JP3971123B2 - Fine structure drying equipment - Google Patents

Fine structure drying equipment Download PDF

Info

Publication number
JP3971123B2
JP3971123B2 JP2001124170A JP2001124170A JP3971123B2 JP 3971123 B2 JP3971123 B2 JP 3971123B2 JP 2001124170 A JP2001124170 A JP 2001124170A JP 2001124170 A JP2001124170 A JP 2001124170A JP 3971123 B2 JP3971123 B2 JP 3971123B2
Authority
JP
Japan
Prior art keywords
temperature
carbon dioxide
drying
drying chamber
filling container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001124170A
Other languages
Japanese (ja)
Other versions
JP2002318073A (en
Inventor
宏一 宮澤
Original Assignee
株式会社日立ハイテクサイエンスシステムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクサイエンスシステムズ filed Critical 株式会社日立ハイテクサイエンスシステムズ
Priority to JP2001124170A priority Critical patent/JP3971123B2/en
Publication of JP2002318073A publication Critical patent/JP2002318073A/en
Application granted granted Critical
Publication of JP3971123B2 publication Critical patent/JP3971123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロマシン等の微細構造物製作時の乾燥工程において、表面張力により微細構造が破壊されることを防止しながら、微細構造を乾燥させることが可能な微細構造物の乾燥装置に関する。
【0002】
【従来の技術】
微細構造物の乾燥装置を用いてウエットエッチング法などにより成形された微細構造を乾燥させる場合、乾燥室に微細構造物を入れてから、乾燥室に乾燥媒体として例えば液化炭酸ガスなどを、ボンベを乾燥媒体源として用いて導入し、微細構造物が含んでいる溶媒を除去した後、乾燥媒体が超臨界状態となるよう乾燥室内の温度・圧力を昇温・昇圧させる。乾燥室内が超臨界状態になったら、乾燥室の温度を臨界温度以上に保ちながら、乾燥媒体を徐々に排気することで乾燥室内の圧力を低下させて行き、乾燥室内の圧力が大気圧になった時点で乾燥が終了する。
【0003】
乾燥室に微細構造物を入れる際は、乾燥室内が大気開放されるため、乾燥室内壁の結露を防止するために乾燥室温度は室温よりやや高めに制御しておく。一方乾燥媒体源のボンベは温度を管理・制御することなく微細構造物の乾燥装置近傍に置かれている。
【0004】
【発明が解決しようとする課題】
従来行われていた微細構造物の乾燥層装置の乾燥室とボンベの温度管理・制御方法では、ボンベの温度に比べて乾燥室の温度が高めになることが多い。また、乾燥室への乾燥媒体の初期導入圧力は乾燥媒体の充填されているボンベの温度に依存した乾燥媒体の蒸気圧そのものになり常に変動してしまう。このため、室温が低い場合には導入圧力が低下してしまい、被乾燥物を置いた乾燥室に乾燥媒体を導入しても、乾燥媒体の液面が被乾燥物より低い位置になってしまい、被乾燥物の制御外乾燥を招き、微細構造が破壊されることがあった。
【0005】
上記制御外乾燥を防止するため、従来装置の操作では乾燥室への乾燥媒体の導入直後に乾燥媒体の液面の上昇不足が確認された場合は、直ちに乾燥室の温度を室温より低下させて行き、乾燥媒体の液面を上昇させることで被乾燥物の制御外乾燥を防止する方法も実施されることもあるが、液面の上昇不足の確認が遅くなりがちなことや、室温が低くなりがちな冬季などでは、乾燥媒体の蒸気圧が低すぎ、つまり乾燥媒体の初期導入圧が低すぎて、乾燥室の温度を低下させることによる乾燥媒体液面の上昇操作が素早く且つ充分に行えず、被乾燥物の制御外乾燥を招き、微細構造が破壊されることがあった。
【0006】
またボンベの残容量は、従来乾燥室への初期導入圧やボンベの質量を計測することで行われているが、初期導入圧は乾燥媒体の蒸気圧なので室温により変化し易く、またボンベの質量は配管の張力や質量が加わり易いため正確に把握することが困難なため、乾燥媒体の導入直後に乾燥媒体が液として乾燥室に供給出来なくなくなったり、導入時から液としてではなく、ガスとしてでしか供給できず被乾燥物の制御外乾燥を招き、微細構造が破壊されることがあった。
【0007】
本発明は、上記の問題に対処し、微細構造の破壊を防止することにある。
【0008】
【課題を解決するための手段】
本発明は、微細構造物を収容し、かつ液化ガスが供給される乾燥室と、液化ガスの供給源であるボンベ等の充填容器と、該充填容器の温度を測定する温度計測手段とを備え、計測手段の測定値に基づいて乾燥室の温度を制御することを特徴とする。
【0009】
更に具体的には、本発明は、微細構造物の乾燥装置の乾燥媒体として用いる液化ガスの供給源として充填容器(ボンベ)を用い、該ボンベの温度を測定する機能を備え、測定したボンベの温度からボンベ内の圧力を既知の乾燥媒体の蒸気圧を乾燥室に乾燥媒体を導入する以前に導き出し、前記圧力でも乾燥室内の乾燥媒体の液面が、被乾燥物より高い位置になるような乾燥室温度を算出しておき、乾燥媒体導入直後から乾燥室温度が前記温度になるよう急激に冷却できる機構を備えることを特徴とする。
【0010】
また本発明は、ボンベの温度を測定しつつ、ボンベの温度をボンベ内乾燥媒体の蒸気圧を高く保てる温度に常になっているように、制御できる機構を備えることを特徴とする。
【0011】
さらにまた本発明は、ボンベ内の圧力を計測できる機能を備え、ボンベ内から乾燥媒体を取り出す以前に圧力を計測し、別に計測された該ボンベの温度から導き出される乾燥媒体固有の蒸気圧と比較して残容量を判断できる機構を備えることを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に示した実施例を参照して説明する。図1は、本発明の一実施例に係る微細構造物の乾燥装置の構成を示す図である。図1において微細構造物の乾燥装置の近傍には、乾燥媒体の供給源である液化炭酸ガスボンベ1が配置される。液化炭酸ガスボンベ1はサイフォン効果で炭酸ガスを液体として取り出すためのパイプが内部に取り付けられている。
【0013】
液化炭酸ガスボンベ1のボンベ頭上弁2を開放すると、液化炭酸ガスボンベ1の内部圧力P1により、液化炭酸ガスが圧送ポンプ3に向かって流れ出る。圧送ポンプ3は、運転を停止している際は逆止弁として作用するため、流れ出た液化炭酸ガスは圧送ポンプ3を通過して安全弁4、開閉弁5、及び開閉弁6に向かって流れる。更に開閉弁5を開放すると、液化炭酸ガスは乾燥室(高圧容器)13に流れ込む。液化炭酸ガスの乾燥室(高圧容器)13への流入は、乾燥室(高圧容器)13の内部圧力P2が液化炭酸ガスボンベ1の内部圧力P1と等しい圧力になることで終了する。
【0014】
この後、更に圧送ポンプ3を運転して乾燥室(高圧容器)13に内部圧力P2が液化炭酸ガスの臨界点圧力である72.8atm以上になるまで送りこむ。乾燥室(高圧容器)13の内部圧力P2は圧力表示・計測器12で確認される。乾燥室(高圧容器)13の内部圧力P2が72.8atm以上になったら圧送ポンプ3の運転を停止すると共に、開閉弁5を閉鎖する。次に、乾燥室温度表示・計測器12で乾燥室(高圧容器)13の温度を計測しながら、乾燥室温度制御ユニット11で乾燥室(高圧容器)13の温度を液化炭酸ガスの臨界点温度である31.9℃以上になるよう昇温させる。ここまでの操作で、乾燥室(高圧容器)13の内部の液化炭酸ガスは超臨界状態になっている。
【0015】
この後、乾燥室(高圧容器)13の温度を31.9℃以上に保ちながら、超臨界状態(高圧状態)の液化炭酸ガスを、減圧弁16により減圧してから開閉弁17を開放して、流量表示器19で適当な流量となるよう流量制御弁18により流量を調節することで、徐々に排出していく。排出が進み、圧力表示・計測器12が1atmを表示するようになると、液化炭酸ガスの排出が終了し、即ち乾燥終了となる。
【0016】
ここで、圧送ポンプ3の運転を開始する前に、乾燥室(高圧容器)13内に導入される液化炭酸ガスの液面高さについて説明するため、以下の如く諸条件を仮定する。
【0017】
液化炭酸ガスボンベ1の温度は283.15K(10℃)。
【0018】
乾燥室(高圧容器)13の温度は283.15K(10℃)。
【0019】
乾燥室(高圧容器)13の内部形状は直径3.57cm、高さ5cmで、内容量50ccの円筒形。
【0020】
乾燥室(高圧容器)13までの配管内容積は1,726cc、液化炭酸ガスボンベ1に炭酸ガスが十分充填されているとすると、液化炭酸ガスボンベ1の温度は283.15Kであるので、液化炭酸ガスボンベ1内の圧力P1は、283.15Kでの蒸気圧である44.4atmとなる。乾燥室(高圧容器)13内での液化炭酸ガスの液面高さはこの44.4atmとなるように、配管内と乾燥室(高圧容器)13内に元から存在していた空気を圧縮したときの体積に依存する。
【0021】
配管内容積+乾燥室(高圧容器)13の容積は、(1,726+50=1,776cc(1atm))であり、44.4atmになるよう圧縮すると、(1,776÷44.4=40cc(44.4atm))となる。
【0022】
これにより、乾燥室(高圧容器)13内に導入される液化炭酸ガスの液面高さは、底面より1.00cmの位置となる。
【0023】
この時、乾燥室(高圧容器)13の温度を283.15Kから273.15Kまで低下させると圧縮空気体積は、(40×273.15÷283.15=38.6ccとなる。
【0024】
これにより、乾燥室(高圧容器)13内に導入される液化炭酸ガスの液面高さは、底面より1.14cmの位置となる。
【0025】
一方、液化炭酸ガスボンベ1の温度が293.15Kである場合は、液化炭酸ガスボンベ1内の圧力P1は、293.15Kでの蒸気圧である56.5atmとなり、元容積1,776cc(1atm)を56.5atmになるよう圧縮すると、1,776÷56.5=31.4cc(56.5atm)となる。
【0026】
これにより、乾燥室(高圧容器)13内に導入される液化炭酸ガスの液面高さは、底面より1.86cmの位置となる。
【0027】
これらのことから、圧送ポンプ3の運転を開始する前に、乾燥室(高圧容器)13内に導入される液化炭酸ガスの液面高さを高くする方法として、液化炭酸ガスボンベ1の温度を高くすることが有効であることがわかる。
【0028】
本発明では、液化炭酸ガスボンベ1の温度をボンベ温度表示・計測器7(温度計測手段)で測定し、測定温度を制御部20で炭酸ガスの蒸気圧に換算する。その結果が低い場合は、乾燥室(高圧容器)13を囲むように配置された乾燥室温度制御ユニット11(温度制御手段)を使って、乾燥室(高圧容器)13内に炭酸ガスが流入され始めた直後から、乾燥室(高圧容器)13の温度を降下させる。
【0029】
あるいは、液化炭酸ガスボンベ1を囲むように配置されたボンベ温度制御ユニット7を使って、乾燥室(高圧容器)13内に炭酸ガスを流入させる前に、液化炭酸ガスボンベ1の温度を上昇させることで、液化炭酸ガスボンベ1内の圧力を上昇させておけるので、圧送ポンプ3の運転を開始する前に、乾燥室(高圧容器)13内に導入される液化炭酸ガスの液面高さを高くすることが可能となり、被乾燥物の制御外乾燥を防止出来るようになる。
【0030】
また、開閉弁5まで液化炭酸ガスを導入した時点で圧力表示・計測器8で測定した圧力と、ボンベ温度表示・計測器7(温度計測手段)で測定した温度から制御部20で炭酸ガス蒸気圧に換算した圧力とを比較することで、液化炭酸ガスボンベ1内に炭酸ガスが液体として存在するかどうか判定できる。即ち、測定圧力<蒸気圧換算圧力 であった場合は、液化炭酸ガスボンベ1内に炭酸ガスが液体として存在していないことになり、液化炭酸ガスボンベ1の交換が必要になる。この様に液化炭酸ガスボンベ1の交換時期が明確に判定できるので、液化炭酸ガス不足による被乾燥物の制御外乾燥を防止出来るようになる。
【0031】
【発明の効果】
以上のように本発明によれば、微細構造物の乾燥装置の制御外乾燥による被乾燥物の微細構造破壊を防止することが可能になる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る微細構造物の乾燥装置の構成図である。
【符号の説明】
1…液化炭酸ガスボンベ、2…ボンベ頭上弁、3…圧送ポンプ、4…安全弁、5…開閉弁、6…開閉弁、7…ボンベ温度表示・計測器、8…圧力表示・計測器、9…ボンベ温度制御ユニット、10…乾燥室温度表示・計測器、11…乾燥室温度制御ユニット、12…圧力表示・計測器、13…乾燥室(高圧容器)、14…開閉弁、15…安全弁、16…減圧弁、17…開閉弁、18…流量制御弁、19…流量表示器、20…制御部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fine structure drying apparatus capable of drying a fine structure while preventing the fine structure from being destroyed by surface tension in a drying process when producing a fine structure such as a micromachine.
[0002]
[Prior art]
When drying a microstructure formed by a wet etching method or the like using a fine structure drying apparatus, the fine structure is put in a drying chamber, and then, for example, liquefied carbon dioxide gas is used as a drying medium in the drying chamber. After being introduced as a drying medium source and removing the solvent contained in the fine structure, the temperature and pressure in the drying chamber are raised and increased so that the drying medium is in a supercritical state. When the drying chamber is in a supercritical state, the pressure in the drying chamber is reduced to atmospheric pressure by gradually exhausting the drying medium while keeping the drying chamber temperature above the critical temperature. Drying is finished at the point.
[0003]
When a fine structure is placed in the drying chamber, the drying chamber is opened to the atmosphere, and therefore the drying chamber temperature is controlled slightly higher than room temperature in order to prevent condensation on the walls of the drying chamber. On the other hand, the cylinder of the drying medium source is placed in the vicinity of the fine structure drying apparatus without controlling and controlling the temperature.
[0004]
[Problems to be solved by the invention]
In the conventional method for temperature control / control of the drying chamber and the cylinder of the fine layer drying layer apparatus, the temperature of the drying chamber is often higher than the temperature of the cylinder. Further, the initial introduction pressure of the drying medium into the drying chamber is always the vapor pressure of the drying medium depending on the temperature of the cylinder filled with the drying medium, and always fluctuates. For this reason, when the room temperature is low, the introduction pressure decreases, and even if the drying medium is introduced into the drying chamber where the object to be dried is placed, the liquid level of the drying medium is lower than the object to be dried. In some cases, the material to be dried is dried out of control and the fine structure is destroyed.
[0005]
In order to prevent the above-mentioned drying out of control, if the rise of the liquid level of the drying medium is confirmed immediately after the introduction of the drying medium into the drying chamber in the operation of the conventional apparatus, the temperature of the drying chamber is immediately lowered from room temperature. There are also cases where the liquid level of the drying medium is raised to prevent uncontrolled drying of the material to be dried.However, the confirmation of insufficient rise in the liquid level tends to be delayed or the room temperature is low. In winter, which tends to occur, the vapor pressure of the drying medium is too low, that is, the initial introduction pressure of the drying medium is too low, and the raising operation of the liquid level of the drying medium can be performed quickly and sufficiently by lowering the temperature of the drying chamber. In other words, uncontrolled drying of the material to be dried may be caused, and the fine structure may be destroyed.
[0006]
The remaining capacity of the cylinder is conventionally measured by measuring the initial introduction pressure into the drying chamber and the mass of the cylinder. However, since the initial introduction pressure is the vapor pressure of the drying medium, it easily changes depending on the room temperature. Since it is difficult to grasp accurately because the tension and mass of the piping is easily applied, the drying medium cannot be supplied as a liquid to the drying chamber immediately after the introduction of the drying medium, or as a gas instead of a liquid from the time of introduction. In other cases, the material to be dried could be dried out of control and the fine structure could be destroyed.
[0007]
The present invention addresses the above problems and prevents the destruction of the microstructure.
[0008]
[Means for Solving the Problems]
The present invention includes a drying chamber that accommodates a fine structure and is supplied with a liquefied gas, a filling container such as a cylinder that is a supply source of the liquefied gas, and a temperature measurement unit that measures the temperature of the filling container. The temperature of the drying chamber is controlled based on the measured value of the measuring means.
[0009]
More specifically, the present invention uses a filling container (cylinder) as a supply source of a liquefied gas used as a drying medium of a fine structure drying apparatus, and has a function of measuring the temperature of the cylinder. From the temperature, the pressure in the cylinder is derived before the vapor pressure of the known drying medium is introduced into the drying chamber, so that the liquid level of the drying medium in the drying chamber is higher than the object to be dried even at the pressure. A drying chamber temperature is calculated, and a mechanism capable of rapidly cooling the drying chamber temperature to the temperature immediately after introduction of the drying medium is provided.
[0010]
Further, the present invention is characterized in that a mechanism capable of controlling the temperature of the cylinder while measuring the temperature of the cylinder so that the temperature of the cylinder is always kept at a high vapor pressure of the drying medium in the cylinder is provided.
[0011]
Furthermore, the present invention has a function capable of measuring the pressure in the cylinder, measures the pressure before taking out the drying medium from the cylinder, and compares it with the vapor pressure specific to the drying medium derived from the temperature of the cylinder measured separately. And a mechanism capable of determining the remaining capacity.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to examples shown in the drawings. FIG. 1 is a diagram showing a configuration of a fine structure drying apparatus according to an embodiment of the present invention. In FIG. 1, a liquefied carbon dioxide gas cylinder 1 as a supply source of a drying medium is disposed in the vicinity of the fine structure drying apparatus. The liquefied carbon dioxide cylinder 1 has a pipe for taking out the carbon dioxide gas as a liquid by a siphon effect.
[0013]
When the cylinder head valve 2 of the liquefied carbon dioxide cylinder 1 is opened, the liquefied carbon dioxide flows out toward the pump 3 by the internal pressure P1 of the liquefied carbon dioxide cylinder 1. Since the pressure pump 3 functions as a check valve when the operation is stopped, the liquefied carbon dioxide gas that has flowed out passes through the pressure pump 3 and flows toward the safety valve 4, the on-off valve 5, and the on-off valve 6. When the on-off valve 5 is further opened, the liquefied carbon dioxide gas flows into the drying chamber (high pressure vessel) 13. The inflow of the liquefied carbon dioxide gas into the drying chamber (high pressure vessel) 13 ends when the internal pressure P2 of the drying chamber (high pressure vessel) 13 becomes equal to the internal pressure P1 of the liquefied carbon dioxide gas cylinder 1.
[0014]
Thereafter, the pressure feed pump 3 is further operated to feed the internal pressure P2 into the drying chamber (high pressure vessel) 13 until the internal pressure P2 becomes 72.8 atm or more which is the critical point pressure of the liquefied carbon dioxide gas. The internal pressure P2 of the drying chamber (high pressure vessel) 13 is confirmed by the pressure display / measurement device 12. When the internal pressure P2 of the drying chamber (high pressure vessel) 13 becomes 72.8 atm or higher, the operation of the pressure pump 3 is stopped and the on-off valve 5 is closed. Next, the temperature of the drying chamber (high pressure vessel) 13 is measured by the drying chamber temperature control unit 11 while the temperature of the drying chamber (high pressure vessel) 13 is measured by the drying chamber temperature display / measurement device 12. The temperature is raised to 31.9 ° C. or higher. By the operation so far, the liquefied carbon dioxide inside the drying chamber (high pressure vessel) 13 is in a supercritical state.
[0015]
Thereafter, while maintaining the temperature of the drying chamber (high pressure vessel) 13 at 31.9 ° C. or higher, the supercritical state (high pressure state) of liquefied carbon dioxide is reduced by the pressure reducing valve 16 and then the opening / closing valve 17 is opened. Then, the flow rate is adjusted by the flow rate control valve 18 so that the flow rate becomes an appropriate flow rate by the flow rate indicator 19, and then it is gradually discharged. When the discharge progresses and the pressure display / measuring instrument 12 displays 1 atm, the discharge of the liquefied carbon dioxide gas ends, that is, the drying ends.
[0016]
Here, in order to explain the liquid level height of the liquefied carbon dioxide gas introduced into the drying chamber (high pressure vessel) 13 before the operation of the pressure feed pump 3 is started, various conditions are assumed as follows.
[0017]
The temperature of the liquefied carbon dioxide cylinder 1 is 283.15 K (10 ° C.).
[0018]
The temperature of the drying chamber (high pressure vessel) 13 is 283.15 K (10 ° C.).
[0019]
The internal shape of the drying chamber (high pressure vessel) 13 is a cylindrical shape having a diameter of 3.57 cm, a height of 5 cm, and an internal capacity of 50 cc.
[0020]
If the internal volume of the pipe to the drying chamber (high pressure vessel) 13 is 1,726 cc and the liquefied carbon dioxide gas cylinder 1 is sufficiently filled with carbon dioxide, the temperature of the liquefied carbon dioxide gas cylinder 1 is 283.15K. The pressure P1 in 1 is 44.4 atm, which is the vapor pressure at 283.15K. The air that was originally present in the piping and in the drying chamber (high pressure vessel) 13 was compressed so that the liquid level of the liquefied carbon dioxide gas in the drying chamber (high pressure vessel) 13 would be 44.4 atm. Depends on the volume of time.
[0021]
The volume of the pipe internal volume + drying chamber (high pressure vessel) 13 is (1,726 + 50 = 1,776 cc (1 atm)), and when compressed to 44.4 atm, (1,776 ÷ 44.4 = 40 cc ( 44.4 atm)).
[0022]
Thereby, the liquid level height of the liquefied carbon dioxide gas introduced into the drying chamber (high pressure vessel) 13 is at a position of 1.00 cm from the bottom surface.
[0023]
At this time, if the temperature of the drying chamber (high pressure vessel) 13 is lowered from 283.15 K to 273.15 K, the compressed air volume becomes (40 × 273.15 ÷ 283.15 = 38.6 cc).
[0024]
As a result, the liquid level of the liquefied carbon dioxide gas introduced into the drying chamber (high pressure vessel) 13 is 1.14 cm from the bottom surface.
[0025]
On the other hand, when the temperature of the liquefied carbon dioxide cylinder 1 is 293.15K, the pressure P1 in the liquefied carbon dioxide cylinder 1 is 56.5 atm which is the vapor pressure at 293.15K, and the original volume 1,776 cc (1 atm) is obtained. When compressed to 56.5 atm, it becomes 1,776 ÷ 56.5 = 31.4 cc (56.5 atm).
[0026]
As a result, the liquid level of the liquefied carbon dioxide gas introduced into the drying chamber (high pressure vessel) 13 is 1.86 cm from the bottom surface.
[0027]
From these facts, as a method of increasing the liquid level of the liquefied carbon dioxide gas introduced into the drying chamber (high pressure vessel) 13 before starting the operation of the pressure pump 3, the temperature of the liquefied carbon dioxide cylinder 1 is increased. It turns out that it is effective.
[0028]
In the present invention, the temperature of the liquefied carbon dioxide gas cylinder 1 is measured by the cylinder temperature display / measurement device 7 (temperature measuring means), and the measured temperature is converted into the vapor pressure of the carbon dioxide gas by the control unit 20. If the result is low, carbon dioxide gas is introduced into the drying chamber (high pressure vessel) 13 using the drying chamber temperature control unit 11 (temperature control means) arranged so as to surround the drying chamber (high pressure vessel) 13. Immediately after starting, the temperature of the drying chamber (high pressure vessel) 13 is lowered.
[0029]
Alternatively, the temperature of the liquefied carbon dioxide cylinder 1 is increased by using the cylinder temperature control unit 7 arranged so as to surround the liquefied carbon dioxide cylinder 1 before the carbon dioxide gas is allowed to flow into the drying chamber (high pressure vessel) 13. Since the pressure in the liquefied carbon dioxide gas cylinder 1 can be increased, the liquid level of the liquefied carbon dioxide gas introduced into the drying chamber (high pressure vessel) 13 is increased before the operation of the pumping pump 3 is started. It becomes possible to prevent uncontrolled drying of the object to be dried.
[0030]
Further, when the liquefied carbon dioxide gas is introduced to the on-off valve 5, the pressure measured by the pressure display / measurement device 8 and the temperature measured by the cylinder temperature display / measurement device 7 (temperature measurement means) are used by the control unit 20 to generate carbon dioxide vapor. By comparing the pressure converted into the pressure, it can be determined whether or not carbon dioxide gas exists in the liquefied carbon dioxide cylinder 1 as a liquid. That is, if the measured pressure is less than the vapor pressure equivalent pressure, the carbon dioxide gas does not exist as a liquid in the liquefied carbon dioxide gas cylinder 1, and the liquefied carbon dioxide gas cylinder 1 needs to be replaced. In this way, the replacement time of the liquefied carbon dioxide cylinder 1 can be clearly determined, so that it is possible to prevent uncontrolled drying of the object to be dried due to the lack of liquefied carbon dioxide gas.
[0031]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent the fine structure destruction of the object to be dried due to the non-control drying of the fine structure drying apparatus.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a fine structure drying apparatus according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Liquefied carbon dioxide cylinder, 2 ... Cylinder overhead valve, 3 ... Pressure feed pump, 4 ... Safety valve, 5 ... Open / close valve, 6 ... Open / close valve, 7 ... Cylinder temperature display / measurement instrument, 8 ... Pressure display / measurement instrument, 9 ... Cylinder temperature control unit, 10 ... drying chamber temperature display / measurement device, 11 ... drying chamber temperature control unit, 12 ... pressure display / measurement device, 13 ... drying chamber (high pressure vessel), 14 ... open / close valve, 15 ... safety valve, 16 DESCRIPTION OF SYMBOLS ... Pressure-reducing valve, 17 ... On-off valve, 18 ... Flow control valve, 19 ... Flow indicator, 20 ... Control part.

Claims (3)

微細構造物を洗浄して乾燥する乾燥媒体として液化炭酸ガスを用いる微細構造物の乾燥装置において、
前記微細構造物を収容し、かつ前記液化炭酸ガスが供給される乾燥室と、
前記液化炭酸ガスの供給源であるボンベ等の充填容器と、
前記充填容器の温度を測定する温度計測手段と、
前記温度計測手段での測定温度を炭酸ガスの蒸気圧に換算する制御部と、
前記充填容器の液化炭酸ガスの蒸気圧より低い場合は、乾燥室内に炭酸ガスが流入され始めた直後から乾燥室の温度を降下させて前記乾燥室内に流入させる液化炭酸ガスの液面
高さを高くするように制御する乾燥室温度制御ユニットとを有し、
前記充填容器から前記乾燥室へ液化炭酸ガスが導入されると、前記充填容器用の温度計測手段の測定値に基づいて、前記乾燥室の温度が前記充填容器の温度に対して低くなるように前記乾燥室温度制御ユニットにより前記乾燥室の温度を降下制御することを特徴とする微細構造物の乾燥装置。
In the fine structure drying apparatus using liquefied carbon dioxide as a drying medium for washing and drying the fine structure,
A drying chamber containing the microstructure and supplied with the liquefied carbon dioxide gas;
A filling container such as a cylinder which is a supply source of the liquefied carbon dioxide gas;
Temperature measuring means for measuring the temperature of the filling container;
A control unit for converting the temperature measured by the temperature measuring means into the vapor pressure of carbon dioxide,
Wherein it is lower than the vapor pressure of the liquefied carbon dioxide-filled container, the liquid level of the liquefied carbon dioxide immediately after the carbon dioxide began to flow into the drying chamber is lowered the temperature of the drying chamber to flow into the drying chamber
And a drying chamber temperature control unit for controlling the high to so that the height,
When liquefied carbon dioxide gas is introduced from the filling container into the drying chamber, the temperature of the drying chamber is made lower than the temperature of the filling container based on the measurement value of the temperature measuring means for the filling container. A drying apparatus for a fine structure, wherein the temperature of the drying chamber is controlled to be lowered by the drying chamber temperature control unit.
微細構造物を洗浄して乾燥する乾燥媒体として液化炭酸ガスを用いる微細構造物の乾燥装置において、
前記微細構造物を収容し、かつ前記液化炭酸ガスが供給される乾燥室と、
前記液化炭酸ガスの供給源であるボンベ等の充填容器と、
前記充填容器の温度を測定する温度計測手段と、
前記温度計測手段で測定温度を炭酸ガスの蒸気圧に換算する制御部と、
前記充填容器の液化炭酸ガスの蒸気圧より低い場合は、乾燥室内に炭酸ガスを流入させる前に、充填容器の温度を上昇させて該充填容器内の圧力を上昇させ、前記乾燥室に流入される液化炭酸ガスの液面高さを高くするように制御するボンベ温度制御ユニットとを有し、
前記充填容器から前記乾燥室へ液化炭酸ガスが導入されると、前記充填容器用の温度計測手段の測定値に基づいて、前記乾燥室の温度が前記充填容器の温度に対して低くなるように前記ボンベ温度制御ユニットにより前記充填容器の温度を上昇制御することを特徴とする微細構造物の乾燥装置。
In the fine structure drying apparatus using liquefied carbon dioxide as a drying medium for washing and drying the fine structure,
A drying chamber containing the microstructure and supplied with the liquefied carbon dioxide gas;
A filling container such as a cylinder which is a supply source of the liquefied carbon dioxide gas;
Temperature measuring means for measuring the temperature of the filling container;
A control unit for converting the measurement temperature into the vapor pressure of carbon dioxide gas by the temperature measuring means;
If it is lower than the vapor pressure of the liquefied carbon dioxide gas in the filling container, the temperature of the filling container is raised to increase the pressure in the filling container before flowing the carbon dioxide gas into the drying chamber, and the carbon dioxide gas flows into the drying chamber. and a cylinder temperature control unit for controlling the high to so that the liquid level of the liquefied carbon dioxide that,
When liquefied carbon dioxide gas is introduced from the filling container into the drying chamber, the temperature of the drying chamber is made lower than the temperature of the filling container based on the measurement value of the temperature measuring means for the filling container. An apparatus for drying a fine structure, wherein the temperature of the filling container is controlled to rise by the cylinder temperature control unit.
請求項1または2に記載された微細構造物の乾燥装置において、
前記充填容器内の圧力を測定し、
測定された前記充填容器内の圧力と、前記充填容器用の温度計測手段で測定される前記充填容器の温度測定値より算出される前記充填容器内の液化炭酸ガスの蒸気圧力値とを比較することで、乾燥運転前に充填容器に残存するガスが液化炭酸ガスとして存在するかどうか判定する制御部を備えることを特徴とする微細構造物の乾燥装置。
In the drying apparatus of the fine structure according to claim 1 or 2,
Measuring the pressure in the filling container,
The measured pressure in the filling container is compared with the vapor pressure value of the liquefied carbon dioxide gas in the filling container calculated from the temperature measurement value of the filling container measured by the temperature measuring means for the filling container. Thus, the fine structure drying apparatus includes a control unit that determines whether or not the gas remaining in the filling container is present as liquefied carbon dioxide gas before the drying operation.
JP2001124170A 2001-04-23 2001-04-23 Fine structure drying equipment Expired - Fee Related JP3971123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001124170A JP3971123B2 (en) 2001-04-23 2001-04-23 Fine structure drying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001124170A JP3971123B2 (en) 2001-04-23 2001-04-23 Fine structure drying equipment

Publications (2)

Publication Number Publication Date
JP2002318073A JP2002318073A (en) 2002-10-31
JP3971123B2 true JP3971123B2 (en) 2007-09-05

Family

ID=18973600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001124170A Expired - Fee Related JP3971123B2 (en) 2001-04-23 2001-04-23 Fine structure drying equipment

Country Status (1)

Country Link
JP (1) JP3971123B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3914134B2 (en) * 2002-11-06 2007-05-16 日本電信電話株式会社 Supercritical drying method and apparatus
JP5742114B2 (en) * 2010-05-17 2015-07-01 日産自動車株式会社 Drying method and drying apparatus

Also Published As

Publication number Publication date
JP2002318073A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
US20090165470A1 (en) Cryopump, cryopump unit, vacuum processing apparatus including cryopump unit, and cryopump regeneration method
ES2684551T3 (en) Improved method for engraving microstructures
JP3971123B2 (en) Fine structure drying equipment
US11317501B2 (en) Method of purifying target material for an EUV light source
JP4928090B2 (en) Airgel production method
JP5432946B2 (en) Airgel production equipment
JP2003062403A (en) Operating method for membrane degasifier
US6568248B1 (en) Method and apparatus for thermodynamic analysis of a mixture of fluids
JP4948962B2 (en) High concentration ozone water production apparatus and high concentration ozone water production method
JP2008196687A (en) Low-temperature liquefied gas supply method and device
US2038402A (en) Method for reduction of refractory oxides
KR101830659B1 (en) Apparatus of producing carbonated water
KR102228517B1 (en) Substrate processing apparatus and substrate processing method using the same
KR102652183B1 (en) Nitrification potential controlled heat treatment device for aircraft parts
US5878791A (en) Gas exchange device
JP2011251263A (en) Vapor washing apparatus
US20100103765A1 (en) Liquid injector for silicon production
JP2001300693A (en) Apparatus for treating molten metal
JP2003057156A (en) Sample treatment apparatus
JP2003020210A (en) Apparatus for producing ozone
JP6949780B2 (en) Purge method, controls for purging, and systems with controls
US669466A (en) Apparatus for withdrawing molten metal from furnaces, &c., and charging said metal into molds, &c.
SU1019160A1 (en) Apparatus for drainage free storage of cryogenic liquids
JP2005189504A (en) Device and method for defoaming liquid crystal
KR102341891B1 (en) Substrate processing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees