JP3970370B2 - Method for detecting gene of target protein in vivo of drug - Google Patents

Method for detecting gene of target protein in vivo of drug Download PDF

Info

Publication number
JP3970370B2
JP3970370B2 JP05466197A JP5466197A JP3970370B2 JP 3970370 B2 JP3970370 B2 JP 3970370B2 JP 05466197 A JP05466197 A JP 05466197A JP 5466197 A JP5466197 A JP 5466197A JP 3970370 B2 JP3970370 B2 JP 3970370B2
Authority
JP
Japan
Prior art keywords
drug
gene
protein
probe
target protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05466197A
Other languages
Japanese (ja)
Other versions
JPH10248571A (en
Inventor
秀樹 田中
弘義 日▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
D. WESTERN THERAPEUTICS INSTITUTE, INC.
Original Assignee
D. WESTERN THERAPEUTICS INSTITUTE, INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by D. WESTERN THERAPEUTICS INSTITUTE, INC. filed Critical D. WESTERN THERAPEUTICS INSTITUTE, INC.
Priority to JP05466197A priority Critical patent/JP3970370B2/en
Priority to PCT/JP1998/001712 priority patent/WO1999053094A1/en
Priority claimed from PCT/JP1998/001712 external-priority patent/WO1999053094A1/en
Publication of JPH10248571A publication Critical patent/JPH10248571A/en
Application granted granted Critical
Publication of JP3970370B2 publication Critical patent/JP3970370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1048SELEX

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pyridine Compounds (AREA)
  • Saccharide Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薬物が生体に投与されたとき、生体内で結合する標的蛋白の遺伝子を直接検出する方法に関する。
【0002】
【従来の技術】
ある疾患に効果を示す薬物がある場合、その薬物が細胞内でどのような分子(蛋白質、核酸、脂質等)と結合し、その分子の機能をどのように変化させるのか、また、このことが薬効とどのようにむすびつくのか、これがすなわち薬物の作用機序であり、薬理学者が最も知りたい部分である。これまで薬物の細胞内標的分子、特に蛋白因子の同定には薬物固定カラムを用いてそれらの分子を細胞及び組織から直接単離する方法が主であった。
【0003】
【発明が解決しようとする課題】
しかし、この方法では単離した蛋白因子を更に精製し、単一分子種にした後、更にアミノ酸配列解析を行う必要がある。アミノ酸配列決定には一般的に100マイクログラム程度の蛋白量が必要であり、このためには大量の細胞、組織を出発材料とする必要があった。また、アミノ酸配列が順調に決定されたとしてもその後、その分子の遺伝子を単離し、塩基配列を決定するにはかなりの時間と労力を要する。
【0004】
従って、本発明は、薬物が生体内に投与されたとき、生体で結合する標的蛋白の遺伝子を直接検出する方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
そこで、本発明者は、種々検討した結果、薬物をケミカルクロスリンカーを介して血清アルブミン等の抗原性物質と結合させ、これをプローブとし、被薬物投与生体、例えばヒトの遺伝子を多種含有するcDNA発現ライブラリーを用いてスクリーニングすることにより、該薬物の標的蛋白遺伝子が直接検出できることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、生体に投与される薬物にケミカルクロスリンカーを介して抗原性物質を結合させた物質をプローブとし、該被投与生体遺伝子を含有するcDNA発現ライブラリーを用いて該プローブと結合する蛋白質の遺伝子を直接スクリーニングすることを特徴とする該薬物の生体内における標的蛋白遺伝子の検出方法を提供するものである。
【0007】
【発明の実施の形態】
本発明の遺伝子検出方法は、ある薬物を生体に投与したときに、該薬物が生体内で結合する標的蛋白の遺伝子を直接検出する方法であり、該薬物は、生体内、より好ましくは哺乳類、特に好ましくはヒトに投与される薬物である。該薬物としては、それ自体抗原性を有さない、すなわち、免疫原性を示さない非蛋白性物質であるのが好ましい。なお、吸収された後蛋白結合能を示さない薬物は、本発明には適用されないことはいうまでもない。
【0008】
本発明においては、プローブとして該薬物にケミカルクロスリンカーを介して抗原性物質を結合させた物質を用いる。ここで、ケミカルクロスリンカーとしては、薬物の官能基と抗原性物質の官能基とを架橋する基であれば特に制限されず、例えばグルタルアルデヒド、ヘキサメチレンジイソシアナート、ヘキサメチレンジイソチオシアナート、N,N′−ポリメチレンビスヨードアセトアミド、N,N′−エチレンビスマレイミド、エチレングリコールビススクシンイミジルスクシナート、スルホスクシンイミジル−4−(p−マレイミドフェニル)ブチレート、ビスジアゾベンジジンなどが挙げられる。薬物に、これらの架橋剤と反応し得る官能基がない場合には、該薬物に官能基を化学的に導入する必要がある。この場合には、該官能基を導入しても薬物の生理活性等が消失しないことが条件となる。従って、薬物としては、これらの架橋剤と反応し得る官能基を有する物質であることが望ましい。
【0009】
また、抗原性物質としては、プローブと結合する遺伝子のスクリーニングに抗原抗体反応を利用するのが便利であることから、それ自体免疫原性を有する物質であるのが望ましい。また、抗体が入手し易いこと、及び他の生体成分との結合性の少ない物質であるのが好ましく、かかる観点から血清アルブミン、フルオレセインイソチオシアナート(FITC)等が好ましく、ウシ血清アルブミン(BSA)が特に好ましい。BSAは、抗体の入手が容易であり、かつ血中の主たる蛋白成分であることから、他の生体成分との結合がほとんどないのでスクリーニング過程での非特異的バックグラウンドがないことから、特に好ましいものである。
【0010】
薬物と抗原性物質との架橋反応は、用いる架橋化剤に応じて異なり、例えば溶媒中、室温で攪拌すればよい。
【0011】
用いるcDNA発現ライブラリーは、哺乳類遺伝子、特にヒト遺伝子を多種含有するライブラリーであることが好ましく、市販のヒト脳由来cDNAライブラリー、ヒト胎盤由来cDNAライブラリー等が挙げられる。かかるcDNAライブラリーとしては、プラスミド、ファージ等をベクターとするcDNAライブラリーが挙げられるが、ファージをベクターとするcDNAライブラリー、特にλファージをベクターとするcDNAライブラリーが好ましい。更には、クローニングのし易さから、大腸菌を宿主とするλファージをベクターとするcDNAライブラリーが好ましい。かかる市販品としては、例えばヒト胎盤/λTriplExライブラリー等が挙げられる。
【0012】
該cDNAライブラリーから目的とする遺伝子のスクリーニングは、例えば次の如くして行われる。すなわち、cDNAライブラリーを宿主細胞とともに寒天培地上にまき、そこである程度ウイルスを増殖させた後、蛋白を産生させる。産生蛋白をニトロセルロース膜上に吸着、固定させる。この膜を前記のプローブと反応させ、プローブの結合したファージのプラークをHRP(horse radish peroxidase)等で標識した抗−抗原性物質抗体(抗BSA抗体など)を二次抗体として化学発光法により検出する。同定したプラークよりDNAを回収し、その中に組み込まれた標的蛋白の遺伝子を常法により解析する。
上記のごとく、二次抗体を用いることなく、薬物をケミカルクロスリンカーを用いて直接、HRP等の酵素で標識することも考えられるが、この場合、化学反応により、酵素活性が喪失しないことが必要である。
【0013】
薬物の標的蛋白の遺伝子が解析できれば、その推定アミノ酸配列から該標的蛋白は容易に判明する。
【0014】
【実施例】
次に実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に何ら制限されるものではない。
【0015】
実施例1
(1)分子プローブの作製
薬物として、優れた抗癌作用を有することが知られている下記構造式を有する薬物(A)を用いた。
【0016】
【化1】

Figure 0003970370
【0017】
ケミカルクロスリンカーとして、スルホスクシンイミジル−4−(p−マレイミドフェニル)ブチレート(Sulfo−SMPB)を用いた。また抗原性物質としてBSAを用いた。化合物(A)22mg及びSulfo−SMPB10mgをリン酸バッファー(pH7〜9)中、室温にて1時間攪拌した。次いでこれにBSA327mgを加え、室温で攪拌した。反応終了後、Kwik SepTMカラムにより脱塩して、プローブを約300mg得た。
【0018】
(2)スクリーニング
cDNAライブラリーとして、クローンテック社製ヒト胎盤/λTriplEXライブラリーを用いた。
まず、予備実験によりおよそ2万個の割合でファージのプラークが現れる程度のファージ力価を決定しておき、これを大腸菌に吸着させ直径145mmのLB寒天培地への軟寒天に混ぜてまいた。このプレートを8〜10枚調製した。42℃で4時間培養の後、プラークが3〜5mm程度にまで成長した時点で10mMイソプロピル−β−D−チオガラクトシド(IPTG)溶液に30分浸しておいた直径132mmのニトロセルロース膜(アマシャム社製 Hydbnd−C pure)を静かにのせる。この状態で更に37℃で4時間培養することにより蛋白質を産生させ、同時に膜へと吸着させる。その後、膜をはがし、TBST溶液(組成は別に記載)で3回洗い、1%ゼラチン溶液で30分〜1時間ブロッキングした。この操作は後に使う抗体の膜への非特異的吸着を抑えるものである。TBST溶液で2回洗浄し、プローブを体積比で1/1000量含むTBST溶液に蛋白質を保持した膜を浸す。実際にはプラスチックバック内に膜と最小限の体積の反応液(膜1枚あたり1ml以下)を入れ、シールする。これを4℃で12時間以上又は室温で2時間以上振盪し、蛋白質とプローブを反応させた後、TBST溶液で洗う。次に、体積比で1/2500量の二次抗体(HRP標識抗BSA抗体カペル社製、抗BSAウサギ抗体パーオキシダーゼ結合IgGフラクション)を含むTBST溶液中で、プローブを反応させたときと同様にして室温で2時間以上振盪し二次抗体を反応させる。TBST溶液で洗った後、プローブが結合したファージプラークを化学発光ECLシステム(アマシャム社製)により検出した。これまでの一連の過程が一次スクリーニングである。この段階では単一のプラークを回収することは不可能であるので、発光シグナルの検出されたプラーク(ポジティブクローン)を含む領域の寒天培地をプレートから切り出し、SM溶液(組成は別に記載)に浸し、4℃で12時間以上振盪し、そこに含まれるファージを回収する。このファージを用いて二次スクリーニングを行う。直径85mmのLB寒天培地に数十個から百個のプラークが現れる力価のファージを大腸菌に吸着させ、これを軟寒天と混ぜてまく。以後の操作は一次スクリーニングと同様であるが、二次スクリーニングの時のみプローブを反応させるときにBSAを結合させていない薬物Aをコンペティターとして10μM加えた。薬物に依存した結合であれば添加したBSA非結合型の薬物によりBSA結合型薬物の標的プラークへの結合が阻害され、シグナルが減弱する筈である。これにり薬物特異的な結合を確認し、単一ポジティブクローンを単離した。ここからマニュアルに従い蛋白質の遺伝子を回収し、その塩基配列を決定した。
【0019】
なお、上記で使用した二次抗体、すなわちHRP標識BSA抗体は、ウイルス由来の蛋白質への非特異的結合成分を除去するために5プライム3プライム社製Immobilized E.coli BNN97lysateによる吸収を行った後に使用した。また、上記で使用した試薬の組成は下記の通りである。
【0020】
(a)TBST溶液
10mM Tris−HCl(pH8.0)
150mM NaCl
0.05% Tween−20
【0021】
(b)SM溶液
100mM NaCl
10mM MgSO4
35mM Tris・Cl(pH7.5)
0.01% ゼラチン
【0022】
その結果、薬物(A)が生体内で結合する標的蛋白は、チモシンβ−10、NF−yB、成長ホルモン及びグルココルチコイドホルモンであった。このうち、NF−yBは核内転写因子で、これまでの薬剤カラム法では単離が困難と考えられるので、本発明方法によって細胞内含量の少ない因子でも検出できることが明らかとなった。
【0023】
【発明の効果】
本発明によれば、これまでの薬剤固定カラム法に比べ蛋白精製、そのアミノ酸配列解析を必要とせず、更に、直接かつ簡便に薬物の標的分子の遺伝子を単離できる。また、細胞内存在量が少ないために精製の困難な核内転写因子等の細胞性因子を同定することも可能になった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for directly detecting a gene of a target protein that binds in a living body when a drug is administered to the living body.
[0002]
[Prior art]
If there is a drug that has an effect on a certain disease, what kind of molecule (protein, nucleic acid, lipid, etc.) the drug binds in the cell and how the function of the molecule changes, This is the mechanism of action of the drug, and the part that the pharmacologist wants to know most. So far, the identification of intracellular target molecules of drugs, particularly protein factors, has mainly been performed by directly isolating these molecules from cells and tissues using a drug-immobilized column.
[0003]
[Problems to be solved by the invention]
However, in this method, it is necessary to further purify the isolated protein factor into a single molecular species and then perform further amino acid sequence analysis. In order to determine the amino acid sequence, a protein amount of about 100 micrograms is generally required. For this purpose, a large amount of cells and tissues must be used as starting materials. Even if the amino acid sequence is determined smoothly, it takes considerable time and effort to isolate the gene of the molecule and determine the base sequence thereafter.
[0004]
Accordingly, an object of the present invention is to provide a method for directly detecting a gene of a target protein that binds in a living body when the drug is administered in vivo.
[0005]
[Means for Solving the Problems]
Therefore, as a result of various studies, the present inventor binds a drug to an antigenic substance such as serum albumin via a chemical crosslinker, and uses this as a probe to prepare a cDNA containing various genes of a drug-administered living body, for example, a human. By screening using an expression library, it was found that the target protein gene of the drug can be directly detected, and the present invention has been completed.
[0006]
That is, the present invention uses a substance in which an antigenic substance is bound to a drug to be administered to a living body via a chemical crosslinker as a probe, and binds to the probe using a cDNA expression library containing the administered biological gene. It is intended to provide a method for detecting a target protein gene in a living body of the drug, which comprises directly screening a gene of a protein to be treated.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The gene detection method of the present invention is a method for directly detecting a gene of a target protein to which a drug binds in vivo when a drug is administered to a living body, and the drug is in vivo, more preferably a mammal, Particularly preferred are drugs administered to humans. The drug is preferably a non-protein substance that does not itself have antigenicity, that is, does not exhibit immunogenicity. Needless to say, a drug that does not exhibit protein binding ability after absorption is not applicable to the present invention.
[0008]
In the present invention, a substance obtained by binding an antigenic substance to the drug via a chemical crosslinker is used as a probe. Here, the chemical crosslinker is not particularly limited as long as it is a group that crosslinks the functional group of the drug and the functional group of the antigenic substance. For example, glutaraldehyde, hexamethylene diisocyanate, hexamethylene diisothiocyanate, N, N′-polymethylenebisiodoacetamide, N, N′-ethylene bismaleimide, ethylene glycol bissuccinimidyl succinate, sulfosuccinimidyl-4- (p-maleimidophenyl) butyrate, bisdiazobenzidine, etc. Is mentioned. If the drug does not have a functional group that can react with these crosslinkers, it is necessary to chemically introduce the functional group into the drug. In this case, the condition is that the physiological activity of the drug does not disappear even when the functional group is introduced. Accordingly, the drug is desirably a substance having a functional group capable of reacting with these cross-linking agents.
[0009]
The antigenic substance is preferably an immunogenic substance itself because it is convenient to use an antigen-antibody reaction for screening for a gene that binds to the probe. Moreover, it is preferable that the antibody is easily available and is a substance having a low binding property to other biological components. From this viewpoint, serum albumin, fluorescein isothiocyanate (FITC) and the like are preferable, and bovine serum albumin (BSA) Is particularly preferred. BSA is particularly preferred because it is easy to obtain antibodies and is the main protein component in the blood, so there is almost no binding to other biological components and there is no non-specific background in the screening process. Is.
[0010]
The cross-linking reaction between the drug and the antigenic substance differs depending on the cross-linking agent to be used. For example, it may be stirred in a solvent at room temperature.
[0011]
The cDNA expression library to be used is preferably a library containing a variety of mammalian genes, particularly human genes, including commercially available human brain-derived cDNA libraries and human placenta-derived cDNA libraries. Examples of such a cDNA library include a cDNA library using a plasmid, a phage or the like as a vector, and a cDNA library using a phage as a vector, particularly a cDNA library using a λ phage as a vector is preferable. Furthermore, a cDNA library using a λ phage having E. coli as a host as a vector is preferable because of easy cloning. Examples of such commercially available products include human placenta / λTriplEx library.
[0012]
Screening of the target gene from the cDNA library is performed, for example, as follows. That is, a cDNA library is spread on an agar medium together with host cells, where viruses are propagated to some extent and then proteins are produced. The produced protein is adsorbed and fixed on the nitrocellulose membrane. This membrane is reacted with the above probe, and an anti-antigenic substance antibody (such as an anti-BSA antibody) obtained by labeling a probe-bound phage plaque with HRP (horse radish peroxidase) or the like is detected by a chemiluminescence method as a secondary antibody. To do. DNA is recovered from the identified plaque, and the gene of the target protein incorporated therein is analyzed by a conventional method.
As described above, it may be possible to label the drug directly with an enzyme such as HRP using a chemical crosslinker without using a secondary antibody, but in this case, it is necessary that the enzyme activity is not lost due to the chemical reaction. It is.
[0013]
If the gene of a drug target protein can be analyzed, the target protein can be easily identified from its deduced amino acid sequence.
[0014]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not restrict | limited to these Examples at all.
[0015]
Example 1
(1) Preparation of a molecular probe A drug (A) having the following structural formula, which is known to have an excellent anticancer activity, was used as a drug.
[0016]
[Chemical 1]
Figure 0003970370
[0017]
As the chemical crosslinker, sulfosuccinimidyl-4- (p-maleimidophenyl) butyrate (Sulfo-SMPB) was used. BSA was used as an antigenic substance. Compound (A) 22 mg and Sulfo-SMPB 10 mg were stirred in a phosphate buffer (pH 7-9) at room temperature for 1 hour. Next, 327 mg of BSA was added thereto and stirred at room temperature. After completion of the reaction, desalting was performed using a Kwik Sep column to obtain about 300 mg of the probe.
[0018]
(2) A human placenta / λTriplEX library manufactured by Clontech was used as the screening cDNA library.
First, a phage titer at which a phage plaque appears at a rate of about 20,000 by preliminary experiments was determined, adsorbed to Escherichia coli, and mixed with soft agar on a 145 mm diameter LB agar medium. 8 to 10 plates were prepared. After culturing at 42 ° C. for 4 hours, a nitrocellulose membrane having a diameter of 132 mm (Amersham) immersed in a 10 mM isopropyl-β-D-thiogalactoside (IPTG) solution for 30 minutes when the plaque grew to about 3 to 5 mm Gently place Hydbnd-C pure). By further culturing at 37 ° C. for 4 hours in this state, a protein is produced and simultaneously adsorbed onto the membrane. Thereafter, the film was peeled off, washed 3 times with TBST solution (composition is described separately), and blocked with 1% gelatin solution for 30 minutes to 1 hour. This operation suppresses nonspecific adsorption of the antibody used later to the membrane. The membrane is washed twice with the TBST solution, and the membrane holding the protein is immersed in the TBST solution containing 1/1000 of the probe by volume. Actually, a membrane and a minimum volume of reaction solution (1 ml or less per membrane) are placed in a plastic bag and sealed. This is shaken at 4 ° C. for 12 hours or more or at room temperature for 2 hours or more to react the protein and the probe, and then washed with a TBST solution. Next, in the same manner as when the probe was reacted in a TBST solution containing a secondary antibody (anti-BSA rabbit antibody peroxidase-binding IgG fraction, manufactured by HRP-labeled anti-BSA antibody Capel, Inc.) in a volume ratio of 1/2500. Shake at room temperature for 2 hours or more to react with the secondary antibody. After washing with TBST solution, the phage plaques bound with the probe were detected by a chemiluminescence ECL system (Amersham). The series of processes so far is the primary screening. Since it is impossible to collect a single plaque at this stage, the agar medium in the region containing the plaque (positive clone) in which the luminescence signal is detected is cut out from the plate and immersed in an SM solution (the composition is described separately). Shake at 4 ° C. for 12 hours or more to recover the phage contained therein. Secondary screening is performed using this phage. E. coli is adsorbed with a phage having a titer in which several tens to one hundred plaques appear on an LB agar medium having a diameter of 85 mm, and this is mixed with soft agar. Subsequent operations are the same as in the primary screening, but 10 μM of drug A not bound to BSA was added as a competitor when the probe was reacted only during the secondary screening. If the binding depends on the drug, the added BSA non-binding drug will inhibit the binding of the BSA-binding drug to the target plaque, and the signal should be attenuated. This confirmed drug-specific binding and isolated a single positive clone. From here, the protein gene was recovered according to the manual, and its nucleotide sequence was determined.
[0019]
The secondary antibody used above, that is, the HRP-labeled BSA antibody, was used for Immobilized E.I. manufactured by 5 Prime 3 Prime in order to remove nonspecific binding components to the virus-derived protein. It was used after absorption with E. coli BNN97lysate. The composition of the reagent used above is as follows.
[0020]
(A) TBST solution 10 mM Tris-HCl (pH 8.0)
150 mM NaCl
0.05% Tween-20
[0021]
(B) SM solution 100 mM NaCl
10 mM MgSO 4
35 mM Tris · Cl (pH 7.5)
0.01% Gelatin [0022]
As a result, the target proteins to which the drug (A) binds in vivo were thymosin β-10, NF-yB, growth hormone and glucocorticoid hormone. Of these, NF-yB is an intranuclear transcription factor, and it is considered difficult to isolate by conventional drug column methods, so it was clarified that even a factor with a low intracellular content can be detected by the method of the present invention.
[0023]
【The invention's effect】
According to the present invention, the protein target molecule gene can be isolated directly and simply without the need for protein purification and amino acid sequence analysis as compared with the conventional drug fixation column method. It has also become possible to identify cellular factors such as nuclear transcription factors that are difficult to purify due to their low intracellular abundance.

Claims (3)

生体に投与される薬物であって、それ自体抗原性を有さない非蛋白性薬物にケミカルクロスリンカーを介して抗原性物質を結合させた物質をプローブとし、該被投与生体遺伝子を含有するcDNA発現ライブラリーを用いて該プローブと結合する蛋白質の遺伝子を直接スクリーニングすることを特徴とする該薬物の生体内における標的蛋白遺伝子の検出方法。A cDNA that contains a biomedical gene to be administered using as a probe a substance that is administered to a living body and that is a non-proteinaceous drug that does not itself have antigenicity and is bound to an antigenic substance via a chemical crosslinker. A method for detecting a target protein gene in vivo of the drug, which comprises directly screening a gene of a protein that binds to the probe using an expression library. 抗原性物質が血清アルブミン又はフルオロセインイソチオシアネートである請求項1記載の検出方法。  The detection method according to claim 1, wherein the antigenic substance is serum albumin or fluorescein isothiocyanate. cDNA発現ライブラリーが、ファージをベクターとするcDNA発現ライブラリーである請求項1又は2記載の検出方法。  The detection method according to claim 1 or 2, wherein the cDNA expression library is a cDNA expression library using a phage as a vector.
JP05466197A 1997-03-10 1997-03-10 Method for detecting gene of target protein in vivo of drug Expired - Lifetime JP3970370B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05466197A JP3970370B2 (en) 1997-03-10 1997-03-10 Method for detecting gene of target protein in vivo of drug
PCT/JP1998/001712 WO1999053094A1 (en) 1997-03-10 1998-04-15 Method for in vivo detecting target protein gene by drug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP05466197A JP3970370B2 (en) 1997-03-10 1997-03-10 Method for detecting gene of target protein in vivo of drug
PCT/JP1998/001712 WO1999053094A1 (en) 1997-03-10 1998-04-15 Method for in vivo detecting target protein gene by drug

Publications (2)

Publication Number Publication Date
JPH10248571A JPH10248571A (en) 1998-09-22
JP3970370B2 true JP3970370B2 (en) 2007-09-05

Family

ID=26395464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05466197A Expired - Lifetime JP3970370B2 (en) 1997-03-10 1997-03-10 Method for detecting gene of target protein in vivo of drug

Country Status (1)

Country Link
JP (1) JP3970370B2 (en)

Also Published As

Publication number Publication date
JPH10248571A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
US6214553B1 (en) Libraries of protein encoding RNA-protein fusions
US5464759A (en) Sequential oligonucleotide syntheses using immunoaffinity techniques
US6261804B1 (en) Selection of proteins using RNA-protein fusions
US11226332B2 (en) Method for the detection, preparation and depletion of CD4+ t lymphocytes
US8207093B2 (en) Selection of proteins using RNA-protein fusions
JP2001503131A (en) Compositions and methods for screening pharmaceutical libraries
JP2003070470A (en) Method for producing main tissue-compatible antigen class ii protein
JP2003505041A (en) In vitro selection using solid support carriers and arbitrary identification of polypeptides
JP5733784B2 (en) Efficient synthesis of cDNA / mRNA-protein conjugates
JPH06505340A (en) Analytical reagent production method
JP3970370B2 (en) Method for detecting gene of target protein in vivo of drug
EP1072688B1 (en) Method for in vivo detecting a target protein gene by a drug
JP2004187563A (en) METHOD FOR DETECTING IgG USING PEPTIDE BINDABLE TO LgG OR PHAGE PRESENTED WITH THE PEPTIDE ON THE SURFACE
WO2005001086A1 (en) IMMOBILIZED mRNA-PUROMYCIN CONJUGATE AND USE THEREOF
JPH08296A (en) Granular carrier for bonding nucleic acid
JPH03128000A (en) Method and agent for detecting nucleic acid
IE902046A1 (en) Sequential peptide and oligonucleotide syntheses using¹immunoaffinity techniques
JPH06133796A (en) Analysis of c-terminal peptide fragment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term