JP3967305B2 - Manufacturing method of piston for internal combustion engine - Google Patents

Manufacturing method of piston for internal combustion engine Download PDF

Info

Publication number
JP3967305B2
JP3967305B2 JP2003323022A JP2003323022A JP3967305B2 JP 3967305 B2 JP3967305 B2 JP 3967305B2 JP 2003323022 A JP2003323022 A JP 2003323022A JP 2003323022 A JP2003323022 A JP 2003323022A JP 3967305 B2 JP3967305 B2 JP 3967305B2
Authority
JP
Japan
Prior art keywords
cavity
piston
molten metal
pressure
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003323022A
Other languages
Japanese (ja)
Other versions
JP2005088033A (en
Inventor
和宏 織田
吉浩 田島
昭人 谷畑
奈緒子 磯
耕二 勝俣
白石  隆
淳 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Honda Motor Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Light Metal Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003323022A priority Critical patent/JP3967305B2/en
Publication of JP2005088033A publication Critical patent/JP2005088033A/en
Application granted granted Critical
Publication of JP3967305B2 publication Critical patent/JP3967305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、ダイカスト法により内燃機関用ピストンを製造する方法に関する。   The present invention relates to a method of manufacturing a piston for an internal combustion engine by a die casting method.

自動車のエンジン等に使用されている内燃機関用のピストンには、主にアルミニウム合金の鍛造材や重力鋳造材が使用されてきた。ところが、最近になって、コスト的な面からアルミニウム合金のダイカスト材が使用されるようになっている。
ダイカスト法は、コスト的には有利であるが、高速で鋳造するためにガス巻き込み欠陥が発生しやすい。特に内燃機関用のピストンは部分的に厚肉部を有する形状となっているために、例えば図1のAで示すような厚肉箇所で鋳巣が発生しやすい。しかも、鋳造後に塑性加工を施さないために巻き込みガスや鋳巣を潰すことができず、強度的に問題があった。
Forged pistons for internal combustion engines used in automobile engines and the like have been mainly made of aluminum alloy forgings and gravity castings. However, recently, an aluminum alloy die-cast material has been used from the viewpoint of cost.
Although the die casting method is advantageous in terms of cost, gas entrainment defects are likely to occur because casting is performed at a high speed. In particular, since a piston for an internal combustion engine has a shape having a thick part, a cast hole is likely to occur at a thick part as shown by A in FIG. Moreover, since the plastic working is not performed after casting, the entrained gas and the cast hole cannot be crushed, and there is a problem in strength.

ダイカスト法で鋳造したピストンの強度を改善するために、ダイカスト鋳造時にピストンの頂部を局部的に加圧し、金属組織を緻密にして頂部の強度を向上させる方法が、特許文献1で提案されている。
この文献で提案されている方法は、ダイカスト鋳造機の金型に、ダイキャビティに鋳込まれた溶湯金属を加圧するための二次加圧子と、これを駆動する油圧シリンダーを組み込み、溶湯金属が鋳込まれた後これが凝固する前に二次加圧子を、ピストンのヘッド壁のトップ面に対する垂直な方向からダイキャビティに向けて前進させることで、溶湯溜り凹部内の溶湯をダイキャビティ内の溶湯に押し込んで金属組織を緻密にしようとするものである。ダイキャビティはほぼ密閉されているから、二次加圧は可能であり、金属組織の緻密化は、ヘッド壁において最も進み、シリンダー内での爆発エネルギーがピストンに直接加えられる部位及び方向と一致するために、耐圧特性に優れた内燃機関用ピストンが得られるというものである。
In order to improve the strength of the piston cast by the die casting method, Patent Document 1 proposes a method of locally pressurizing the top of the piston during die casting to improve the strength of the top by densifying the metal structure. .
In the method proposed in this document, a secondary pressurizer for pressurizing a molten metal cast into a die cavity and a hydraulic cylinder for driving the molten metal are incorporated into a die of a die casting machine. After being cast and before it solidifies, the secondary pressurizer is advanced from the direction perpendicular to the top surface of the head wall of the piston toward the die cavity, so that the molten metal in the molten metal reservoir is melted in the molten metal in the die cavity. The metal structure is to be pressed into the metal to make it dense. Since the die cavity is almost sealed, secondary pressurization is possible, and the metal structure densification is most advanced in the head wall, coinciding with the location and direction in which the explosion energy in the cylinder is directly applied to the piston Therefore, a piston for an internal combustion engine having excellent pressure resistance characteristics can be obtained.

特開2001−232454号公報JP 2001-232454 A

ところで、特許文献1に記載の技術は、ピストンの頂部を局部的に加圧しようとするものである。このため、ピストン頂部の強度は向上されても、機械的負荷が激しいピンボス部は局部加圧箇所から離れているために強度改善の効果は得られない。また一般的に、鋳造欠陥の代表例である鋳巣は薄肉部よりも厚肉部に生じやすい。ピストン頂部は薄肉であり、ピンボス部が厚肉部になるので、ピストンの頂部から加圧しても厚肉のピンボス部にまでは加圧力は伝わらず、鋳巣が発生しかけている箇所に溶湯を補給することができないので鋳巣の発生を防ぐことはできない。すなわち、肉厚の薄い頂部は短時間に凝固するために、凝固した部分は力の伝達を妨げることになるので厚肉部の未凝固溶湯へは加圧力は伝わらないので、できかけた鋳巣に溶湯を補給することができず、そのまま鋳巣が生成・残存する。さらに、局部加圧を行うと、その局部加圧した部分の表面凝固壁がピストン内部に混入して当該部分の強度が低下する。さらにまた、局部加圧した外表面にはバリが残存する他、寸法精度も低下する。しかしピストン頂部は最も寸法精度の要求される箇所であるから、頂部から加圧した場合には、ピストン頂部は相当量を切削除去することが必要になって、実際に操業にあってはその分を見越した鋳造を行わざるをえず、結果的に歩留まりの低下、コスト上昇につながることになる。
本発明は、このような問題を解消すべく案出されたものであり、鋳巣等の鋳造欠陥が少なく、強度が改善されたピストンをダイカスト法で歩留まりよく製造することを目的とする。
By the way, the technique described in Patent Document 1 intends to pressurize the top of the piston locally. For this reason, even if the strength of the piston top portion is improved, the effect of improving the strength cannot be obtained because the pin boss portion with a heavy mechanical load is away from the local pressurizing portion. In general, a casting hole, which is a typical example of a casting defect, is more likely to occur in a thick part than in a thin part. The top of the piston is thin and the pin boss is thick.Therefore, even if pressure is applied from the top of the piston, no pressure is transmitted to the thick pin boss, and molten metal is applied to the place where the cast hole is about to occur. Since it cannot be replenished, it is impossible to prevent the formation of a cast hole. In other words, since the thin top part solidifies in a short time, the solidified part hinders the transmission of force, so pressure is not transmitted to the unsolidified molten metal in the thick part. As a result, the molten metal cannot be replenished and a cast hole is generated and remains as it is. Furthermore, when local pressurization is performed, the surface solidified wall of the locally pressurized portion is mixed into the piston and the strength of the portion is reduced. Furthermore, burrs remain on the externally pressurized outer surface, and the dimensional accuracy also decreases. However, since the top of the piston is the place where the dimensional accuracy is most required, when pressure is applied from the top, it is necessary to cut and remove a considerable amount of the piston top. Casting in anticipation of this is unavoidable, resulting in a decrease in yield and an increase in cost.
The present invention has been devised to solve such a problem, and an object of the present invention is to produce a piston having few casting defects such as a cast hole and improved in strength by a die casting method with a high yield.

本発明の内燃機関用ピストンの製造方法は、その目的を達成するため、ほぼ円板形をしたヘッド壁とこのヘッド壁から延びたピンボス部およびスカート部を有する内燃機関用ピストンをダイカスト法で鋳造する際、溶湯を金型のダイキャビティ内に注湯する前に、局部加圧を加える加圧部材を、予めキャビティ内に突出させておき、溶湯を金型のダイキャビティ内に注湯した後、注湯された溶湯の表層部が凝固し、内部に未凝固部分が残っている状態のときに、前記加圧部材をさらに突出させてピストンのピンボス部を局部的に加圧することを特徴とする。
ダイカスト法としては、金型のキャビティ内を真空吸引した後、真空吸引にオーバーラップさせてスリーブから活性ガスをキャビティ内に注入し、キャビティ内の雰囲気圧を大気圧以上にした後、スリーブに溶湯を注入し、次いで再度真空吸引してキャビティ内を30kPa以下の圧力にした後に、プランジャを前進させてスリーブ内から溶湯をキャビティに圧入する方法を適用することが好ましい。
In order to achieve the object, the method for manufacturing a piston for an internal combustion engine according to the present invention casts a piston for an internal combustion engine having a substantially disc-shaped head wall and a pin boss portion and a skirt portion extending from the head wall by a die casting method. Before the molten metal is poured into the die cavity of the mold, a pressurizing member that applies local pressure is protruded into the cavity in advance and the molten metal is poured into the die cavity of the mold. and coagulating the surface layer of the poured been molten in a state that remains unsolidified portion inside, and characterized in that said further protruding the pressing member presses locally pressurizing the pin boss of the piston To do.
In the die casting method , the inside of the cavity of the mold is vacuum-sucked, and then the active gas is injected from the sleeve into the cavity by overlapping with vacuum suction, and the atmospheric pressure in the cavity is increased to atmospheric pressure or higher, and then the molten metal is added to the sleeve. It is preferable to apply a method in which the molten metal is injected into the cavity from the sleeve by advancing the plunger after the vacuum is sucked again and the pressure in the cavity is reduced to 30 kPa or less.

本発明では、図2の示すように、ピストンとコンロッドを連結されるピンが挿入されるピン孔を開けるピンボス部を局部加圧している(図2の(a)は加圧前の加圧材Pの位置で、(b)が加圧後の加圧材Pの位置を示している)。
そして、頂部からの局部加圧に代えてピンボス部からの局部加圧法を採用することにより、頂部からの加圧法の問題点を解消することができる。すなわち、ピンボス部の周辺は、元々ピストンにおいて鋳巣の発生しやすい厚肉部であるため、この部分を加圧することにより、できかけた鋳巣に効率よく溶湯を補給することができ、鋳巣の発生を抑制することができる。また、厚肉部は薄肉部と比較して冷却が遅いために薄肉部に比べて組織が大きくなりやすい。しかしながら、本発明では、頂部やスカート部ではなく、厚肉部であるピンボス部を局部加圧することにより、組織を全体的に微細化して強度をより向上させることができる。さらに、頂部からの加圧ではないので、頂部の表面形状は金型の表面形状がそのまま転写され、寸法精度の優れたトップ形状のピストンが得られる。
ピンボス部は、元々、コンロッドとの連結のための孔が切削により開けられる箇所である。したがって、加圧部材を用いての局部加圧によって鋳造されたピストンピンボス部の表面性状が悪化していても、通常の切削作業による孔の開設と同時に表面調整が行われるため、コストの上昇にはならない。
In the present invention, as shown in FIG. 2, a pin boss portion for opening a pin hole into which a pin connected to a piston and a connecting rod is inserted is locally pressurized ((a) in FIG. 2 is a pressurizing material before pressurization). (B) shows the position of the pressurizing material P after pressurization at the position of P).
And the problem of the pressurization method from a top part can be eliminated by adopting the local pressurization method from a pin boss part instead of the local pressurization from a top part. In other words, since the periphery of the pin boss is a thick part where a void is likely to occur in the piston, the molten metal can be efficiently replenished to the formed void by pressurizing this portion. Can be suppressed. In addition, since the thick portion is slower to cool than the thin portion, the structure tends to be larger than that of the thin portion. However, in the present invention, not only the top part and the skirt part but the pin boss part which is a thick part is locally pressurized, so that the whole structure can be refined and the strength can be further improved. Further, since the pressure is not applied from the top, the surface shape of the die is transferred as it is, and a top-shaped piston with excellent dimensional accuracy is obtained.
A pin boss | hub part is a location from which the hole for a connection with a connecting rod is originally opened by cutting. Therefore, even if the surface properties of the piston pin boss part cast by local pressurization using the pressurizing member are deteriorated, the surface adjustment is performed simultaneously with the opening of the hole by the normal cutting operation, which increases the cost. Must not.

ピストンをダイカストで局部加圧を行う場合、前記したように、後加工で除去できるピン孔部を局部加圧することが好ましい。しかし、ピストンをダイカストする際にピンボス部を加圧するためには、金型の可動方向と垂直方向に加圧する必要がある。そのため、局部加圧を効かせるために、図3(a)に示すように、表面部がある程度凝固(凝固した表層部を以下「シェルS」と称す。)し、内部に未凝固部分が残っている状態で加圧を行うと、内部は完全に凝固していないのでシェルSが押され、その一部が破れる。その結果、内部の溶湯が、金型と加圧材の摺動部にシミ出してしまう(図3の(b)でRとして表示)。シミ出しが多く起こると、ピン孔加工時にシミ出し部を除去できない場合がある。またシミ出した部分が加圧材と金型の摺動を妨げ、加圧材と金型間でかじりを生じることもある。さらに金型から鋳造材を取り出すことが困難になる。特にピンボス部を加圧する場合、金型の可動方向と直交する方向に加圧することとなり、鋳造材の取り出しが困難となる。   When the piston is locally pressed by die casting, as described above, it is preferable to locally pressurize the pin hole portion that can be removed by post-processing. However, in order to pressurize the pin boss portion when die-casting the piston, it is necessary to pressurize in the direction perpendicular to the movable direction of the mold. Therefore, in order to apply local pressurization, as shown in FIG. 3A, the surface portion is solidified to some extent (the solidified surface layer portion is hereinafter referred to as “shell S”), and an unsolidified portion remains inside. When pressure is applied in this state, since the interior is not completely solidified, the shell S is pushed and a part thereof is broken. As a result, the molten metal inside is smeared into the sliding portion between the mold and the pressure member (indicated as R in FIG. 3B). If many spots appear, the spots may not be removed during pin hole processing. Further, the spotted portion prevents sliding between the pressurizing material and the mold, and may cause galling between the pressurizing material and the mold. Furthermore, it becomes difficult to take out the cast material from the mold. In particular, when the pin boss portion is pressurized, the pressure is applied in a direction orthogonal to the movable direction of the mold, making it difficult to remove the cast material.

一方、本発明の好ましい形態では、溶湯の金型のキャビティ内に注湯する前に、局部加圧を加える加圧体を、予めキャビティ内に突出させておき(図4参照)、ピストンの表層部が凝固した段階で、加圧材をさらに突出させ、ピンボス部を加圧している。
加圧材を予め突出させておくと、図5の(a)にみられるように、加圧材の表面に沿ってシェルSが形成される。シェルSが形成された状態で加圧を行うと、図5の(b)にみられるように、加圧材先端部に形成されたシェルSは破壊されるが、加圧材の側面に形成されたシェルSは残る。このシェルSがシミ出しを抑制し、シミ出しが切削部の外に到達することを防いでいる。加圧材と金型間でかじりが発生することもないので、鋳造材の取り出しも容易になる。
On the other hand, in a preferred embodiment of the present invention, before the molten metal is poured into the cavity of the molten metal mold, a pressurizing body for applying local pressure is projected in advance into the cavity (see FIG. 4), and the surface layer of the piston. When the part is solidified, the pressurizing material is further projected to pressurize the pin boss part.
When the pressurizing material is protruded in advance, a shell S is formed along the surface of the pressurizing material as seen in FIG. When pressure is applied in a state where the shell S is formed, the shell S formed at the tip of the pressure material is destroyed as seen in FIG. 5B, but formed on the side surface of the pressure material. The shell S that has been left remains. This shell S suppresses the spotting and prevents the spotting from reaching the outside of the cutting part. Since no galling occurs between the pressurizing material and the mold, the cast material can be easily taken out.

ところで、WO/01/051237号公報には、ダイカスト金型のキャビティを10kPa以下に真空吸引した後、真空吸引にオーバーラップさせてスリーブから活性ガスをキャビティに吹き込んでキャビティの雰囲気圧を大気圧(約100kPa)以上にし、活性ガスの吹込みを継続しながらスリーブにアルミニウム合金溶湯を注入し、次いでキャビティのオーバーフロー部に開口したガス給排管を介してキャビティを再度真空吸引し、大気圧より低圧にした状態でプランジャを前進させてスリーブ内から湯道を経てアルミニウム合金溶湯をキャビティに圧入するダイカスト法が提案されている。
本発明のダイカスト法においても、当該公報で提案されているダイカスト法を採用することが好ましい。この方法を採用する際、大気圧(約100kPa)よりも70kPa以上低い圧力まで、すなわち30kPa以下に再度真空吸引した後にキャビティ内に溶湯を圧入することが好ましい。
By the way, in WO / 01/051237, the cavity of a die-casting mold is vacuum-sucked to 10 kPa or less, and then overlapped with vacuum suction, the active gas is blown from the sleeve into the cavity to adjust the atmospheric pressure of the cavity to atmospheric pressure ( The molten aluminum alloy is injected into the sleeve while continuing to blow the active gas, and then the cavity is vacuumed again through the gas supply / exhaust pipe opened to the overflow of the cavity, and the pressure is lower than atmospheric pressure. In this state, a die casting method has been proposed in which the plunger is advanced and the molten aluminum alloy is pressed into the cavity through the runner from the sleeve.
Also in the die casting method of this invention, it is preferable to employ | adopt the die casting method proposed by the said gazette. When this method is adopted, it is preferable to press-fit the molten metal into the cavity after vacuum suction again to a pressure 70 kPa or more lower than the atmospheric pressure (about 100 kPa), that is, 30 kPa or less.

本発明のダイカスト法では、好ましくは、真空吸引,活性ガスの吹込み及び再度の真空吸引をオーバーラップさせながらキャビティにアルミニウム合金溶湯を圧入している。このため、鋳造の際に巻き込まれるガス量が減少するので鋳巣が減少する。さらに、再度の真空吸引で30kPa以下にしたキャビティ内にアルミニウム合金溶湯を圧入することにより、キャビティ内に残存する未反応の活性ガスはキャビティから除去されることになり、未反応の活性ガスがアルミニウム合金溶湯に取り込まれることを防止し、ガス成分が大幅に軽減されたダイカスト製ピストンが得られる。このようにして得られたダイカスト製ピストンはガスに起因した鋳巣等の鋳造欠陥量およびバラツキが抑えられ、機械的特性に優れたものとなる。   In the die casting method of the present invention, the molten aluminum alloy is preferably press-fitted into the cavity while overlapping vacuum suction, active gas blowing, and re-vacuum suction. For this reason, since the amount of gas entrained at the time of casting decreases, the casting hole decreases. Further, by pressing the molten aluminum alloy into the cavity that has been reduced to 30 kPa or less by vacuum suction again, the unreacted active gas remaining in the cavity is removed from the cavity, and the unreacted active gas becomes aluminum. It is possible to obtain a die-cast piston which is prevented from being taken into the molten alloy and whose gas component is greatly reduced. The die-cast piston obtained in this way is excellent in mechanical properties because the amount of casting defects such as a casting hole and variation due to gas are suppressed.

次いで、図面を参照しながら、実施例によって本発明を具体的に説明する。
本発明の好ましいダイカスト法では、キャビティを真空度10kPa以下の減圧雰囲気に真空吸引した後、酸素吹込みによりキャビティを大気圧以上の雰囲気圧とし、さらにアルミニウム合金溶湯の圧入に際してキャビティを再度真空吸引する方式(以下、「DVOプロセス」という。)を採用する。
このDVOプロセスでは、たとえば図6に概略を示すダイカストマシーンが使用される。固定金型10と可動金型20との間に製造されるピストン形状に対応するキャビティ30が形成される。そして、キャビティ30の両側、図6では図の表裏側のピンボス部に、当該部分の溶湯を局部加圧する加圧材およびこれを駆動する油圧シリンダー等の加圧機構が設けられている。加圧材は、予めキャビティ30に突出させるように配置しておく。スリーブ40に連通する湯道11が固定金型10に形成され、給湯口41から注入されたアルミニウム合金溶湯Mが湯道11を経てキャビティ30にプランジャ42により圧入される。湯道11は、キャビティ30の各部にアルミニウム合金溶湯Mが供給されるように製品形状に応じて複数に分割したゲート12を介してキャビティ30に連通している。
Next, the present invention will be specifically described by way of examples with reference to the drawings.
In the preferred die casting method of the present invention, the cavity is vacuum-evacuated to a reduced-pressure atmosphere having a degree of vacuum of 10 kPa or less, then the cavity is brought to an atmospheric pressure of atmospheric pressure or more by blowing oxygen, and the cavity is again vacuum-evacuated when the molten aluminum alloy is injected. A method (hereinafter referred to as “DVO process”) is adopted.
In this DVO process, for example, a die casting machine schematically shown in FIG. 6 is used. A cavity 30 corresponding to the piston shape manufactured between the fixed mold 10 and the movable mold 20 is formed. Further, a pressurizing mechanism such as a pressurizing material for locally pressurizing the molten metal in the portion and a hydraulic cylinder for driving the same is provided on both sides of the cavity 30, in FIG. The pressurizing material is arranged in advance so as to protrude into the cavity 30. A runner 11 communicating with the sleeve 40 is formed in the fixed mold 10, and the molten aluminum alloy M injected from the hot water supply port 41 is press-fitted into the cavity 30 through the runner 11 by the plunger 42. The runner 11 communicates with the cavity 30 via the gate 12 divided into a plurality of parts according to the product shape so that the molten aluminum alloy M is supplied to each part of the cavity 30.

キャビティ30は、固定金型10又は可動金型20側に形成されたオーバーフロー部31を備え、オーバーフロー部31の外側にチルベント32が設けられている。オーバーフロー部31は、キャビティ30内のアルミニウム合金溶湯Mのフローを安定化させる。チルベント32は、図示するように固定金型10と可動金型20との間に形成された凹凸又は波状の合せ部であり、チルベント32に接触するアルミニウム合金溶湯Mの凝固を促進させ、真空系にメタルが吸引されることを防止する。チルベント32を設けることにより、メタルの差込みなくアルミニウム合金溶湯Mの注入中にキャビティ30を真空吸引できる。
可動金型20には、鋳造後のダイカスト鋳物を取り外すため、エジェクタピン21が進退自在に組み込まれている。
The cavity 30 includes an overflow part 31 formed on the fixed mold 10 or the movable mold 20 side, and a chill vent 32 is provided outside the overflow part 31. The overflow part 31 stabilizes the flow of the molten aluminum alloy M in the cavity 30. The chill vent 32 is an uneven or corrugated mating portion formed between the fixed mold 10 and the movable mold 20 as shown in the figure, and promotes the solidification of the molten aluminum alloy M in contact with the chill vent 32 to provide a vacuum system. Prevents metal from being sucked into the surface. By providing the chill vent 32, the cavity 30 can be vacuum-sucked during the injection of the molten aluminum alloy M without inserting metal.
An ejector pin 21 is incorporated in the movable mold 20 so as to be able to advance and retract in order to remove the die-cast casting after casting.

外気に対しキャビティ30を気密に維持するため、固定金型10と可動金型20との合せ面にOリング等のパッキン51が介装される。パッキン51は、キャビティ30を取り囲む溝に充填され、固定金型10と可動金型20との隙間から侵入しようとする空気を遮断する。エジェクタピン21が押通されるピン孔22にもパッキン52が挿入され、ピン孔22の内壁とエジェクタピン21との間の気密性が保たれる。パッキン51,52を用いたシールにより、キャビティ30を10kPa以下の真空雰囲気に減圧できると共に、アルミニウム合金溶湯Mの注入中にも真空吸引が可能になる。
パッキン51が装着された溝を真空吸引装置60に接続し、該溝からも真空吸引するとき、外気侵入が一層効果的に抑制される。
In order to keep the cavity 30 airtight with respect to the outside air, a packing 51 such as an O-ring is interposed between the mating surfaces of the fixed mold 10 and the movable mold 20. The packing 51 is filled in a groove surrounding the cavity 30, and blocks air from entering through the gap between the fixed mold 10 and the movable mold 20. The packing 52 is also inserted into the pin hole 22 through which the ejector pin 21 is pushed, and the airtightness between the inner wall of the pin hole 22 and the ejector pin 21 is maintained. By using the seals 51 and 52, the cavity 30 can be depressurized to a vacuum atmosphere of 10 kPa or less, and vacuum suction can be performed while the molten aluminum alloy M is being injected.
When the groove in which the packing 51 is mounted is connected to the vacuum suction device 60 and vacuum suction is also performed from the groove, intrusion of outside air is more effectively suppressed.

キャビティ30を真空吸引するため、真空吸引機構60に接続された排気管61が湯道11に開口している。湯道11に臨む排気管61の開口部には、駆動シリンダー62で開閉作動される真空弁63が設けられている。また、チルベント32とパッキン51との間で固定金型10及び可動金型20の合せ面に開口するガス給排管64から分岐した排気管65が真空弁66を介して真空吸引機構60に接続されている。
キャビティ30の雰囲気圧を検出するため、圧力計67をガス給排管61及び64に取り付けている。また、キャビティ30内の湿度を管理するため、湿度計68をガス給排管64に取り付けることが好ましい。
ガス給排管64は、キャビティ30に圧縮空気を送り込むことにも使用されることから、分岐した給気管71がチェックバルブ72を介して圧縮空気噴出機構70に接続されている。ダイカスト終了後に型開きした後で、ガス給排管64に圧縮空気が吹き込まれ、真空吸引機構に付着している異物が除去される。
An exhaust pipe 61 connected to the vacuum suction mechanism 60 opens in the runner 11 in order to vacuum the cavity 30. A vacuum valve 63 that is opened and closed by a drive cylinder 62 is provided at the opening of the exhaust pipe 61 facing the runner 11. Further, an exhaust pipe 65 branched from a gas supply / exhaust pipe 64 opened to the mating surface of the fixed mold 10 and the movable mold 20 between the chill vent 32 and the packing 51 is connected to the vacuum suction mechanism 60 via the vacuum valve 66. Has been.
In order to detect the atmospheric pressure of the cavity 30, a pressure gauge 67 is attached to the gas supply / discharge pipes 61 and 64. In order to manage the humidity in the cavity 30, it is preferable to attach a hygrometer 68 to the gas supply / exhaust pipe 64.
Since the gas supply / discharge pipe 64 is also used to send compressed air into the cavity 30, the branched supply pipe 71 is connected to the compressed air ejection mechanism 70 via the check valve 72. After the die opening is completed, the mold is opened, and then compressed air is blown into the gas supply / exhaust pipe 64 to remove foreign matters attached to the vacuum suction mechanism.

DVOプロセスでは、キャビティ30を真空吸引した後で酸素等の活性ガスを吹き込むことから、活性ガス供給機構80を付設している。活性ガスは、活性ガス供給機構80からガス供給管81及び給気口82を経てスリーブ40内に送り込まれる。ガス供給管81には、キャビティ30の湿度を低く維持するため活性ガスを除湿する乾燥機83が組み込まれている。
キャビティ30内の雰囲気圧及び湿度は、ガス給排管61及び64に設けた圧力計67及び湿度計68で検出される。圧力計67からの検出値は、真空吸引機構60,圧縮空気噴出機構70,活性ガス供給機構80それぞれの駆動を制御する制御系に送られ、真空吸引→酸素吹込み→真空吸引のタイミング制御に使用される。湿度計68からの検出値が15%RH以下となり、キャビティ30内の圧力が大気圧(約100kPa)以上になった時点でスリーブ40へのアルミニウム合金溶湯Mの供給を開始する。
In the DVO process, since an active gas such as oxygen is blown after the cavity 30 is vacuumed, an active gas supply mechanism 80 is provided. The active gas is fed into the sleeve 40 from the active gas supply mechanism 80 through the gas supply pipe 81 and the air supply port 82. The gas supply pipe 81 incorporates a dryer 83 that dehumidifies the active gas in order to keep the humidity of the cavity 30 low.
The atmospheric pressure and humidity in the cavity 30 are detected by a pressure gauge 67 and a hygrometer 68 provided in the gas supply / exhaust pipes 61 and 64. The detected value from the pressure gauge 67 is sent to a control system that controls the driving of the vacuum suction mechanism 60, the compressed air ejection mechanism 70, and the active gas supply mechanism 80, and is used for timing control of vacuum suction → oxygen blowing → vacuum suction. used. When the detected value from the hygrometer 68 becomes 15% RH or less and the pressure in the cavity 30 becomes atmospheric pressure (about 100 kPa) or more, the supply of the molten aluminum alloy M to the sleeve 40 is started.

次いで、本発明に従ったDVOプロセスを説明する。
固定金型10に可動金型20を合せて型閉めし、湯道11を介してキャビティ30を真空吸引する。キャビティ30の真空吸引には、チルベント32とパッキン51との間の合せ面に開口したガス給排管64も使用される。真空吸引は、圧力計67で検出されるキャビティ30の雰囲気圧が10kPa以下になるまで継続される。このとき、スリーブ40の給湯口41と給気口82との間にプランジャチップ43を位置させ、給湯口41からの空気侵入を防止する。湯道11を介した真空吸引であるため、スリーブ40からの潤滑剤は、キャビティ30に至ることなく系外に排出される。
真空吸引では、50kPa/秒以上の吸引速度に設定することが好ましい。キャビティ30が複雑な形状をもつ場合でも、吸引速度を好ましくは50kPa/秒以上に設定することにより、キャビティ30の隅々からガスが除去される。また、50kPa/秒以上の吸引速度でキャビティ30を真空吸引すると、金型10,20の内面に付着している離型剤等に含まれている水分が突沸し、キャビティ30内の水分が大幅に減少する。
The DVO process according to the present invention will now be described.
The movable mold 20 is put together with the fixed mold 10 and the mold is closed, and the cavity 30 is vacuumed through the runner 11. For vacuum suction of the cavity 30, a gas supply / exhaust pipe 64 opened at the mating surface between the chill vent 32 and the packing 51 is also used. The vacuum suction is continued until the atmospheric pressure of the cavity 30 detected by the pressure gauge 67 becomes 10 kPa or less. At this time, the plunger tip 43 is positioned between the hot water supply port 41 and the air supply port 82 of the sleeve 40 to prevent air from entering from the hot water supply port 41. Since the suction is performed through the runner 11, the lubricant from the sleeve 40 is discharged out of the system without reaching the cavity 30.
In vacuum suction, it is preferable to set the suction speed to 50 kPa / second or more. Even when the cavity 30 has a complicated shape, the gas is removed from every corner of the cavity 30 by setting the suction speed to preferably 50 kPa / second or more. Further, when the cavity 30 is vacuum-sucked at a suction speed of 50 kPa / second or more, the moisture contained in the release agent or the like adhering to the inner surfaces of the molds 10 and 20 bumps, and the moisture in the cavity 30 is greatly increased. To decrease.

真空吸引は、プランジャ42で給湯口41を閉塞した状態で1〜2秒程度継続させることが好ましい。この点、給湯口41が塞がれておらず1秒未満の吸引時間である従来の真空ダイカスト法に比較して、吸引時間を比較的長く設定している。キャビティ30は、真空吸引によって10kPa以下の真空度まで減圧される。金型の内面に付着している離型剤等に含まれている水分は、真空吸引によって水蒸気となり、金型の内面から分離され系外に排出される。
しかし、真空度が10kPaに達しない真空吸引では、キャビティ30内に比較的多量の空気が残存し、後続する活性ガス注入工程で活性ガスにより置換されず製品に巻き込まれ、ブローホール,膨れ等の欠陥を発生させる虞がある。他方、到達真空度を10kPa以下に設定すると、離型剤等に含まれている水分の蒸発が効果的に促進され、水蒸気となって系外に持ち去られる。なかでも、吸引速度50kPa/秒以上の高速で真空吸引すると、突沸現象によって離型剤等の内部からも水分蒸発が加速され、残留水分が大幅に減少する。吸引速度は、真空吸引装置の能力を考慮すると80kPa/秒程度が上限である。
The vacuum suction is preferably continued for about 1 to 2 seconds with the plunger 42 closing the hot water supply port 41. In this regard, the suction time is set relatively long as compared with the conventional vacuum die casting method in which the hot water supply port 41 is not blocked and the suction time is less than 1 second. The cavity 30 is decompressed to a vacuum degree of 10 kPa or less by vacuum suction. Moisture contained in the mold release agent or the like adhering to the inner surface of the mold becomes water vapor by vacuum suction, separated from the inner surface of the mold, and discharged out of the system.
However, in the vacuum suction where the degree of vacuum does not reach 10 kPa, a relatively large amount of air remains in the cavity 30 and is not replaced by the active gas in the subsequent active gas injection process, and is entrapped in the product. May cause defects. On the other hand, when the ultimate degree of vacuum is set to 10 kPa or less, the evaporation of moisture contained in the release agent or the like is effectively promoted to be taken out of the system as water vapor. In particular, when vacuum suction is performed at a high speed of 50 kPa / sec or more, moisture evaporation is accelerated from the inside of the release agent or the like due to a bumping phenomenon, and the residual moisture is greatly reduced. The upper limit of the suction speed is about 80 kPa / second in consideration of the capability of the vacuum suction device.

キャビティ30が10kPa以下に真空吸引されたことをまって、給気口82から活性ガスをキャビティ30に送り込む。真空吸引は、活性ガスの注入に若干オーバーラップさせた後で停止する。このオーバーラップにより、送り込まれた活性ガスがキャビティ30の隅々まで行き渡ると共に、金型の合せ面からの外気侵入も抑制される。活性ガスの注入は、圧力計67で検出されるキャビティ30の雰囲気圧が大気圧(約100kPa)以上になるまで継続される。
活性ガスの吹込みに際し、キャビティ30内の湿度を湿度計68で測定し、キャビティ30の湿度が15%RHを超えないように湿度管理する。これにより、活性ガスに随伴してキャビティ30に持ち込まれ、アルミニウム合金溶湯Mとの反応によって水素ガスを発生させる水分量が少なくなる。キャビティ30内の湿度を下げるため、乾燥機83を通過した活性ガスをキャビティ30に注入することが好ましい。
The active gas is fed into the cavity 30 from the air supply port 82 after the cavity 30 is vacuumed to 10 kPa or less. The vacuum suction is stopped after a slight overlap with the injection of the active gas. Due to this overlap, the sent active gas spreads to every corner of the cavity 30, and the entry of outside air from the mating surfaces of the molds is suppressed. The injection of the active gas is continued until the atmospheric pressure of the cavity 30 detected by the pressure gauge 67 becomes atmospheric pressure (about 100 kPa) or higher.
When injecting the active gas, the humidity in the cavity 30 is measured by the hygrometer 68, and the humidity is controlled so that the humidity of the cavity 30 does not exceed 15% RH. As a result, the amount of moisture that is brought into the cavity 30 along with the active gas and generates hydrogen gas by reaction with the molten aluminum alloy M is reduced. In order to lower the humidity in the cavity 30, it is preferable to inject the active gas that has passed through the dryer 83 into the cavity 30.

キャビティ30の雰囲気圧が大気圧(約100kPa)以上になった後、プランジャチップ43を給湯位置まで後退させ、給湯口41を開放する。次いで、1回のダイカストに必要な量のアルミニウム合金溶湯Mをスリーブ40に注入する。このとき、キャビティ30が大気圧以上の雰囲気圧に維持されているので、給湯口41から噴き出す活性ガスによって外気の侵入が防止される。給湯口41は、アルミニウム合金溶湯Mの注入完了後、プランジャ42を前進させることによりキャビティ30への連通状態が遮断される。
注湯後、オーバーフロー部31を介しキャビティ30が再度真空吸引される。活性ガスの注入と再度の真空吸引は、若干オーバーラップさせることが好ましい。活性ガスの注入は、鋳造終了後まで継続することも可能である。このオーバーラップにより、余剰の活性ガスがキャビティ30から排気されると共に、離型剤やスリーブ潤滑剤に由来する水分が活性ガスに随伴されてキャビティ30から効果的に除去される。また、活性ガス注入後に再度真空吸引する場合に生じがちな外気の侵入もなくなる。
After the atmospheric pressure in the cavity 30 becomes equal to or higher than atmospheric pressure (about 100 kPa), the plunger tip 43 is retracted to the hot water supply position and the hot water supply port 41 is opened. Next, an amount of molten aluminum alloy M required for one die casting is poured into the sleeve 40. At this time, since the cavity 30 is maintained at an atmospheric pressure equal to or higher than the atmospheric pressure, intrusion of outside air is prevented by the active gas ejected from the hot water supply port 41. The hot water supply port 41 is blocked from communicating with the cavity 30 by moving the plunger 42 forward after the injection of the molten aluminum alloy M is completed.
After pouring, the cavity 30 is again vacuumed through the overflow part 31. It is preferable to slightly overlap the injection of the active gas and the vacuum suction again. The injection of the active gas can be continued until after the casting is finished. Due to this overlap, excess active gas is exhausted from the cavity 30, and moisture derived from the mold release agent and the sleeve lubricant is effectively removed from the cavity 30 along with the active gas. In addition, intrusion of outside air that tends to occur when vacuum suction is performed after the active gas injection is eliminated.

再度真空吸引しながらプランジャ42を前進させ、プランジャチップ43が給湯口41を越えて高速射出開始位置まで低速前進させる。この際、真空開始位置に達した時点で、再度の真空吸引を開始する。
次いで、キャビティ内が30kPa以下の圧力になった後、高速射出開始位置から射出限位置までプランジャ42を高速前進させ、アルミニウム合金溶湯Mをキャビティ30内に圧入する。このとき、キャビティ30が真空吸引されているので、アルミニウム合金溶湯Mの圧入に伴って未反応の活性ガスがキャビティ30から効果的に除去される。そのため、未反応の活性ガスがメタルに取り込まれることがなくなる。なお、キャビティ内が30kPa以下になっていないと、後述の実施例からもわかるように、気孔率のバラツキが大きく気孔率が小さいものが安定して得難い。真空吸引は、キャビティ30をアルミニウム合金溶湯Mで充満させるまで継続される。
The plunger 42 is advanced while sucking the vacuum again, and the plunger tip 43 moves forward at a low speed over the hot water supply port 41 to the high-speed injection start position. At this time, when the vacuum start position is reached, another vacuum suction is started.
Next, after the pressure in the cavity becomes 30 kPa or less, the plunger 42 is advanced at a high speed from the high-speed injection start position to the injection limit position, and the molten aluminum alloy M is press-fitted into the cavity 30. At this time, since the cavity 30 is vacuumed, the unreacted active gas is effectively removed from the cavity 30 as the molten aluminum alloy M is injected. Therefore, the unreacted active gas is not taken into the metal. If the inside of the cavity is not lower than 30 kPa, it is difficult to stably obtain a material having a large variation in porosity and a small porosity, as will be understood from examples described later. The vacuum suction is continued until the cavity 30 is filled with the molten aluminum alloy M.

キャビティ30をアルミニウム合金溶湯Mで充満させ、キャビティ30に接触しているアルミニウム合金溶湯の表層部を凝固させた時点で、図示していない加圧機構を作動させ、ピンボス部に配置した加圧材をキャビティの内部方向に押圧させる。この加圧材による押圧によって、厚肉未凝固部の凝固が促進され、凝固組織が微細化される。また、鋳巣が形成されようとしていても溶湯が補給され、結果的に鋳巣のないダイカスト製ピストンが鋳造される。
鋳造終了後、真空吸引を停止させ、ピンボス部の加圧材を後端まで後退させた後、型開きし、圧縮空気噴出機構70から圧縮空気を吹き込んでガス給排管64内を清掃するとともに、エジェクタピン21をキャビティ30方向に前進させてダイカスト製ピストンを取り外す。
以上、ダイカスト法の最良の実施形態として、DVOプロセスを採用した例について説明したが、ピンボス部を局部加圧すれば、DVOプロセスに限らず、他のPF法,真空ダイカスト法,VO法で鋳巣等の鋳造欠陥の少ないピストンが得られることは言うまでもない。
When the cavity 30 is filled with the molten aluminum alloy M and the surface layer portion of the molten aluminum alloy in contact with the cavity 30 is solidified, a pressure mechanism (not shown) is operated and the pressure material disposed on the pin boss portion. Is pushed toward the inside of the cavity. By pressing with the pressure material, solidification of the thick-walled unsolidified portion is promoted, and the solidified structure is refined. Moreover, even if a cast hole is about to be formed, the molten metal is replenished, and as a result, a die-cast piston without a cast hole is cast.
After the completion of casting, the vacuum suction is stopped, the pressurizing material of the pin boss part is retracted to the rear end, the mold is opened, and compressed air is blown from the compressed air blowing mechanism 70 to clean the inside of the gas supply / discharge pipe 64. Then, the ejector pin 21 is advanced in the direction of the cavity 30 to remove the die-cast piston.
As described above, the example in which the DVO process is adopted has been described as the best embodiment of the die casting method. However, if the pin boss part is locally pressurized, the casting is not limited to the DVO process but is performed by other PF methods, vacuum die casting methods, and VO methods. It goes without saying that a piston with few casting defects such as a nest can be obtained.

アルミニウム合金として、本出願人等が高負荷ピストン用として開発したAl−Si−Ni−Cu−Mg系の合金(特願2002−187582号で提案)を用いた。
脱ガス処理等の溶湯清浄化処理が施されたアルミニウム合金溶湯を、図7に示す簡易ピストン形状にダイカスト法で鋳造した。鋳造は、いわゆるDVO法ではなく、鋳造する前に金型のキャビティ内の空気を酸素に置換してから溶湯をキャビティ内に圧入するポアフリー(PF)ダイカスト法で行った。そして、鋳造の際に、図7(a)のダイカストではピンボス部を側方から直接加圧し、図7(b)のダイカストではスカート部下方から加圧した。また、頂部から加圧する鋳造、およびまったく加圧しない鋳造も行った。
その後、得られた各鋳物材の密度をアルキメデス法により測定した。その測定値とそれを鋳巣のできにくい直方体形状に重力鋳造で鋳造した鋳造材の密度との差を求め、各鋳造材の気孔率を算出した。その結果を表1に示す。
この結果から、ピンボス部を加圧したものが最も気孔率が小さい、すなわち鋳巣等の鋳造欠陥が少ないことがわかる。
As the aluminum alloy, an Al-Si-Ni-Cu-Mg based alloy (proposed in Japanese Patent Application No. 2002-187582) developed by the present applicants for a high-load piston was used.
An aluminum alloy molten metal that has been subjected to a molten metal cleaning process such as a degassing process was cast into a simple piston shape shown in FIG. 7 by a die casting method. Casting was performed not by the so-called DVO method, but by a pore-free (PF) die casting method in which the air in the mold cavity was replaced with oxygen before casting, and then the molten metal was pressed into the cavity. During casting, the pin boss portion was directly pressed from the side in the die casting of FIG. 7A, and pressed from below the skirt portion in the die casting of FIG. 7B. Moreover, the casting which pressurizes from a top part and the casting which does not pressurize at all were also performed.
Then, the density of each obtained casting material was measured by Archimedes method. The difference between the measured value and the density of the cast material cast by gravity casting into a rectangular parallelepiped shape in which the cast hole was difficult to be found was determined, and the porosity of each cast material was calculated. The results are shown in Table 1.
From this result, it can be seen that the pressure applied to the pin boss portion has the smallest porosity, that is, there are few casting defects such as a cast hole.

Figure 0003967305
Figure 0003967305

なお、ピンボス部を側方から加圧する際、局部加圧を加える加圧体を、予めキャビティ内に突出させておき、ピンボス部の表層部が凝固した段階で、加圧材をさらに突出させてピンボス部を加圧した。そして、鋳造材の外観を観察したところ、いずれの加圧部分にもシミ出しは観察されなかった。比較として、加圧材をキャビティ内に突出させずに、加圧材の先端をキャビティの内壁と面一にした状態で溶湯を圧入し、その後ピンボス部を加圧する鋳造を行った。金型と加圧材の摺動部にシミ出しが入り込み、金型から鋳造材を取り出すのに苦労した。鋳造材を取り出した後、加圧材の外観を観察したところ、かじりの跡が認められた。   In addition, when pressing the pin boss part from the side, a pressurizing body that applies local pressure is protruded into the cavity in advance, and when the surface layer part of the pin boss part is solidified, the pressing material is further protruded. The pin boss was pressurized. And when the external appearance of the cast material was observed, no stain was observed in any of the pressurized portions. As a comparison, casting was performed in which the molten metal was press-fitted with the tip of the pressurizing material being flush with the inner wall of the cavity without protruding the pressurizing material into the cavity, and then the pin boss portion was pressurized. Spots entered the sliding part of the mold and the pressure material, and it was difficult to remove the cast material from the mold. After the cast material was taken out, the appearance of the pressure material was observed, and a trace of galling was observed.

実施例1で使用したものと同じアルミニウム合金溶湯を、脱ガス処理等の溶湯清浄化処理を施した後、ピストン形状にダイカスト法で鋳造した。
鋳造は、溶湯を圧入する前に金型のキャビティ内を10kPaまで真空吸引し、その後キャビティ内に酸素を注入し、キャビティ内の圧力を大気圧以上とした時点で、プランジャを後退させ、スリーブの注湯口を開口させ、溶湯を注湯口に注湯した。溶湯を注湯した後、プランジャを前進させてスリーブの注湯口を閉じ、再度真空吸引を開始して、キャビティ内の圧力が予め定められた圧力になった時点で、プランジャをさらに前進させてキャビティ内に溶湯を圧入するダイカストを行った。
溶湯をキャビティ内に圧入するためにプランジャをさらに前進させるときのキャビティ内の圧力を大気圧よりも約70kPa,約60kPaおよび約50kPa低くした圧力である、30kPa,40kPaおよび50kPaの3水準に変化させて、それぞれ5回の鋳造を行った。
その後、実施例1と同様に、得られた各鋳物材の密度をアルキメデス法により測定した。その測定値とそれを鋳巣のできにくい直方体形状に重力鋳造で鋳造した鋳造材の密度との差を求め、各鋳造材の気孔率を算出した。その結果を表2および図8に示す。
この結果から、再度真空吸引し、溶湯を圧入するさいのキャビティ内の圧力を30kPa以下にまで低下させておくと、それを超えるものと比して気孔率が小さく、しかも気孔率のバラツキが小さい鋳造体が得られることがわかる。
The same molten aluminum alloy as used in Example 1 was subjected to molten metal cleaning treatment such as degassing treatment, and then cast into a piston shape by a die casting method.
Casting is performed by vacuuming the cavity of the mold to 10 kPa before injecting the molten metal, and then injecting oxygen into the cavity. The pouring port was opened, and the molten metal was poured into the pouring port. After pouring the molten metal, the plunger is advanced to close the pouring port of the sleeve, vacuum suction is started again, and when the pressure in the cavity reaches a predetermined pressure, the plunger is further advanced to Die casting was performed to inject molten metal into the inside.
The pressure in the cavity when the plunger is further advanced in order to press the molten metal into the cavity is changed to three levels of 30 kPa, 40 kPa, and 50 kPa, which are lower than the atmospheric pressure by about 70 kPa, about 60 kPa, and about 50 kPa. Each was cast five times.
Thereafter, in the same manner as in Example 1, the density of each obtained casting material was measured by the Archimedes method. The difference between the measured value and the density of the cast material cast by gravity casting into a rectangular parallelepiped shape in which the cast hole was difficult to be found was determined, and the porosity of each cast material was calculated. The results are shown in Table 2 and FIG.
From this result, when the vacuum is sucked again and the pressure in the cavity when the molten metal is injected is reduced to 30 kPa or less, the porosity is smaller than that exceeding that, and the variation in porosity is small. It turns out that a casting is obtained.

Figure 0003967305
Figure 0003967305

ピストンをダイカスト法で製造する際の、欠陥発生箇所を説明する図The figure explaining the defect occurrence place when manufacturing the piston by the die casting method 本発明の、ピンボス部を局部加圧する態様を説明する図The figure explaining the aspect which locally pressurizes the pin boss | hub part of this invention 局部加圧の際に、凝固殻の作用によりシミ出しの発生状況を説明する図A diagram explaining the occurrence of stains due to the action of the solidified shell during local pressurization 凝固殻形成の前に加圧材を突出させておく態様を説明する図The figure explaining the aspect which makes a pressurizing material project before solidification shell formation 凝固殻の作用によりシミ出しを防ぐ態様を説明する図The figure explaining the aspect which prevents a stain out by the action of the solidification shell ダイカストマシーンの概略を説明する図Diagram explaining the outline of the die casting machine 実施例1で用いた簡易ピストン形状と局部加圧位置を説明する図The figure explaining the simple piston shape and local pressurization position which were used in Example 1 再度真空吸引したときの圧力と気孔率の関係を説明する図Diagram explaining the relationship between pressure and porosity when vacuum is again drawn

Claims (2)

ほぼ円板形をしたヘッド壁とこのヘッド壁から延びたピンボス部およびスカート部を有する内燃機関用ピストンをダイカスト法で鋳造する際、溶湯を金型のダイキャビティ内に注湯する前に、局部加圧を加える加圧部材を、予めキャビティ内に突出させておき、溶湯を金型のダイキャビティ内に注湯した後、注湯された溶湯の表層部が凝固し、内部に未凝固部分が残っている状態のときに、前記加圧部材をさらに突出させてピストンのピンボス部を局部的に加圧することを特徴とする内燃機関用ピストンの製造方法。 When casting a piston for an internal combustion engine having a substantially disc-shaped head wall and a pin boss portion and a skirt portion extending from the head wall by the die casting method, before pouring the molten metal into the die cavity of the mold , A pressurizing member for applying pressure is protruded into the cavity in advance, and after pouring the molten metal into the die cavity of the mold, the surface layer portion of the poured molten metal is solidified, and the unsolidified portion is inside. A method for manufacturing a piston for an internal combustion engine, characterized in that, in the remaining state, the pressure member is further protruded to locally pressurize the pin boss portion of the piston. ダイカスト法としては、金型のキャビティ内を真空吸引した後、真空吸引にオーバーラップさせてスリーブから活性ガスをキャビティ内に注入し、キャビティ内の雰囲気圧を大気圧以上にした後、スリーブに溶湯を注入し、次いで再度真空吸引してキャビティ内を30kPa以下の圧力にした後に、プランジャを前進させてスリーブ内から溶湯をキャビティに圧入する方法を適用する請求項1に記載の内燃機関用ピストンの製造方法。 In the die casting method, the inside of the cavity of the mold is vacuum-sucked, and then the active gas is injected from the sleeve into the cavity by overlapping with vacuum suction, and the atmospheric pressure in the cavity is increased to atmospheric pressure or higher, and then the molten metal is added to the sleeve. The piston of the internal combustion engine according to claim 1, wherein after the vacuum is sucked again and the inside of the cavity is brought to a pressure of 30 kPa or less, the plunger is advanced to press the molten metal into the cavity from the sleeve. Production method.
JP2003323022A 2003-09-16 2003-09-16 Manufacturing method of piston for internal combustion engine Expired - Fee Related JP3967305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003323022A JP3967305B2 (en) 2003-09-16 2003-09-16 Manufacturing method of piston for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003323022A JP3967305B2 (en) 2003-09-16 2003-09-16 Manufacturing method of piston for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005088033A JP2005088033A (en) 2005-04-07
JP3967305B2 true JP3967305B2 (en) 2007-08-29

Family

ID=34454219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003323022A Expired - Fee Related JP3967305B2 (en) 2003-09-16 2003-09-16 Manufacturing method of piston for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3967305B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262190A (en) * 2008-04-24 2009-11-12 Toyota Central R&D Labs Inc Die casting
JP5956869B2 (en) * 2012-08-22 2016-07-27 東芝機械株式会社 Molding machine
RU2771078C1 (en) * 2021-03-23 2022-04-26 Георгий Александрович Котов Method for controlling the process of producing workpieces of pistons of internal combustion engines from hypereutectic aluminium alloys
CN113084119B (en) * 2021-03-29 2022-05-06 哈尔滨工业大学 Use method of light alloy vacuum high-pressure casting flexible loading casting-forging composite forming device
CN114042867A (en) * 2021-11-26 2022-02-15 山西柴油机工业有限责任公司 Local pressurizing process for casting box body
CN114749628A (en) * 2022-03-31 2022-07-15 广东鸿图科技股份有限公司 Ultra-large aluminum alloy vacuum die-casting system and method

Also Published As

Publication number Publication date
JP2005088033A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP3994735B2 (en) Die casting method and die casting machine
WO2014097565A1 (en) Casting apparatus and casting method
US20080053637A1 (en) Method and apparatus for manufacturing aluminum die-cast product
WO1993007977A1 (en) Device and method of vacuum casting
JP3967305B2 (en) Manufacturing method of piston for internal combustion engine
JP2004249334A (en) High vacuum die-casting method using oxygen shield
US20170182552A1 (en) Method for operating a vacuum die-casting machine
JP4274482B2 (en) Die casting equipment
JP2008246503A (en) Casting method and die-casting machine
JP4810706B2 (en) Die casting apparatus and die casting method
JP2956488B2 (en) Die casting apparatus and die casting method
JP2005125401A (en) Vertical type casting apparatus
JP3835282B2 (en) Die casting machine
JPH05123845A (en) Apparatus and method for vacuum casting
JP3742457B2 (en) Die casting mold
JP7398313B2 (en) casting equipment
KR102269253B1 (en) Auxiliary device for diecasting
JP3417988B2 (en) Molten forging equipment
US2866240A (en) Mechanism for reducing porosity of die castings
JPH0233468B2 (en)
JP2005046905A (en) Vacuum die-casting machine
KR102415088B1 (en) Method for Manufacturing Master Cylinder Using Pore-free Die Casting Process and Apparatus for the Same
JP4011507B2 (en) Injection sleeve lubrication apparatus and injection sleeve lubrication method for horizontal injection die casting machine
JPS6372463A (en) Die casting apparatus
JPH07155923A (en) Method and device for die casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3967305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160608

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees