JP3969489B2 - Method for measuring benzene and method for producing benzene gas selective adsorptive porous silica material - Google Patents
Method for measuring benzene and method for producing benzene gas selective adsorptive porous silica material Download PDFInfo
- Publication number
- JP3969489B2 JP3969489B2 JP2003052736A JP2003052736A JP3969489B2 JP 3969489 B2 JP3969489 B2 JP 3969489B2 JP 2003052736 A JP2003052736 A JP 2003052736A JP 2003052736 A JP2003052736 A JP 2003052736A JP 3969489 B2 JP3969489 B2 JP 3969489B2
- Authority
- JP
- Japan
- Prior art keywords
- benzene
- gas
- mesopores
- porous silica
- surface area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はベンゼンの測定方法及びそれに用いるベンゼンガス選択吸着性多孔質シリカ材料の製造方法、さらに詳細には、気体中に存在する微量ベンゼンガスを選択的に検出・定量するための吸着剤に応用する、ベンゼンの測定方法及びそれに用いるベンゼンガス選択吸着性多孔質シリカ材料の製造方法に関するものである。
【0002】
【従来の技術】
大気汚染の原因となるベンゼンガスの分析においては、一般にベンゼンガスの濃度が希薄であり、かつトルエンやキシレンなど化学的性質が似通った成分がベンゼンより高濃度で混在しているため、分析操作の前段にこの低濃度ベンゼンガスを含む大気汚染ガスの濃縮採取および成分分離作業が必要となる。
【0003】
従来の吸着剤においては、吸着捕集管に充填された吸着剤にベンゼンガスを含む大気汚染ガスを吸着させ、その後に加熱脱着処理によりベンゼンガスを含む大気汚染ガスを高濃度な濃縮ガスとして取り出した後、ガスクロマトグラフに代表されるような成分分離機能を有する分析装置に導入する装置が最も一般的である。
【0004】
この従来の吸着剤の使用手順とその問題について、以下に簡単に説明する。分析したい場所において、ベンゼンガスを含む大気汚染ガスを濃縮セルに導入し、吸着剤に捕集する。その後、この濃縮セルを加熱することにより吸着剤に吸着されているベンゼンガスを含む大気汚染ガスを濃縮ガスとして脱着させ、検出セルなどの分析装置へ導入する。例えば、(特開2003−21595)、(Y.Ueno,T.Horiuchi,T.Morimoto,O.Niwa,“Micro−Fluidic Device for Airborne BTEXDetection”,Anal.Chem.2001,73(19),4688)、(Y.Ueno,T.Horiuchi,O.Niwa,“Air−cooled Cold Trap Channel Integrated in a Micro−fluidic Device for Monitoring Airborne BTEX with an Improved Detection Limit”,Anal.Chem.2001,74(7),1712)、(Y.Ueno,T.Horiuchi,M.Tomita,O.Niwa,H−S.Zhou,T.Yamada,I.Honma,“Separate Detection of BTX Mixture Gas by a Micro−fluidic Device using a Function of Nano−sized Pores of Mesoporous Silica Adsorbent”Anal.Chem.2002,74(20),5257)参照。
【0005】
吸着剤では、細孔構造(細孔径、形状、分布、秩序性)や細孔表面の化学的特性(親水・疎水性、表面官能基)が、ガスの濃縮採取効率、選択性の向上、および加熱脱着によるガス回収効率の特性を大きく左右する。しかし、従来の吸着剤においては細孔構造の制御が困難であり、このため細孔表面の均一な改質も難しく、上述の吸着剤の特性改善を適切にできないという問題があった。よって、目的とするガスの選択的吸着や加熱脱着による回収特性が改善しにくく、後に引き続く分析・検出効率が低下するなどの問題があった。
【0006】
【特許文献1】
特開2003−21595
【非特許文献1】
Y.Ueno,T.Horiuchi,T.Morimoto,O.Niwa,“Micro−Fluidic Device for Airborne BTEX Detection”,Anal.Chem.(2001,73(19),4688)
【非特許文献2】
Y.Ueno,T.Horiuchi,O.Niwa,“Air−cooled Cold Trap Channel Integrated in a Micro−fluidic Device for Monitoring Airborne BTEX with an Improved Detection Limit”,Anal.Chem.(2001,74(7),1712)
【非特許文献3】
Y.Ueno,T.Horiuchi,M.Tomita,O.Niwa,H−S.Zhou,T.Yamada,I.Honma,“Separate Detection of BTX Mixture Gas by a Micro−fluidic Device using a Function of Nano−sized Pores of Mesoporous Silica Adsorbent”Anal.Chem.(2002,74(20),5257)
【0007】
【発明が解決しようとする課題】
低濃度のベンゼンガスの濃縮採取において、濃縮採取の効率、ベンゼンガス選択性、加熱脱着による回収効率の向上のためには、濃縮採取材料の細孔構造(細孔径、形状、分布、秩序性)や吸着表面の特性(親水・疎水性、表面官能基)の制御が可能であることが重要である。本発明は、上記の事情に鑑みてなされたもので、主としてベンゼンガスの選択性向上を実現するため、環境レベルの低濃度ベンゼンガス選択吸着機能を有する多孔質シリカ材料を用いたベンゼンの測定方法及びその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明によるベンゼンの測定方法は、濃縮採取材料が設けられたガス通路にベンゼンを含むガスを通気し、前記濃縮採取材料にベンゼンを吸着させる工程、一定時間通気した後、前記ガスの通気を止め、前記濃縮採取材料を加熱してベンゼンを脱着させる工程、前記脱着したベンゼンを測定する工程を含むベンゼンの測定方法において、前記濃縮採取材料は、細孔径が1〜50nmの孔径が均一な細孔(以下、メソ孔という)およびメソ孔の壁面に細孔径が0.2〜0.8nmの細孔(以下、マイクロ孔という)を有するベンゼンガス選択吸着性多孔質シリカ材料であって、前記マイクロ孔の細孔体積及び表面シラノール基の密度は、酸処理あるいはアルカリ処理を行うことにより制御され、前記メソ孔の表面積に対するマイクロ孔の表面積の比は、メソ孔の表面積1に対し、0.3以上であることを特徴とする。
【0009】
また、本発明によるベンゼンガス選択吸着性多孔質シリカ材料の製造方法は、
細孔径が1〜50nmの孔径が均一な細孔(以下、メソ孔という)およびメソ孔の壁面に細孔径が0.2〜0.8nmの細孔(以下、マイクロ孔という)を有するベンゼンガス選択吸着性多孔質シリカ材料であって、前記メソ孔の表面積に対するマイクロ孔の表面積の比は、メソ孔の表面積1に対し、0.3以上であるベンゼンガス選択吸着性多孔質シリカ材料の製造方法において、前記細孔を形成するためのブロック共重合体を含む溶液を30〜60℃の温度に加熱し、シリカ前駆体を添加して沈殿を形成させ、前記沈殿を乾燥した後、400〜500℃の温度で焼結し、さらに酸処理あるいはアルカリ処理を行うことを特徴とする。
【0010】
また本発明は、合成時に用いるブロック共重合体の種類によって六方晶、立方晶、ラメラ構造などのメソ孔の周期構造の制御が可能であり、このメソ孔の周期構造およびそれに付随するマイクロ孔の構造の制御により環境レベルの低濃度ベンゼン選択吸着機能を有する多孔質シリカ材料を用いたベンゼンの測定方法であることを特徴とする。
【0011】
また本発明は、ポリマー合成時の温度条件を変えることによりメソ孔の細孔径の制御が可能であり、それに付随するマイクロ孔の細孔径の制御により環境レベルの低濃度ベンゼン選択吸着機能を有する多孔質シリカ材料を用いたベンゼンの測定方法であることを特徴とする。
【0012】
また本発明は、環境レベルの低濃度ベンゼンガスを選択吸着した後、この選択吸着したベンゼンガスを加熱などの外的条件を加えることにより非破壊で取り出すことが可能で、取り出した後のベンゼンガスの検出・定量分析を可能とする、多孔質シリカ材料を用いたベンゼンの測定方法であることを特徴とする。
【0013】
本発明によれば、前記メソ孔及びマイクロ孔の構造および細孔径の制御、前記マイクロ孔の表面シラノール基の密度分布を制御することで、環境レベル(ppbレベル)の低濃度ベンゼン選択吸着機能を備えた多孔質シリカ材料を用いたベンゼンの測定方法を提供できる。
【0014】
【発明の実施の形態】
本発明によるベンゼンガス選択吸着性多孔質シリカ材料は、細孔径が1〜50nmの孔径が均一な細孔(以下、メソ孔という)およびメソ孔の壁面に細孔径が0.2〜0.8nmの細孔(以下、マイクロ孔という)を有するベンゼンガス選択吸着性多孔質シリカ材料である。孔径が均一な細孔径1〜50nmのメソ孔および細孔径0.2〜0.8nmのメソ孔の壁面のマイクロ孔を備えることによって、ベンゼンガスを選択的に吸収する多孔質シリカ材料とすることができる。
【0015】
さらに、このような構造において、特にマイクロ孔がベンゼンの選択吸着性に大きな作用を有しており、前記メソ孔の表面積に対するマイクロ孔の表面積の比は、メソ孔の表面積1に対し、0.3以上である。マイクロ孔が少なすぎると、ベンゼン選択吸着性が低下する恐れがあるからである。
【0016】
さらにマイクロ孔の表面のシラノール基の密度が大きいほどベンゼンの選択吸収性が向上する。
【0017】
本発明によるベンゼンガス選択吸着性多孔質シリカ材料の製造方法は、まず細孔を形成するためのブロック共重合体を含む溶液を30〜60℃の温度に加熱し、シリカ前駆体を添加し沈殿を形成させる。
【0018】
このようなブロック共重合体は細孔を形成する際の鋳型になるものであり、自己組織化的に周期構造を形成させるためのものである。このようなブロック共重合体の種類によって六方晶、立方晶、ラメラ構造などのメソ孔の周期構造の制御が可能であり、このメソ孔の周期構造およびそれに付随するマイクロ孔の構造を制御することができ、本発明に有用である。ブロック共重合体としては、エチレンオキシド−プロピレンオキシド共重合体、たとえばEO20−PO70−EO20(EO:エチレンオキシド、PO:プロピレンオキシド)、EO100−PO65−EO100などを使用することができる。
【0019】
このようなブロック共重合体を、たとえば希塩酸に溶解し、この溶液を30〜60℃の温度に加熱したのち、シリカ前駆体を添加して沈殿を形成させる。このようなシリカ前駆体としては、たとえばTEOS(テトラエチルオルトシリケート)を使用することができる。反応温度が30〜60℃の範囲を逸脱すると良好なメソ孔径が得られない恐れがある。
【0020】
本発明においては、前記沈殿を乾燥した後、400〜500℃の温度で焼結する。焼結温度が500℃を越えると、結晶化が進み、また孔が小さくなって、表面シラノール基密度が減少するとともに、マイクロ孔も減少してベンゼンの選択吸着性を示さない恐れがある。また400℃未満であると、ブロック共重合体の除去が十分でない恐れを生じる。
【0021】
本発明においては、このように形成された多孔質シリカ材料に対し、酸処理あるいはアルカリ処理を行うことが可能である。このように酸処理及びアルカリ処理を行うことにより、マイクロ孔の細孔体積を減少させ、かつ表面シラノール基の密度を減少させることができる。これによって、ベンゼンの選択吸収性を制御可能になる。
【0022】
以下、図面を参照して本発明の実施例を詳細に説明する。なお、本発明は以下の実施例のみに限定されるものではない。
【0023】
【実施例1】
本発明の第一の実施例として、赤外分光光度計によるベンゼン系ガスの検出において吸着剤に以下の2種類の多孔質シリカを用いて比較を行った場合について説明する。
【0024】
本発明のひとつに分類されるメソポーラスシリカ粉末は、メソ孔およびマイクロ孔を形成するための鋳型であるブロック共重合体EO20−PO70−EO20(EO:エチレンオキシド、PO:プロピレンオキシド)(P123)を用いてTs=40℃の溶解温度において合成した。すなわち前記ブロック共重合体を希塩酸に溶解し、Ts=40℃の溶解温度において撹拌し、シリカ前駆体であるTEOS(テトラエチルオルトシリケート)を加えると、沈殿が生成する。この溶液および沈殿物を80℃で一日寝かせた後、ろ過し、水で洗浄して室温にて風乾する。最後に穏やかに焼成する。焼成は、室温から500℃まで8時間かけて昇温した後、500℃で6時間放置し、500℃から100℃まで8時間かけて冷却した後、自然冷却によって室温に戻して製造した。
【0025】
これを赤外分光光度計のフローセル内に充填し、ベンゼン、トルエン、およびキシレンの混合ガスの吸着量の変化を赤外スペクトルの測定から観測した。図1(1)は、10ppmのベンゼン、トルエン、およびキシレンの混合ガスの検出を行った場合について、測定した図である(表1中、試料番号P123−2)。
【0026】
ベンゼン吸着量がトルエン、キシレンよりも数倍も多く、ベンゼン選択性が観測された。図1(2)は、この本発明をpH1程度の酸で洗浄して風乾させた材料を用いて、同様の実験を行った結果を示す図である。
【0027】
この場合は、ベンゼン、トルエン、キシレンの吸着量が全体的に減少した上、3成分の吸着量は同程度で、ベンゼンの選択性が消失した。酸処理前後のメソ孔およびマイクロ孔の構造を比較すると、細孔直径約6nmのメソ孔の大きさおよび細孔体積はほぼ同じであるのに対し、細孔直径0.3nmのマイクロ孔においては、細孔体積が半分程度に減少している。また、表面シラノール基の密度も、酸処理によって半分程度まで低くなった。これから、表面の化学的状態および1nm以下の細孔構造を制御することによって、ベンゼンガスの選択性が制御できることが示された。
【0028】
また、上記の方法により、合成温度30℃、50℃、55℃、60℃で焼結温度500℃で多孔質シリカ材料を合成した。これらをそれぞれ、表1中に、P123−1、P123−3、P123−4、P123−5として示す。この場合、実施例1の多孔質シリカ材料(表1中の試料番号P123−2)と同様な効果を示し、ベンゼンに対し、選択吸着性を備えていた。
【0029】
一方、合成温度45℃、焼結温度700〜900℃で合成した試料(試料番号P123−6、P123−7、P123−8)は、ベンゼンに対し選択吸収性を備えておらず、ベンゼン、トルエン、およびキシレンをほぼ同量吸着していた。
【0030】
さらに、合成温度45℃、焼結温度500℃で合成し、上述と同様にpH1の酸で処理した試料(試料番号P123−9)は、ベンゼン、トルエン、およびキシレンの吸着量が1:2:2となり、ベンゼン選択吸着性を示さなかった。
【0031】
なお表1中の表面シラノール密度は、P123−2の試料を100としたときの割合を示している。
【0032】
【表1】
【0033】
【実施例2】
本発明の第二の実施例として、ガス分光分析用微量フローセル(特開2003−21595)を装置として、吸着剤に以下の2種類の多孔質シリカを用いて比較を行った場合について説明する。
【0034】
第一の材料は市販のアモルフォスシリカ粉末で、構造が不規則なマイクロ孔のみで、粉末の全表面積に対するマイクロ孔の表面積比は、本発明のものに比べて著しく小さい。第二の材料は、本発明のひとつに分類されるメソポーラスシリカ粉末で、細孔直径1−50nmのメソ孔および細孔直径0.2−0.8nmのマイクロ孔の両方を有している。このメソポーラスシリカ粉末はブロック共重合体を鋳型とした自已組織化法を用いて、以下のように合成した。
【0035】
ブロック共重合体EO100−PO65−EO100(F127)を希塩酸に溶解する。Ts=50℃の溶解温度において撹拌し、シリカ前駆体であるTEOS(テトラエチルオルトシリケート)を加えると、沈殿が生成する。この溶液および沈殿物を80℃で一日ねかせた後、ろ過し、水で洗浄して室温にて風乾する。最後に穏やかに焼成する。焼成は、室温から500℃まで8時間かけて昇温した後、500℃で6時間放置し、500℃から100℃まで8時間かけて冷却した後、自然冷却によって室温に戻す。これを特開2003−21595の微量フローセル流路内に充填した。微量フローセルを用いた測定装置の見取り図を図2に示す。
【0036】
微量フローセルは、濃縮セル1と測定セル2を備えており、前記濃縮セル1には、測定するガスを流通させるためのガス流路11と、前記ガス流路11に充填された濃縮採取材料(多孔質シリカ材料)12と、前記濃縮採取材料12に吸着固定された物質を加熱するための薄膜ヒータ13が備えられている。一方、測定セル2には、前記ガス流路11より、測定されるべき物質のガスを流通させ、かつ測定用の紫外線を通過させる紫外線光路兼ガス流路21が備えられている。さらに、前記ガス流路11と紫外線光路兼ガス流路21とを接続して連通するための接続流路3及び濃縮セル1のガス流路11に測定すべきガスを流入させるガス導入流路14および測定し終わったガスを排出するガス排出流路22を備えている。なお、4はガス導入流路14にガスを導入するためのポンプ、15は前記薄膜ヒータ13を加熱するための電源、5は前記紫外線光路兼ガス流路21に紫外線を入射するための紫外光源、51は紫外線用のレンズ、6は出射した紫外線を検出するための紫外検出器、7はパソコンである。
【0037】
以下に測定の手順を例として説明する。ポンプ4によりベンゼンを含んだ空気を、濃縮セル1のガス導入流路14からガス流路11に導入し、このガス流路11内に充填された濃縮採取材料12に汚染物質を吸着固定する。一定時間通気後、薄膜ヒータ13に電源15より通電して加熱し、濃縮採取材料12に吸着された汚染物質の各成分の加熱脱着温度に昇温してベンゼンを脱着させる。この脱着分離されたガスを接続流路3を介して、測定セル2の紫外線光路兼ガス流路21に導入する。紫外光源5および紫外検出器6に接続された光ファイバにより、吸収分光による汚染物質の検出を行う。測定後のガスはガス排出流路22から排出される。データはパソコン7により処理される。
【0038】
このときのガスの検出信号強度の時間特性を図3に示す。図3は、1ppmのベンゼンの検出を行った場合について、第一の材料(表2中、従来1)と第二の材料(本発明;表2中、試料番号F127−2)を用いた場合との検出特性の比較である。高秩序なメソ孔およびこれに付随して構造制御がされたマイクロ孔表面によってベンゼン吸着量が多くなり、検出信号のピークが鋭くなる。このため、本発明を用いることで従来材料よりもベンゼンの検出感度が高くなる。
【0039】
また、上記の方法により、合成温度40℃、60℃で焼結温度500℃で多孔質シリカ材料を合成した。これらをそれぞれ、表2中に、F127−1、F127−3として示す。この場合、実施例2の多孔質シリカ材料(表2中の試料番号F127−2)と同様な効果を示し、ベンゼンに対し、選択吸着性を備えていた。
【0040】
一方、表2中、試料番号従来2は界面活性剤を鋳型分子として使用した多孔質シリカ粉末であり、従来3はガラスビーズである。従来2は従来1と同様、ベンゼンに対し選択吸着性を備えておらず、従来3はベンゼンを吸着しなかった。
【0041】
なお表2中の表面シラノール密度は、P123−2の試料を100としたときの割合を示している。
【0042】
【表2】
【0043】
【発明の効果】
以上説明したように、本発明により、ベンゼンガスにおける濃縮採取の効率、ガス選択性、加熱脱着による回収効率の向上を実現するための多孔質シリカ材料を用いたベンゼンの測定方法が提供されることが示された。
【図面の簡単な説明】
【図1】本発明材料の酸処理前後のベンゼン、トルエン、キシレン混合ガスの吸着量測定におけるベンゼン選択性の変化を比較する図。
【図2】実施例2において、ガス分光分析用微量フローセル(特開2003−21595)を装置として、吸着剤に本発明を適用した場合の装置見取り図。
【図3】本発明と従来シリカ材料における、ベンゼンガスの検出信号強度を比較する図。
【符号の説明】
1 濃縮セル
11 ガス流路
12 濃縮採取材料
13 薄膜ヒータ
14 ガス導入流路
15 電源
2 測定セル
21 紫外線光路兼ガス流路
22 ガス排出流路
3 接続流路
4 ポンプ
5 紫外光源
6 紫外検出器
7 パソコン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring benzene and a method for producing a benzene gas selective adsorptive porous silica material used therefor, and more particularly, to an adsorbent for selectively detecting and quantifying a trace amount of benzene gas present in a gas. The present invention relates to a method for measuring benzene and a method for producing a benzene gas selective adsorptive porous silica material used therefor .
[0002]
[Prior art]
In the analysis of benzene gas that causes air pollution, the concentration of benzene gas is generally dilute, and components with similar chemical properties such as toluene and xylene are mixed at a higher concentration than benzene. It is necessary to concentrate and collect the air pollutant gas containing this low-concentration benzene gas and separate components in the first stage.
[0003]
In conventional adsorbents, the air pollutant gas containing benzene gas is adsorbed to the adsorbent packed in the adsorption collection tube, and then the air pollutant gas containing benzene gas is taken out as a high-concentration concentrated gas by heat desorption treatment. After that, an apparatus that is introduced into an analyzer having a component separation function such as a gas chromatograph is most common.
[0004]
The procedure for using this conventional adsorbent and its problems will be briefly described below. At a place where analysis is desired, an air pollutant gas containing benzene gas is introduced into the concentration cell and collected in the adsorbent. Thereafter, the concentrated cell is heated to desorb the air pollutant gas containing the benzene gas adsorbed by the adsorbent as the concentrated gas, and is introduced into an analyzer such as a detection cell. For example, (Japanese Patent Laid-Open No. 2003-21595), (Y. Ueno, T. Moriuchi, T. Morimoto, O. Niwa, “Micro-Fluidic Device for Iron BTEX Detection”, Anal. Chem. 2001, 73 (19), 4688). , (Y.Ueno, T.Horiuchi, O.Niwa, “Air-cooled Cold Trap Channel Integrated in a Micro-fluidic Device for Monitor Air Id. 74”). 1712), (Y. Ueno, T. Moriuchi, M. Tomita, O.). Iwa, H-S. Zhou, T. Yamada, I. Honma, “Separate Detection of BTX Mixture Gas by a Micro-Sound of the Function.” 20), 5257).
[0005]
In adsorbents, the pore structure (pore diameter, shape, distribution, order) and the chemical properties of the pore surface (hydrophilic / hydrophobic, surface functional groups) improve gas concentration and collection efficiency, and selectivity. The characteristics of gas recovery efficiency by heat desorption are greatly affected. However, in the conventional adsorbent, it is difficult to control the pore structure. For this reason, uniform modification of the pore surface is difficult, and there is a problem that the above-mentioned improvement in the characteristics of the adsorbent cannot be performed appropriately. Therefore, there has been a problem that it is difficult to improve the recovery characteristics by selective adsorption or heat desorption of the target gas, and the subsequent analysis / detection efficiency is lowered.
[0006]
[Patent Document 1]
JP2003-21595
[Non-Patent Document 1]
Y. Ueno, T .; Moriuchi, T .; Morimoto, O .; Niwa, “Micro-Fluidic Device for Airborne BTEX Detection”, Anal. Chem. (2001, 73 (19), 4688)
[Non-Patent Document 2]
Y. Ueno, T .; Moriuchi, O .; Niwa, “Air-cooled Cold Trap Channel Integrated in a Micro-fluidic Device for Monitoring ARBone with an Improved Detection Limit”. Chem. (2001, 74 (7), 1712)
[Non-Patent Document 3]
Y. Ueno, T .; Moriuchi, M .; Tomita, O .; Niwa, HS. Zhou, T .; Yamada, I .; Honma, “Separate Detection of BTX Mixture Gas by a Micro-fluidic Device using a Function of Nano-sized Pors of Miso AA. Chem. (2002, 74 (20), 5257)
[0007]
[Problems to be solved by the invention]
Concentrated collection of low concentration benzene gas In order to improve the efficiency of concentrated collection, benzene gas selectivity, and recovery efficiency by thermal desorption, the pore structure (pore diameter, shape, distribution, order) of the concentrated collection material It is important that the properties of the adsorption surface (hydrophilicity / hydrophobicity, surface functional groups) can be controlled. The present invention has been made in view of the above circumstances, and is mainly a method for measuring benzene using a porous silica material having a function of selectively adsorbing low-concentration benzene gas at an environmental level in order to realize improvement in selectivity of benzene gas. And it aims at providing the manufacturing method .
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the method for measuring benzene according to the present invention includes a step of ventilating a gas containing benzene in a gas passage provided with a concentrated collection material and adsorbing benzene to the concentrated collection material, after aeration for a certain period of time. In the method for measuring benzene, including the step of stopping the gas ventilation, heating the concentrated collection material to desorb benzene, and measuring the desorbed benzene, the concentrated collection material has a pore diameter of 1 to 50 nm. Benzene gas selective adsorptive porous silica having uniform pore diameters (hereinafter referred to as mesopores) and mesopore wall surfaces with pore diameters of 0.2 to 0.8 nm (hereinafter referred to as micropores) a material, the density of the pore volume and surface silanol groups of the micropores is controlled by performing an acid treatment or an alkali treatment, the surface area of the mesopores The ratio of the surface area of the micro holes, compared surface area 1 of the mesopores, characterized in that at least 0.3.
[0009]
In addition, the method for producing a benzene gas selective adsorptive porous silica material according to the present invention includes:
Benzene gas having pores having a uniform pore size of 1 to 50 nm (hereinafter referred to as mesopores) and mesopore wall surfaces having pores of 0.2 to 0.8 nm (hereinafter referred to as micropores) Production of benzene gas selective adsorptive porous silica material, wherein the ratio of the surface area of the micropores to the surface area of the mesopores is 0.3 or more with respect to the surface area 1 of the mesopores. In the method, the solution containing the block copolymer for forming the pores is heated to a temperature of 30 to 60 ° C., a silica precursor is added to form a precipitate, and the precipitate is dried. Sintering is performed at a temperature of 500 ° C. , and acid treatment or alkali treatment is further performed .
[0010]
Further, according to the present invention, the periodic structure of mesopores such as hexagonal, cubic, and lamellar structures can be controlled depending on the type of block copolymer used in the synthesis, and the periodic structure of these mesopores and the micropores associated therewith can be controlled. It is a method for measuring benzene using a porous silica material having a selective adsorption function for low concentration benzene at an environmental level by controlling the structure.
[0011]
In addition, the present invention can control the pore diameter of mesopores by changing the temperature conditions during the synthesis of the polymer, and has a porous adsorption function having a low concentration benzene selective adsorption function at an environmental level by controlling the pore diameter of the associated micropores. It is a measuring method of benzene using a porous silica material.
[0012]
In addition, the present invention is capable of nondestructively removing the selectively adsorbed benzene gas by applying external conditions such as heating after selectively adsorbing low concentration benzene gas at an environmental level. It is characterized by being a method for measuring benzene using a porous silica material that enables detection and quantitative analysis.
[0013]
According to the present invention, by controlling the structure and pore diameter of the mesopores and micropores, and controlling the density distribution of the surface silanol groups of the micropores, a low concentration benzene selective adsorption function at an environmental level (ppb level) is achieved. A method for measuring benzene using the provided porous silica material can be provided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The benzene gas selective adsorptive porous silica material according to the present invention has a pore diameter of 1 to 50 nm, a uniform pore diameter (hereinafter referred to as mesopore), and a mesopore wall surface with a pore diameter of 0.2 to 0.8 nm. Benzene gas selective adsorptive porous silica material having the following pores (hereinafter referred to as micropores). A porous silica material that selectively absorbs benzene gas by providing mesopores with a uniform pore size of 1 to 50 nm and micropores on the walls of mesopores with a pore size of 0.2 to 0.8 nm. Can do.
[0015]
Further, in such a structure, the micropores particularly have a great effect on the selective adsorption property of benzene, and the ratio of the surface area of the micropores to the surface area of the mesopores is 0. 3 or more. This is because if the number of micropores is too small, the selective adsorption of benzene may be reduced.
[0016]
Furthermore, as the density of silanol groups on the surface of the micropore increases, the selective absorption of benzene improves.
[0017]
The method for producing a benzene gas selective adsorptive porous silica material according to the present invention first heats a solution containing a block copolymer for forming pores to a temperature of 30 to 60 ° C., and adds a silica precursor to precipitate. To form.
[0018]
Such a block copolymer serves as a template for forming pores, and is used to form a periodic structure in a self-organized manner. It is possible to control the periodic structure of mesopores such as hexagonal, cubic and lamellar structures depending on the type of block copolymer, and to control the periodic structure of these mesopores and the structure of the associated micropores. It is useful for the present invention. As the block copolymer, an ethylene oxide-propylene oxide copolymer such as EO20-PO70-EO20 (EO: ethylene oxide, PO: propylene oxide), EO100-PO65-EO100, or the like can be used.
[0019]
Such a block copolymer is dissolved in, for example, dilute hydrochloric acid, and this solution is heated to a temperature of 30 to 60 ° C., and then a silica precursor is added to form a precipitate. As such a silica precursor, for example, TEOS (tetraethylorthosilicate) can be used. When the reaction temperature deviates from the range of 30 to 60 ° C., a good mesopore diameter may not be obtained.
[0020]
In this invention, after drying the said precipitate, it sinters at the temperature of 400-500 degreeC. When the sintering temperature exceeds 500 ° C., crystallization progresses and the pores become smaller, the surface silanol group density decreases, and the micropores also decrease, and there is a possibility that the selective adsorption property of benzene is not exhibited. Moreover, when it is less than 400 degreeC, there exists a possibility that removal of a block copolymer may not be enough.
[0021]
In the present invention, it is possible to perform acid treatment or alkali treatment on the porous silica material thus formed. By performing acid treatment and alkali treatment in this way, the pore volume of the micropores can be reduced and the density of surface silanol groups can be reduced. This makes it possible to control the selective absorption of benzene.
[0022]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited only to a following example.
[0023]
[Example 1]
As a first embodiment of the present invention, a case will be described in which the following two types of porous silica are used as an adsorbent in the detection of benzene gas by an infrared spectrophotometer.
[0024]
The mesoporous silica powder classified as one of the present invention uses a block copolymer EO20-PO70-EO20 (EO: ethylene oxide, PO: propylene oxide) (P123) which is a template for forming mesopores and micropores. And was synthesized at a melting temperature of Ts = 40 ° C. That is, the block copolymer is dissolved in dilute hydrochloric acid, stirred at a dissolution temperature of Ts = 40 ° C., and a silica precursor TEOS (tetraethylorthosilicate) is added to form a precipitate. The solution and precipitate are allowed to sleep at 80 ° C. for one day, then filtered, washed with water, and air dried at room temperature. Bake gently at the end. Firing was carried out by raising the temperature from room temperature to 500 ° C. over 8 hours, leaving it to stand at 500 ° C. for 6 hours, cooling from 500 ° C. to 100 ° C. over 8 hours, and then returning to room temperature by natural cooling.
[0025]
This was filled in a flow cell of an infrared spectrophotometer, and the change in the amount of adsorption of a mixed gas of benzene, toluene and xylene was observed from the measurement of the infrared spectrum. FIG. 1 (1) is a diagram obtained by measuring a case where a mixed gas of 10 ppm of benzene, toluene, and xylene was detected (sample number P123-2 in Table 1).
[0026]
The amount of benzene adsorbed was several times higher than that of toluene and xylene, and benzene selectivity was observed. FIG. 1 (2) is a diagram showing the results of a similar experiment using a material obtained by washing the present invention with an acid having a pH of about 1 and air-drying.
[0027]
In this case, the adsorption amount of benzene, toluene, and xylene was reduced as a whole, the adsorption amount of the three components was the same, and the selectivity of benzene disappeared. Comparing the structures of mesopores and micropores before and after acid treatment, the size and pore volume of mesopores with a pore diameter of about 6 nm are almost the same, whereas in the micropores with a pore diameter of 0.3 nm The pore volume is reduced to about half. Moreover, the density of the surface silanol group was lowered to about half by the acid treatment. From this, it was shown that the selectivity of benzene gas can be controlled by controlling the chemical state of the surface and the pore structure of 1 nm or less.
[0028]
In addition, a porous silica material was synthesized at a synthesis temperature of 30 ° C., 50 ° C., 55 ° C., 60 ° C. and a sintering temperature of 500 ° C. by the above method. These are shown in Table 1 as P123-1, P123-3, P123-4, and P123-5, respectively. In this case, the same effect as the porous silica material of Example 1 (sample number P123-2 in Table 1) was exhibited, and selective adsorption was provided for benzene.
[0029]
On the other hand, samples synthesized at a synthesis temperature of 45 ° C. and a sintering temperature of 700 to 900 ° C. (sample numbers P123-6, P123-7, P123-8) do not have selective absorptivity with respect to benzene, and benzene, toluene And xylene were adsorbed in substantially the same amount.
[0030]
Furthermore, synthesis temperature 45 ° C., was synthesized at a sintering temperature 500 ° C., the samples treated with the same manner as described above pH1 acid (Sample No. P123- 9) include benzene, toluene, and the adsorption amount of xylene 1: 2: 2 and did not show selective adsorption for benzene.
[0031]
The surface silanol density in Table 1 indicates the ratio when the sample of P123-2 is 100.
[0032]
[Table 1]
[0033]
[Example 2]
As a second embodiment of the present invention, a case will be described in which a small flow cell for gas spectroscopic analysis (Japanese Patent Application Laid-Open No. 2003-21595) is used as an apparatus and the following two types of porous silica are used as an adsorbent.
[0034]
The first material is a commercially available amorphous silica powder with only irregularly structured micropores, and the surface area ratio of the micropores to the total surface area of the powder is significantly smaller than that of the present invention. The second material is a mesoporous silica powder classified as one of the present invention, and has both mesopores having a pore diameter of 1-50 nm and micropores having a pore diameter of 0.2-0.8 nm. This mesoporous silica powder was synthesized as follows using a self-organizing method using a block copolymer as a template.
[0035]
The block copolymer EO100-PO65-EO100 (F127) is dissolved in dilute hydrochloric acid. Stirring at a melting temperature of Ts = 50 ° C. and adding a silica precursor, TEOS (tetraethylorthosilicate), precipitates. The solution and precipitate are allowed to stand at 80 ° C. for one day, then filtered, washed with water and air dried at room temperature. Bake gently at the end. In the baking, the temperature is raised from room temperature to 500 ° C. over 8 hours, left at 500 ° C. for 6 hours, cooled from 500 ° C. to 100 ° C. over 8 hours, and then returned to room temperature by natural cooling. This was filled in a micro flow cell channel of Japanese Patent Application Laid-Open No. 2003-21595. A sketch of a measuring apparatus using a trace flow cell is shown in FIG.
[0036]
The micro flow cell includes a concentration cell 1 and a measurement cell 2. The concentration cell 1 includes a gas flow path 11 for circulating a gas to be measured, and a concentrated collection material filled in the gas flow path 11 ( A porous silica material) 12 and a thin film heater 13 for heating the substance adsorbed and fixed to the concentrated collection material 12 are provided. On the other hand, the measurement cell 2 is provided with an ultraviolet light path / gas flow path 21 through which the gas of the substance to be measured is passed through the gas flow path 11 and the measurement ultraviolet light is passed. Further, the gas flow path 14 for connecting the gas flow path 11 to the gas flow path 11 of the concentrated cell 1 and the connection flow path 3 for connecting and communicating the gas flow path 11 and the ultraviolet light path / gas flow path 21. And a gas exhaust passage 22 for exhausting the measured gas. Note that 4 is a pump for introducing gas into the gas introduction flow path 14, 15 is a power source for heating the thin film heater 13, and 5 is an ultraviolet light source for making ultraviolet light incident on the ultraviolet light path / gas flow path 21. , 51 is an ultraviolet lens, 6 is an ultraviolet detector for detecting the emitted ultraviolet light, and 7 is a personal computer.
[0037]
Hereinafter, the measurement procedure will be described as an example. Air containing benzene is introduced from the gas introduction channel 14 of the concentration cell 1 into the gas channel 11 by the pump 4, and the contaminant is adsorbed and fixed to the concentrated collection material 12 filled in the gas channel 11. After ventilation for a certain time, the thin film heater 13 is energized and heated from the power supply 15, and the temperature is raised to the heat desorption temperature of each component of the contaminant adsorbed on the concentrated collection material 12 to desorb benzene. The desorbed and separated gas is introduced into the ultraviolet light path / gas channel 21 of the measurement cell 2 through the connection channel 3. Contaminants are detected by absorption spectroscopy using an optical fiber connected to the ultraviolet light source 5 and the ultraviolet detector 6. The gas after measurement is discharged from the gas discharge channel 22. Data is processed by the personal computer 7.
[0038]
FIG. 3 shows time characteristics of the gas detection signal intensity at this time. FIG. 3 shows the case where the first material (in Table 2, Conventional 1) and the second material (the present invention; in Table 2, sample number F127-2) are used when 1 ppm of benzene is detected. Is a comparison of detection characteristics. Highly ordered mesopores and the accompanying micropore surface with structure control increase the amount of benzene adsorbed and sharpen the detection signal peak. For this reason, the detection sensitivity of benzene becomes higher by using this invention than the conventional material.
[0039]
Further, a porous silica material was synthesized at a synthesis temperature of 40 ° C. and 60 ° C. at a sintering temperature of 500 ° C. by the above method. These are shown in Table 2 as F127-1 and F127-3, respectively. In this case, the same effect as that of the porous silica material of Example 2 (sample number F127-2 in Table 2) was exhibited, and selective adsorption was provided for benzene.
[0040]
On the other hand, in Table 2, sample number Conventional 2 is a porous silica powder using a surfactant as a template molecule, and Conventional 3 is a glass bead. Conventional 2 does not have selective adsorptivity to benzene as in Conventional 1, and Conventional 3 did not adsorb benzene.
[0041]
The surface silanol density in Table 2 indicates the ratio when the sample of P123-2 is 100.
[0042]
[Table 2]
[0043]
【The invention's effect】
As described above, according to the present invention, there is provided a method for measuring benzene using a porous silica material for improving the efficiency of concentration collection in benzene gas, gas selectivity, and recovery efficiency by heat desorption. It has been shown.
[Brief description of the drawings]
FIG. 1 is a graph comparing changes in benzene selectivity in measuring the amount of adsorption of a mixed gas of benzene, toluene and xylene before and after acid treatment of the material of the present invention.
FIG. 2 is a sketch of an apparatus in the case where the present invention is applied to an adsorbent using a micro flow cell for gas spectroscopic analysis (Japanese Patent Laid-Open No. 2003-21595) as an apparatus in Example 2.
FIG. 3 is a diagram comparing detection signal intensities of benzene gas in the present invention and a conventional silica material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Concentration cell 11 Gas flow path 12 Concentrated collection material 13 Thin film heater 14 Gas introduction flow path 15 Power supply 2 Measurement cell 21 Ultraviolet light path and gas flow path 22 Gas discharge flow path 3 Connection flow path 4 Pump 5 Ultraviolet light source 6 Ultraviolet detector 7 computer
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003052736A JP3969489B2 (en) | 2003-02-28 | 2003-02-28 | Method for measuring benzene and method for producing benzene gas selective adsorptive porous silica material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003052736A JP3969489B2 (en) | 2003-02-28 | 2003-02-28 | Method for measuring benzene and method for producing benzene gas selective adsorptive porous silica material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004261672A JP2004261672A (en) | 2004-09-24 |
JP3969489B2 true JP3969489B2 (en) | 2007-09-05 |
Family
ID=33117534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003052736A Expired - Lifetime JP3969489B2 (en) | 2003-02-28 | 2003-02-28 | Method for measuring benzene and method for producing benzene gas selective adsorptive porous silica material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3969489B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5246841B2 (en) * | 2007-09-06 | 2013-07-24 | 独立行政法人物質・材料研究機構 | Cage type mesoporous silica (SNC-1) and method for producing the same |
DE102007054340B4 (en) | 2007-11-14 | 2009-10-01 | Rational Ag | Cooking device with mesoporous filter for a semiconductor gas sensor |
JP4874946B2 (en) * | 2007-12-18 | 2012-02-15 | 日本電信電話株式会社 | Gas concentration cell and gas concentration method |
JP5159712B2 (en) * | 2009-06-29 | 2013-03-13 | 日本電信電話株式会社 | Gas measuring device |
-
2003
- 2003-02-28 JP JP2003052736A patent/JP3969489B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004261672A (en) | 2004-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xiao et al. | Removal of organic templates from mesoporous SBA-15 at room temperature using UV/dilute H2O2 | |
JPWO2005015198A1 (en) | Molecule detection method using porous material, porous material and method for producing porous material | |
He et al. | Preparation and characterization of octyl-modified ordered mesoporous carbon CMK-3 for phenol adsorption | |
US7883563B2 (en) | Honeycomb structure and manufacturing method thereof, and air cleaner and water purifier containing the honeycomb structure | |
Zhou et al. | Dynamic adsorption of toluene on amino-functionalized SBA-15 type spherical mesoporous silica | |
CN114196030A (en) | Preparation method and application of water-soluble macroporous zirconium porphyrin structure compound | |
JP3969489B2 (en) | Method for measuring benzene and method for producing benzene gas selective adsorptive porous silica material | |
Ueno et al. | High benzene selectivity of uniform sub-nanometre pores of self-ordered mesoporous silicate | |
JP4064992B2 (en) | Benzene detection element and manufacturing method thereof | |
Oliveira et al. | Evaluation of the applicability of thermogravimetry in the monitoring of the organofunctionalization process of expanded perlite | |
Ueno et al. | High benzene selectivity of mesoporous silicate for BTX gas sensing microfluidic devices | |
JP2009295765A (en) | Gas clarification method and apparatus for collecting and removing silanols | |
WO2013137300A1 (en) | Silanol compound remover, silanol compound removal method, chemical filter, and light exposure device | |
JP6156391B2 (en) | Silanol compound remover | |
CN109553110A (en) | A kind of method that in-situ carburization prepares mesoporous Si-C composite material | |
Li et al. | Adsorption performance of acetone on activated carbon modified by microwave heating and alkali treatment | |
KR101602649B1 (en) | Manufacturing method of activated carbon for carbon dioxide adsorption | |
KR101568998B1 (en) | Method for carbon aerogel for co_2 adsorption | |
Wan et al. | Thermal stability of Si–MCM-41 in gaseous atmosphere | |
Lam et al. | Selective adsorbents from chemically modified ordered mesoporous silica | |
JP6156390B2 (en) | Method for removing silanol compound, chemical filter and exposure apparatus | |
CN107308979A (en) | Preparation method and application for the VOCs molecular sieve photochemical catalysts degraded | |
JP2003093818A (en) | Air filter material | |
JP4236443B2 (en) | Clean air generator | |
CN1270819C (en) | Process for producing activated carbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070529 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070508 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070529 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3969489 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100615 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110615 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110615 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130615 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130615 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140615 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |