhancing adhesion with concrete is provided in almost the entire outer periphery of the cylinders. Is formed, and one end of the cylindrical body near the constituent material is in a position substantially coincident with the material end of the constituent material,
The cylinder has a first region closer to the component and a second region away from the component, and the connection strength between the main reinforcement and the cylinder in the first region is the relationship between the main reinforcement and the cylinder in the second region. It is lower than the connection strength and lower than the bond strength between the main reinforcement and the component material concrete, and the main reinforcement in the first region is provided as a planned yielding portion that yields in the event of an earthquake.
[0011]
According to this configuration, since a yield occurs preferentially in the main reinforcement in the first region of the cylindrical body in the event of a large earthquake, damage to the constituent material can be reduced. In addition, since the cylinder is lengthened as much as possible while securing the planned yield portion, adhesion between the cylinder and the base concrete can be improved, and as a result, fixing performance at the base of the main bar can be ensured.
[0012]
In the second aspect of the invention, when the component is fixed on both sides of the base in a straight line, the central portion of the cylindrical body is provided as the second region, and both side portions of the cylindrical body are the first portion. Each region is provided, and the space between both ends of the cylindrical body and the material ends of both components is provided as the predetermined region. According to this configuration, it is possible to reduce damage to the two constituent members facing each other. One cylindrical body can be used for two components, and the configuration can be simplified.
[0013]
In the case of fixing two constituent members facing each other, in the configuration in which the main reinforcing bars of both constituent members are formed of different reinforcing bars and the ends of these main reinforcing bars are connected to each other via the cylindrical member, the role of the cylindrical member is as described above. Not only can the main muscles be connected to each other.
The present invention can be applied to a beam fixing structure. That is, the base is a column / beam joint, the component is a beam, and the main bar and the cylinder are horizontal.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the present invention is applied to a column / beam joint 3 (base) of a side column 1 and two beams 2 (components) located on the outer periphery of a building. The column 1 has a plurality of main bars extending vertically, an annular shear reinforcement bar (not shown) surrounding these main bars, and a concrete 1a in which these main bars and shear reinforcement bars are embedded.
[0016]
The two beams 2 are arranged in a straight line and horizontally, and the material ends E are fixed to the column / beam joint 3. Each beam 2 has a plurality of main bars 10 arranged vertically and extending horizontally, an annular shear reinforcing bar (not shown) surrounding these main bars 10, and a concrete 2a in which these main bars 10 and shear reinforcing bars are embedded. ing. The concrete of the column / beam joint 3 is indicated by reference numeral 3a.
[0017]
The main reinforcing bar 10 of the beam 2 is formed of a deformed reinforcing bar like the main reinforcing bar of the column 1, and a fistula is formed on the outer periphery thereof to ensure sufficient adhesion with the concrete 2a. As shown in FIG. 2, in the present embodiment, the main reinforcement 10 is a screw rebar and has a screw flange 11.
[0018]
Referring back to FIG. 1, the main reinforcing bars 10 of both beams 2 are formed of different threaded reinforcing bars, extend into the column / beam joint 3, and their ends reach the center of the column / beam joint 3. Yes. In the column / beam joint 3, a plurality of metal cylinders 20 such as cast iron are arranged one above the other. Each cylindrical body 20 forms a straight line with the corresponding main bars 10 of the two beams 2 and is horizontal, and ends of these main bars 10 are inserted and connected.
[0019]
The cylindrical body 20 is formed to be much longer than a conventional cylindrical body used for connecting the main beam of the beam. The column 20 (the width of the column 1 or the column / beam joint 3, that is, the extending direction of the main beam 10). Occupy the majority). In this embodiment, the length is shorter than the column length, and both ends thereof are separated from the material end E of the beam 2. The left and right side portions (region close to the beam 2) of the cylindrical body 20 are provided as the first region Y, and the central portion (region away from the beam 2) of the cylindrical body 20 is provided as the second region N.
[0020]
As shown in FIG. 2, the 2nd area | region N of the cylinder 20 is the screwing part 21 which has the internal thread 21a. The center of the threaded portion 21 is a thick portion 21b, and a mortar inlet 21c is formed in the thick portion 21b. The first region Y is a sleeve portion 22 having a cylindrical shape with a smooth inner peripheral surface. The sleeve portion 22 is coaxial with the screwing portion 21, and the inner diameter thereof is larger than the valley diameter of the female screw 21 a of the screwing portion 21. A mortar inlet 22 c is formed in the vicinity of the threaded portion 21 on the peripheral wall of the sleeve portion 22.
[0021]
On the outer periphery of the sleeve portion 22, an annular convex portion 22a and a convex portion 12b extending in the axial direction are formed. Due to the convex portions 22a and 22b and the thick portion 21b, almost the entire outer periphery of the cylindrical body 20 has an uneven shape. Thereby, the high adhesiveness with the concrete 3a is ensured.
[0022]
In a state where the two main reinforcing bars 10 are in a straight line, the end portions thereof are screwed into the screwing portions 21 of the cylinder 20 and are firmly connected. In this connected state, by injecting mortar from the mortar inlet 21c, the gap between the inner periphery of the threaded portion 21 and the outer periphery of the main bar 10 is filled with mortar, thereby further increasing the connection strength.
[0023]
Further, the mortar 25 is filled between the sleeve portion 22 and the main muscle 10 by injecting the mortar 25 from the inlet 22 c of the sleeve portion 22. Since the inner peripheral surface of the sleeve portion 22 is smooth, the connection strength between the main muscle 10 and the sleeve portion 22 via the mortar 25 (connection strength against the tensile load in the axial direction of the main muscle 10) is the screwed portion 21 and the main muscle 10. It is much lower than the connection strength. The connection strength between the main reinforcement 11 and the sleeve portion 22 is lower than the adhesion strength between the main reinforcement 10 and the concrete 2 a of the beam 2.
[0024]
In a predetermined region S between both ends of the cylindrical body 11 and the material ends E of both beams 2, tape or a viscosity or resin is applied around the outer periphery of the main bar 10. The adhesion strength with the concrete 3a is very low and substantially zero (unbonded state).
[0025]
In the column / beam joint 3, when the reinforced concrete structure rolls due to an earthquake, a large bending moment is applied in the vicinity of the material end E of the beam 2 as in the conventional structure. At this time, it is similar to the conventional structure in that a crack is generated between the concrete 2a and 3a, but is significantly different from the conventional structure in the following points.
[0026]
For example, when the column 1 is tilted to the right as shown in FIG. 1B, the lower main bar 10 of the right beam 2 and the upper main bar 10 of the left beam 2 receive a tensile load. At this time, the main bar 10 has substantially zero adhesion strength with the concrete 3a in the predetermined region S and is much lower than the adhesion strength of the beam 2 with the concrete 2a. Made. Moreover, since the connection strength in the 1st area | region Y of the cylindrical body 20 is lower than the adhesion strength with the concrete 2a of the beam 2, the main reinforcement 10 is yielded here. As a result, the main reinforcement 10 can reduce the progress of yielding in the vicinity of the material end E in the beam 2, and can reduce the breakage of the concrete 2a in the vicinity of the material end E.
[0027]
Contrary to the above, when the column 1 is tilted to the left, the stretched portion receives a compressive load and returns to its original length, and the upper main bar 10 of the right beam 2 and the lower side of the left beam 2 are restored. The main muscle 10 receives the tensile load and extends in the regions Y and S. In this manner, the main muscle 10 is repeatedly stretched and compressed while taking the alternating load of tension and compression. As a result, seismic energy can be absorbed and the earthquake resistance of the building can be improved.
[0028]
Next, fixing performance at the column / beam joint 3 of the main reinforcement 10 will be described. Since the cylindrical body 20 has irregularities formed on almost the entire outer peripheral surface, the adhesion strength with the concrete 3a is high, and the tensile load can be dispersed and received. Since the main bar 10 is firmly connected to the cylinder 20 by screwing, the fixing performance at the column / beam joint 3 can be ensured by the high adhesion strength between the cylinder 20 and the concrete 3a. Even if the adhesion strength between the main reinforcement 10 and the concrete 3a is low in the predetermined region S, the cylindrical body 20 compensates for it, and the fixing performance of the main reinforcement 10 is ensured.
[0029]
Next, another embodiment of the present invention will be described. In these embodiments, components corresponding to the preceding embodiments are assigned the same reference numerals and detailed description thereof is omitted. A second embodiment of the present invention will be described with reference to FIG. In this embodiment, both ends of the cylindrical body 20 are coincident with or located in the vicinity of the material end E of the beam 2, and the length thereof is substantially coincident with the pillar. The area S of the first embodiment does not exist. Since the cylindrical body 20 is lengthened to the maximum, the adhesion strength with the concrete 3a can be increased, and as a result, the fixing strength at the column / beam joint 3 of the main reinforcement 10 can be increased. Most of the yielding of the main muscle 10 is performed by the portion of the first region Y of the cylindrical body 20.
[0030]
In the third embodiment of FIG. 4, the first region Y of the first embodiment does not exist. For example, a female screw is formed over the entire length of the cylindrical body 20 and is firmly connected to the two main bars 10. That is, the entire length of the cylindrical body 20 is in a connected state similar to that of the second region N of the first embodiment. In the region S between both ends of the cylindrical body 20 and the material ends E of both beams 2, the main reinforcement 10 has a low adhesive force as in the first embodiment, and is responsible for yielding during an earthquake.
[0031]
Although the said 1st-3rd embodiment described the case where the pillar 1 was a side pillar, it can apply as it is also when the pillar 1 is a middle pillar and a beam is fixed to a cross shape. In this case, two sets of two beams that form a straight line at the column / beam joint are fixed.
Moreover, in the said 1st-3rd embodiment, one continuous rebar extends through the column / beam joint to the middle part of the two beams, and may constitute the main bars of these two beams. Even in this case, the cylinder is connected to the main bar of the beam in the same manner as in the first to third embodiments. In each beam, the ends of the main bars are connected by a coupler at the intermediate portion. In these embodiments, in FIG. 1 to FIG. 4, the main muscles are merely in a continuous state without interruption, and can be easily understood, so illustration is omitted.
[0032]
In the fourth embodiment shown in FIG. 5, the present invention is applied when the pillar 1 is a corner pillar. In this embodiment, the cylinder 20 has a first region Y near the beam 2 and a second region N separated from the beam 2. A predetermined region S is formed between one end of the cylindrical body 20 and the material end E of the beam 2. Since the connection strength and adhesion strength of the main muscle 10 in these regions Y, N, and S are almost the same as those in the first embodiment, description thereof will be omitted. In the column / beam joint 3 at this corner column, one end of the cylinder 20 is made to coincide with the material end E and the predetermined region S is omitted as in the second embodiment, and most yields in the first region Y. As in the third embodiment, the first region Y of the cylinder 20 may be omitted and most yielding may be performed in the predetermined region S.
[0033]
Furthermore, the present invention can employ various forms regardless of the above embodiment. The uneven shape on the outer periphery of the cylindrical body 20 is not limited to the above-described embodiment, and uneven shapes having any shape for improving the adhesion to the concrete 3a can be employed. For example, you may form many fine unevenness | corrugations in the outer peripheral surface whole region.
[0034]
The main muscle 10 and the second region N of the cylindrical body 20 may employ mortar connection instead of screwing. For example, a plurality of annular protrusions are formed at intervals in the axial direction on the inner periphery of the second region N of the cylindrical body 20. This annular projection and the main reinforcing bar consisting of deformed reinforcing bars (in the case of screw reinforcing bars, screwing) are connected via a mortar.
In the third embodiment, the main body 10 may be screwed with the main muscle 10, and annular protrusions may be formed on the inner circumferences of the left and right portions of the cylinder 20 to be mortar coupled with the main muscle 10. In this case, the connection strength of the left and right parts is higher than the adhesion strength between the main reinforcement 10 and the concrete 2 a in the beam 2.
[0035]
In the first region Y of the cylindrical body 20, an annular protrusion may be formed on the inner circumference of the sleeve portion 22 at a rough interval to increase the adhesion strength compared to the above embodiment. However, the connection strength between the cylindrical body 20 and the main bar 10 in the first region Y in this case is lower than the adhesion strength between the main bar 10 and the concrete 2 a in the beam 2.
[0036]
In the second region Y, the strength of the connection with the cylindrical body 20 may be made substantially zero (unbonded state) by winding a tape around the outer periphery of the main bar 10 or applying a viscosity, resin, or the like.
[0037]
In order to reduce the adhesion strength in the predetermined region S or decrease the connection strength with the cylindrical body 20 in the first region Y, it may be obtained by forming the round bar portion without the bulge of the main muscle 10.
[0038]
The cylindrical body 20 may be crimped to the main muscle 10 by caulking or the like in the second region N. Mortar filling in the first region Y may be omitted.
In all the above embodiments, the present invention may be provided to only some of the main muscles, for example, the upper main muscles.
[0039]
The present invention can also be applied to the case where the component is a column and the base is foundation concrete, and can also be applied to the case where the column is a component and the base is a column / beam joint. Moreover, this invention is applied also to a steel frame reinforced concrete building. It can also be applied to a precast structure. Furthermore, prestressed concrete can also be used as a constituent material.
[0040]
【The invention's effect】
As described above, according to the fixing structure of the present invention, it is possible to remarkably reduce the damage to the constituent material in the event of an earthquake and to remarkably improve the fixing function to the base portion of the constituent material main bar.
[Brief description of the drawings]
FIGS. 1A and 1B are longitudinal sectional views of a column / beam joint constituting a first embodiment of the present invention, in which FIG. 1A shows a normal state and FIG. 1B shows an earthquake state.
FIG. 2 is a view showing a cylindrical body and a beam main bar used in the embodiment.
FIG. 3 is a longitudinal cross-sectional view showing a column / beam joint part according to a second embodiment of the present invention.
FIG. 4 is a longitudinal cross-sectional view of a column / beam joint forming a third embodiment of the present invention.
FIG. 5 is a vertical cross-sectional view of a column / beam joint forming a fourth embodiment of the present invention.
[Explanation of symbols]
E Material edge position N First region Y Second region S Predetermined region 2 Beam (component)
3 Column / beam joint (base)
2a, 3a Concrete 10 Reinforcement 20 Tubular body

Claims (9)

構成材の材端を基部に固定するために、構成材の複数の主筋を基部内へ延ばすようにした鉄筋コンクリート建造物における構成材の材端固定構造において、
上記基部内には上記主筋と同軸をなす筒体が複数配され、これら筒体に上記主筋が挿入されて連結され、これら筒体の外周のほぼ全域にはコンクリートとの付着を高めるための凹凸が形成されており、筒体における構成材寄りの一方の端は上記構成材の材端より基部の奥側に位置しており、当該一方の端から構成材の材端までの所定領域における上記主筋と基部コンクリートとの付着強度が、上記主筋と構成材コンクリートとの付着強度より低く、この所定領域の主筋が地震の際に降伏する降伏予定部として提供されることを特徴とする鉄筋コンクリート建造物における構成材の材端固定構造。
In order to fix the material end of the component material to the base, in the material end fixing structure of the component material in the reinforced concrete building in which a plurality of main reinforcing bars of the component material are extended into the base,
A plurality of cylinders that are coaxial with the main bars are arranged in the base, and the main bars are inserted into and connected to the cylinders, and unevenness for enhancing adhesion with concrete is provided in almost the entire outer periphery of the cylinders. Is formed, and one end of the cylindrical body near the constituent material is located on the back side of the base from the material end of the constituent material, and the above in a predetermined region from the one end to the material end of the constituent material Reinforced concrete structure characterized in that the bond strength between the main reinforcement and the base concrete is lower than the adhesion strength between the main reinforcement and the component concrete, and that the main reinforcement in this predetermined area is provided as a planned yielding section in the event of an earthquake. The material end fixing structure of the component material in
上記筒体が構成材寄りの第1領域と構成材から離れた第2領域を有し、第1領域での主筋と筒体との連結強度が、第2領域での主筋と筒体との連結強度より低く、また上記主筋と構成材コンクリートとの付着強度よりも低くなっており、この第1領域の主筋も、地震の際に降伏する降伏予定部として提供されることを特徴とする請求項1に記載の鉄筋コンクリート建造物における構成材の材端固定構造。The cylinder has a first region closer to the component and a second region away from the component, and the connection strength between the main reinforcement and the cylinder in the first region is the relationship between the main reinforcement and the cylinder in the second region. It is lower than the connection strength and lower than the bond strength between the main reinforcement and the component material concrete, and the main reinforcement in the first region is also provided as a planned yield section that yields in the event of an earthquake. Item structure for fixing a material end of a reinforced concrete building according to Item 1. 上記構成材が基部の両側に一直線をなして固定され、上記筒体の中央部が第2領域として提供され、上記筒体の両側部が上記第1領域としてそれぞれ提供され、上記筒体の両端と両構成材の材端との間がそれぞれ上記所定領域として提供されることを特徴とする請求項2に記載の鉄筋コンクリート建造物における構成材の材端固定構造。The component is fixed in a straight line on both sides of the base, the central part of the cylinder is provided as a second area, both sides of the cylinder are provided as the first area, and both ends of the cylinder The material end fixing structure for a component material in a reinforced concrete building according to claim 2, wherein the predetermined region is provided between each of the component materials and the material ends of both component materials. 上記主筋は筒体の全長にわたり、構成材のコンクリートとの付着強度より高い連結強度で連結されており、実質的に上記所定領域での主筋だけが降伏予定部として提供されることを特徴とする請求項1に記載の鉄筋コンクリート建造物における構成材の材端固定構造。The main bars are connected to each other with a connection strength higher than the adhesion strength of the constituent material to the concrete over the entire length of the cylindrical body, and substantially only the main bars in the predetermined region are provided as the planned yield portion. The material end fixing structure of the constituent material in the reinforced concrete building according to claim 1. 上記構成材が基部の両側に一直線をなして固定され、上記筒体の両端と両構成材の材端との間がそれぞれ上記所定領域として提供されることを特徴とする請求項4に記載の鉄筋コンクリート建造物における構成材の材端固定構造。5. The component according to claim 4, wherein the constituent material is fixed in a straight line on both sides of a base portion, and a portion between both ends of the cylindrical body and a material end of both constituent materials is provided as the predetermined region. Material end fixing structure for reinforced concrete buildings. 構成材の材端を基部に固定するために、構成材の複数の主筋を基部内へ延ばすようにした鉄筋コンクリート建造物における構成材の材端固定構造において、
上記基部内には上記主筋と同軸をなす筒体が複数配され、これら筒体に上記主筋が挿入されて連結され、これら筒体の外周のほぼ全域にはコンクリートとの付着を高めるための凹凸が形成されており、筒体における構成材寄りの一方の端は上記構成材の材端とほぼ一致した位置にあり、
上記筒体が構成材寄りの第1領域と構成材から離れた第2領域を有し、第1領域での主筋と筒体との連結強度が、第2領域での主筋と筒体との連結強度より低く、また上記主筋と構成材コンクリートとの付着強度よりも低くなっており、この第1領域の主筋が、地震の際に降伏する降伏予定部として提供されることを特徴とする鉄筋コンクリート建造物における構成材の材端固定構造。
In order to fix the material end of the component material to the base, in the material end fixing structure of the component material in the reinforced concrete building in which a plurality of main reinforcing bars of the component material are extended into the base,
A plurality of cylinders that are coaxial with the main bars are arranged in the base, and the main bars are inserted into and connected to the cylinders, and unevenness for enhancing adhesion to concrete is provided in almost the entire outer periphery of the cylinders. Is formed, and one end of the cylindrical body near the constituent material is in a position substantially coincident with the material end of the constituent material,
The cylinder has a first region closer to the component and a second region away from the component, and the connection strength between the main reinforcement and the cylinder in the first region is the relationship between the main reinforcement and the cylinder in the second region. Reinforced concrete that is lower than the connection strength and lower than the bond strength between the main reinforcement and the component concrete, and that the main reinforcement in the first region is provided as a planned yield section that yields in the event of an earthquake. Material end fixing structure for building components.
上記構成材が基部の両側に一直線をなして固定され、上記筒体の中央部が上記第2領域として提供され、上記筒体の両側部が上記第1領域としてそれぞれ提供され、上記筒体の両端と両構成材の材端との間がそれぞれ上記所定領域として提供されることを特徴とする請求項6に記載の鉄筋コンクリート建造物における構成材の材端固定構造。The component is fixed in a straight line on both sides of the base, the central part of the cylinder is provided as the second area, both sides of the cylinder are provided as the first area, The material end fixing structure for a component material in a reinforced concrete building according to claim 6, wherein the predetermined region is provided between both ends and the material ends of both component materials. 両構成材の主筋が異なる鉄筋で形成され、これら主筋の端部が上記筒体を介して互いに連結されていることを特徴とする請求項3,5,7のいずれかに記載の鉄筋コンクリート建造物における構成材の材端固定構造。The reinforced concrete building according to any one of claims 3, 5, and 7, wherein the main reinforcing bars of both constituent members are formed of different reinforcing bars, and ends of the main reinforcing bars are connected to each other through the cylindrical body. The material end fixing structure of the component material in. 上記基部が柱・梁接合部であり、上記構成材が梁であり、上記主筋および筒体が水平をなしていることを特徴とする請求項1〜8のいずれかに記載の鉄筋コンクリート建造物における構成材の材端固定構造。In the reinforced concrete building according to any one of claims 1 to 8, wherein the base is a column / beam joint, the constituent material is a beam, and the main reinforcement and the cylinder are horizontal. Material end fixing structure of component.
JP2002225718A 2002-08-02 2002-08-02 Material end fixing structure for reinforced concrete buildings Expired - Fee Related JP3971679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002225718A JP3971679B2 (en) 2002-08-02 2002-08-02 Material end fixing structure for reinforced concrete buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225718A JP3971679B2 (en) 2002-08-02 2002-08-02 Material end fixing structure for reinforced concrete buildings

Publications (2)

Publication Number Publication Date
JP2004068304A JP2004068304A (en) 2004-03-04
JP3971679B2 true JP3971679B2 (en) 2007-09-05

Family

ID=32013273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225718A Expired - Fee Related JP3971679B2 (en) 2002-08-02 2002-08-02 Material end fixing structure for reinforced concrete buildings

Country Status (1)

Country Link
JP (1) JP3971679B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104088401A (en) * 2014-06-19 2014-10-08 北京工业大学 Buckling-restrained steel bar construction

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642373B2 (en) * 2004-04-07 2011-03-02 久廣 平石 Concrete member joint structure
JP2008075417A (en) * 2006-09-25 2008-04-03 Kyoei Steel Ltd Connecting method for irregular bar
JP2008075415A (en) * 2006-09-25 2008-04-03 Kyoei Steel Ltd Connecting method for screw reinforcement
JP2008075416A (en) * 2006-09-25 2008-04-03 Kyoei Steel Ltd Connecting method for screw reinforcement
JP7326027B2 (en) * 2019-05-28 2023-08-15 前田建設工業株式会社 Structural body including wooden beams and concrete columns

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104088401A (en) * 2014-06-19 2014-10-08 北京工业大学 Buckling-restrained steel bar construction

Also Published As

Publication number Publication date
JP2004068304A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP3971679B2 (en) Material end fixing structure for reinforced concrete buildings
KR102311223B1 (en) Resistance to earthquake reinforcement method for DIY reinforcement of multi-household house piloti column
JP6227452B2 (en) Wall pillar structure
JP4819605B2 (en) Precast prestressed concrete beams using tendons with different strength at the end and center
KR102106647B1 (en) Exterior Emergency Reinforcement Concrete Structures Using Steel Band
KR100499019B1 (en) Concrete-Filled Steel Pipe Girder
KR101892073B1 (en) Composite Structure Rahmen using Steel Pipe and Constructing Method thereof
JP2006144535A (en) Joint structure of column and beam
JP4432597B2 (en) Joint structure of foundation pile head and upper foundation
JP3872769B2 (en) Concrete member joint structure
JP2020148068A (en) Buckling prevention member and reinforcement structure of column
JP4351323B2 (en) Pile head steel pipe concrete pile and its pile head structure
JP2000096834A (en) Reinforcing structure of concrete member
JP2004011209A (en) Yield predetermined-region surrounding structure of screw reinforcement and material-end fixing structure of component in reinforced concrete building
JP4431986B2 (en) Seismic reinforcement structure of building and seismic reinforcement method
JP2003041657A (en) Method for arranging reinforcing material for concrete member
JP2009215748A (en) Composite structure beam, and building structure having composite structure beam
JP2003155778A (en) Material end fixing structure of component in building of reinforced concrete construction
JP2005139731A (en) Connection structure of pipe pile head, and method of constructing pipe pile head
JPH10331437A (en) Earthquake resistant reinforcing construction for existing beam and column
JP3681367B2 (en) Joint structure of steel column and foundation concrete
KR101951404B1 (en) Seismic retrofitting structure by enlarged cross section
JP4660810B2 (en) Boundary beam damper
JP2020190103A (en) Precast concrete member joining method
KR101621657B1 (en) Rahmen system advanced efficiency by plastic hinge/additional prestressing strand and precast girder unit manufacturing thereof and method constructing Rahmen bridge thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3971679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees