JP3966432B2 - Bedrock collapse prevention method - Google Patents

Bedrock collapse prevention method Download PDF

Info

Publication number
JP3966432B2
JP3966432B2 JP29161397A JP29161397A JP3966432B2 JP 3966432 B2 JP3966432 B2 JP 3966432B2 JP 29161397 A JP29161397 A JP 29161397A JP 29161397 A JP29161397 A JP 29161397A JP 3966432 B2 JP3966432 B2 JP 3966432B2
Authority
JP
Japan
Prior art keywords
rock mass
steel
collapse
stable
rock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29161397A
Other languages
Japanese (ja)
Other versions
JPH11107224A (en
Inventor
彬 橋本
洋一郎 加藤
正良 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittoc Constructions Co Ltd
Original Assignee
Nittoc Constructions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittoc Constructions Co Ltd filed Critical Nittoc Constructions Co Ltd
Priority to JP29161397A priority Critical patent/JP3966432B2/en
Publication of JPH11107224A publication Critical patent/JPH11107224A/en
Application granted granted Critical
Publication of JP3966432B2 publication Critical patent/JP3966432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、道路や鉄道の自然又は造成斜面において、生活環境に影響を与える岩盤崩壊による被災防止対策および崩壊しそうな転石、岩盤、岩塊等を安定させる岩盤岩塊崩落対策工法に関するものである。
【0002】
【従来の技術】
従来、安定している転石などを人力や火薬で小割りして除去する破砕工が知られている。
【0003】
また、基盤から分離した岩盤や転石にワイヤーロ−プを格子状に巻付けたり、ロープネットで包囲するロープ掛け工やロ−プネット工が知られている。
【0004】
また、基盤から分離した落ちそうな岩塊や転石に接着力のある注入材を注入して密着固定する岩盤密着工も知られている。
【0005】
さらに、崩壊の危険がある岩塊や岩盤の前面に、コンクリート張りや受圧板を取り付けてアンカー工やロックボルト工で安定した岩盤に密着固定するアンカー工やロックボルト工も知られている。
【0006】
【発明が解決しようとする課題】
従来の破砕工法では落ちそうな転石の除去ができないという課題がある。
【0007】
また、従来のロープ掛け工、ロ−プネット工では岩塊にロープを掛けるだけなので、落ちそうな岩塊には作業に危険が伴うために施工できないと共に、ロープを掛けるだけなので落ちそうな岩盤を密着安定させることができない(崩壊した岩盤をロープの中に包むだけ)という課題がある。
【0008】
また、従来の岩盤密着工では、現状で安定している転石や岩塊以外の今にも落ちそうな岩塊や転石には作業に危険が伴うために施工できず、また表面接着なので接着岩が風化している場合が多い現状では使用材料の持っている接着力の効果が期待できない上に、接着した効果の実証が難しいという課題がある。
【0009】
さらに、アンカー工やロックボルト工では、大規模な作業足場が必要となり、仮設費が高くなると共に、施工中に落ちそうな岩塊の場合はそのまま施工ができず、しかも崩壊岩塊の正面からの施工のため非常に危険で、施工中の安全対策費がかかるという課題がある。
【0010】
【課題を解決するための手段】
請求項1の発明では、崩落の危険性がある岩塊1を挟んでこれが置かれている崩壊の危険のない安定岩盤2の相対する1対又は複数対の位置に削孔3,3’を行い、各削孔3,3’の中にそれぞれ1〜複数本のPC鋼撚り線4,4’の端部を挿入すると共に、モルタル等のセメント系の定着材5を注入してその固結により安定岩盤2に固定し、相対して固定したPC鋼撚り線4,4’を崩壊の恐れのある岩塊1に巻きつけ、相対する周囲に防錆被覆を施したPC鋼撚り線4,4’を緊張状態で接続する周囲に防錆被覆を施した鋼線接続具7に通し、ジャッキによりPC鋼撚り線4,4’を緊張して、岩塊1を比較的安全な岩塊1の周辺部において安定岩盤2に緊結固定することにより、危険な作業を少なくして崩落の危険がある不安定な岩塊1をPC鋼撚り線4,4’により安定的に緊結密着することができる。
【0011】
さらに請求項1の発明では、崩落の危険性がある岩塊1を挟んでこれが置かれている崩壊の危険のない安定岩盤2の相対する1対又は複数対の位置に削孔3,3’を行い、各削孔3,3’の中にそれぞれ1〜複数本のPC鋼撚り線4,4’の端部を挿入すると共に、モルタル等のセメント系の定着材5を注入してその固結により安定岩盤2に固定し、相対して固定したPC鋼撚り線4,4’を崩壊の恐れのある岩塊1に巻きつけ、相対するPC鋼撚り線4,4’を緊張状態で接続する鋼線接続具7に通し、ジャッキによりPC鋼撚り線4,4’を緊張して、岩塊1を安定岩盤2に緊結固定し、この状態で前記岩塊1の周囲部を通してその下方の安定岩盤2まで複数本の削孔9を行い、この削孔9内にモルタル等のセメント系の定着材10を注入し、その中に必要な長さの鋼棒11を挿入して固結一体化させることにより、PC鋼撚り線4,4’により岩塊1を仮設的に緊結固定した安定状態で、鋼棒11の設置施工を安全に行うことができ、これによって岩塊1を定着材10で固結した鋼棒11により安定岩盤に縫い付けて一体化させて崩落を確実に防止することができる。
【0012】
請求項2の発明では、崩落の危険性がある岩塊1を挟んでこれが置かれている崩壊の危険のない安定岩盤2の相対する1対又は複数対の位置に削孔3,3’を行い、各削孔3,3’の中にそれぞれ1〜複数本のPC鋼撚り線4,4’の端部を挿入すると共に、モルタ ル等のセメント系の定着材5を注入してその固結により安定岩盤2に固定し、相対して固定した周囲に防錆被覆を施したPC鋼撚り線4,4’を崩壊の恐れのある岩塊1に巻きつけ、相対して固定したPC鋼撚り線4,4’を緊張状態で接続する周囲に防錆被覆を施した鋼線接続具7に通し、ジャッキによりPC鋼撚り線4,4’を緊張して、岩塊1を安定岩盤2に緊結固定した安定状態で、前記岩塊1の周囲部を通してその下方の安定岩盤2まで複数本の削孔9を行い、この削孔9内にモルタル等のセメント系の定着材10を注入し、その中に必要な長さの鋼棒11を挿入して固結一体化させることにより、PC鋼撚り線4,4’により岩塊を緊結固定した安定状態で鋼棒11の設置施工を行うことができ、これによって岩塊1を定着材10で固結した鋼棒11により安定岩盤に縫い付けて一体化させてPC鋼撚り線4,4’の緊結固定と併せて崩落をより確実に防止することができると共に、PC鋼撚り線4,4’により緊結固定された岩塊1が長期的な風化によってさらに小さく割れて剥離、分離する恐れがある場合においても、岩塊1の崩落を確実に防止することができる。
【0013】
請求項3の発明では、崩壊の危険のある不安定岩盤2’を通してその底層にある安定岩盤2まで所要数の削孔9を行い、この削孔9内にモルタル等のセメント系の定着材10を注入し、その中に必要な長さの鋼棒11を挿入して固結一体化させることにより、不安定岩盤2’を安定岩盤2に縫い付けて一体化させ、簡単な作業で低コストで迅速に不安定岩盤を安定化することができる。
【0014】
さらに、請求項3の発明では、崩壊の危険のある不安定岩盤2’の下方の部分を通してその底層にある安定岩盤2まで所要数の削孔9を行い、この削孔9内にモルタル等のセメント系の定着材10を注入し、その中に必要な長さの鋼棒11を挿入して固結一体化させ、前記不安定岩盤2’の下方の部分に最初に岩盤2,2’に固定した鋼棒11の露出頭部に鋼棒設置作業を行うのに必要な仮設移動足場12を仮止めし、この仮設移動足場12においてさらに上方の岩盤部に上記同様の鋼棒設置工(削孔−定着材注入−鋼棒挿入−固定)を施工した後、仮設移動足場12を取り外して上方に少し引き上げ、先に固定された鋼棒11に再度仮設移動足場を仮止し、順次同様に先行して施工した鋼棒11を利用しながら鋼棒設置工と仮設移動足場12の移動を繰り返して上方に施工を進行することにより、大規模な足場を用いることなく小さくて廉価な仮設移動足場を用い、しかも先行して施工した鋼棒11を利用して仮設足場12を順次仮止め及び取り外しを繰り返して上方に向かって移動しながら円滑かつ迅速に施工することができる。
【0015】
【発明の実施の形態】
崩落の危険性がある岩塊(転石)に対する対策工法の一の発明としては、不安定岩塊を周囲に防錆被覆を施したPC鋼撚り線で崩落の危険のない岩盤に耐久的に緊結する方法である。
【0016】
このPC鋼撚り線の緊結に先だって、崩落の危険性がある岩塊を挟んでこれが置かれている崩壊の危険のない安定岩盤の相対する1対又は複数対の位置に削孔を行い、各削孔の中にそれぞれ1〜複数本のPC鋼撚り線の端部を挿入すると共に、モルタル等のセメント系の定着材を注入してその固結により安定岩盤に固定する。
【0017】
相対して固定したPC鋼撚り線を崩壊の恐れのある岩塊に巻きつけ、相互のPC鋼撚り線同士を緊張しながら周囲に防錆被覆を施した鋼線接続具で緊結する。
【0018】
崩落の危険性がある不安定岩盤に対する対策工法の一の発明としては、崩壊の危険のある不安定岩盤を通してその底層にある安定岩盤まで削孔を行い、この削孔内にモルタル等のセメント系の定着材を注入し、その中に必要な長さの鋼棒を挿入し、この定着材で固結一体化した鋼棒を介して不安定岩盤を安定岩盤に縫い付けて一体化させる方法である。
【0019】
この施工に際しては崩壊の危険のある不安定岩盤の下方の部分から上方に向かって施工し、最初に岩盤に固定した鋼棒の露出頭部に鋼棒設置作業を行うのに必要な仮設移動足場を仮止めし、この仮設移動足場においてさらに上方の岩盤部に上記同様の鋼棒設置工(削孔−定着材注入−鋼棒挿入−固定)を施工した後、仮設移動足場を取り外して上方に少し引き上げ、先に固定された鋼棒に再度仮設移動足場を仮止めし、順次同様に先行して施工した鋼棒を利用しながら鋼棒設置工と仮設移動足場の移動を繰り返して上方に施工を進行してゆく。
【0020】
崩落の危険性がある岩塊に対する対策工法の他の発明としては、PC鋼撚り線による岩盤緊結で安定した岩塊の周りが洗堀される恐れがある場合に、その底部周囲にコンクリートやモルタルなどの根固め硬化材を盛り付けて洗堀防止を行う方法である。
【0021】
崩落の危険性がある岩塊に対する対策工法のさらに他の発明としては、PC鋼撚り線で緊結固定された岩塊の周囲部を通してその下方の安定岩盤まで複数本の削孔を行い、この削孔内にモルタル等のセメント系の定着材を注入し、その中に必要な長さの鋼棒を挿入して固結一体化させることにより、PC鋼撚り線により岩塊を仮設的に緊結固定した安定状態で、鋼棒の設置施工を行うことができ、これによって岩塊を定着材で固結した鋼棒により安定岩盤に縫い付けて一体化させる方法である。
【0022】
崩落の危険性がある岩塊に対する対策工法のさらに他の発明としては、周囲に防錆被覆を施したPC鋼撚り線で緊結固定された岩塊の周囲部を通してその下方の安定岩盤まで複数本の削孔を行い、この削孔内にモルタル等のセメント系の定着材を注入し、その中に必要な長さの鋼棒を挿入して固結一体化させることにより、PC鋼撚り線により岩塊を緊結固定した安定状態で、鋼棒の設置施工を行うことができ、これによって岩塊を定着材で固結した鋼棒により安定岩盤に縫い付けて一体化させ、PC鋼撚り線の緊結固定と併せて崩落をより確実に防止すると共に、PC鋼撚り線により緊結固定された岩塊が長期的な風化によってさらに小さく割れて剥離、分離する恐れがある場合においても、岩塊の崩落を確実に防止するようにした方法である。
【0023】
【実施例】
(実施例1)
【0024】
図2〜図10は崩落の危険性がある岩塊(転石)をPC鋼撚り線で崩落の危険のない岩盤に緊結する岩盤緊結工法の実施例を示したもので、先ず崩落の危険性がある岩塊(転石を含む)1を挟んでこれが置かれている崩壊の危険のない安定岩盤2の相対する1対又は複数対の位置に直径55mm〜135mm 程度の孔径で、必要深さの削孔3,3’を行う。
【0025】
次に、各削孔3,3’の中にそれぞれ1〜複数本のPC鋼撚り線4,4’の端部を挿入すると共に、モルタル等のセメント系の定着材5を注入してその固結により安定岩盤2に固定する。
【0026】
相対して固定したPC鋼撚り線4,4’をその周囲を覆う保護シース6と共に崩壊の恐れのある岩塊1に巻きつける。
【0027】
この場合、巻きつけるPC鋼撚り線4,4’は、複数対の削孔3,3’から各1本づつ出して並列的に巻き付けるか、あるいは一対又は複数対の削孔3,3’から複数本出して放射状に巻き付け、安全な位置において各相対するPC鋼撚り線4,4’を交差スリーブの端部に設けた楔定着具で斜め交差状に緊結する鋼線接続具7に通し、ジャッキによりPC鋼撚り線4,4’を緊張した状態で鋼線接続具7の楔定着具で締結し、岩塊1を安定岩盤2に緊結固定させる。
【0028】
この岩盤緊結工法に用いるPC鋼撚り線4,4’は図8に示すように、長期的に耐久性(防錆)を保持させるためにその周囲に被覆した保護シース6の端部を密封して削孔3,3’内に埋設すると共に、シース内部に防錆油8を注入し、さらに図10に示すように鋼線接続具7の周囲を防水保護膜7’で防錆被覆する。
【0029】
なお、この岩盤緊結工法を後述するように一時的な仮設として行う場合には、図7に示すように削孔3,3’から出た部分を保護シース6で周囲を覆ったPC鋼撚り線4,4’を用い、さらに図9に示すように周囲を防錆保護膜7’で被覆しない鋼線接続具7を用いる。
【0030】
(実施例2)
【0031】
図11及び図12は崩落の危険性がある不安定岩盤に鋼棒を通して固定する鋼棒挿入工法の実施例を示したもので、先ず崩壊の危険のある不安定岩盤2’を通してその底層にある安定岩盤2まで、直径40mm〜55mmの孔径で、必要深さの削孔9を並列して2本づつ行う。
【0032】
この削孔9内にモルタル、コンクリート等のセメント系の定着材10を注入し、その中に必要な長さの鉄筋、PC鋼棒あるいはロックボルト等の鋼棒11を挿入して固結一体化させ、これによって不安定岩盤2’を安定岩盤2に縫い付けて安定的に一体化させる。
【0033】
なお、鋼棒11としては鉄筋として用いる異形総ネジ式の鋼棒を使用することが好ましい。
【0034】
施工は崩壊の危険のある不安定岩盤2’の下方の部分から上方に向かって施工し、最初に岩盤2,2’に固定した上下2個所の鋼棒11の露出頭部に鋼棒設置作業を行うのに必要な仮設移動足場12を仮止めする。
【0035】
そして、この仮設移動足場12においてさらに上方の岩盤部に上記同様の鋼棒設置工(削孔−定着材注入−鋼棒挿入−固定)を施工した後、仮設移動足場12を取り外して上方に少し引き上げ、先に固定された上下2個所の鋼棒11に再度仮設移動足場12を仮止めし、順次同様に先行して施工した鋼棒11を利用しながら鋼棒設置工と仮設移動足場12の移動を繰り返して上方に施工を進行してゆく。
【0036】
全体の施工完了後、削孔9から出た不必要な鋼棒11の頭部を切断する。
【0037】
(実施例3)
【0038】
図13は上記岩盤緊結工法に根固めコンクリート工法を併用した実施例を示したもので、岩盤緊結で安定した岩塊1の周りが洗堀される恐れがある場合に、その底部周囲にコンクリートやモルタルなどの根固め硬化材13を打設又は吹付けにより盛り付けて洗堀防止を行う。
【0039】
(実施例4)
【0040】
図14及び図15は上記岩盤緊結工法に鋼棒挿入工法を併用した実施例を示したもので、先ず上記岩盤緊結工法を仮設的に併用する場合には、上記のように保護シース6や防錆油8で防錆被覆していないPC鋼撚り線4,4’や防錆保護膜7’で防錆被覆しない鋼線接続具7を用いて岩塊1を仮設的に緊結固定した状態で、岩塊1の周囲部を通してその下方の安定岩盤2まで複数本の削孔9を行い、この削孔9内にモルタル等のセメント系の定着材10を注入し、その中に必要な長さの鋼棒11を挿入して固結一体化させることにより、PC鋼撚り線4,4’により岩塊1を仮設的に緊結固定した安定状態で、鋼棒11の設置施工を安全に行い、これによって岩塊1を定着材10で固結した鋼棒11により安定岩盤に一体化させて崩落を確実に防止する。
【0041】
次に、上記岩盤緊結工法を本設的に併用する場合には、上記のように保護シース6や防錆油8で防錆被覆したPC鋼撚り線4,4’や防錆保護膜7’で防錆被覆した鋼線接続具7を用いて岩塊1を耐久的に緊結固定した状態で、岩塊1の周囲部を通してその下方の安定岩盤2まで複数本の削孔9を行い、この削孔9内にモルタル等のセメント系の定着材10を注入し、その中に必要な長さの鋼棒11を挿入して固結一体化させることにより、PC鋼撚り線4,4’により岩塊1を緊結固定した安定状態で、鋼棒11の設置施工を安全に行い、これによって岩塊1を定着材10で固結した鋼棒11により安定岩盤に縫い付けて一体化させて崩落を確実に防止すると共に、PC鋼撚り線4,4’により緊結固定された岩塊1が長期的な風化によってさらに小さく割れて剥離、分離する恐れがある場合においても、岩塊1の崩落を確実に防止する。
【0042】
【発明の効果】
以上の通りこの発明によれば、以下の効果を奏する。
【0043】
請求項1の発明では、崩落の危険性がある岩塊を挟んでこれが置かれている崩壊の危険のない安定岩盤の相対する1対又は複数対の位置に削孔を行い、各削孔の中にそれぞれ1〜複数本のPC鋼撚り線の端部を挿入すると共に、モルタル等のセメント系の定着材を注入してその固結により安定岩盤に固定し、相対して固定した周囲に防錆被覆を施したPC鋼撚り線を崩壊の恐れのある岩塊に巻きつけ、相対するPC鋼撚り線を緊張状態で接続する周囲に防錆被覆を施した鋼線接続具に通し、ジャッキによりPC鋼撚り線を緊張して、岩塊を比較的安全な岩塊の周辺部において安定岩盤に緊結固定するので、危険な作業を少なくして不安定な岩塊を耐久性を保持したPC鋼撚り線により安定的に緊結することができる。
【0044】
さらに請求項1の発明では、崩落の危険性がある岩塊を挟んでこれが置かれている崩壊の危険のない安定岩盤の相対する1対又は複数対の位置に削孔を行い、各削孔の中にそれぞれ1〜複数本のPC鋼撚り線の端部を挿入すると共に、モルタル等のセメント系の定着材を注入してその固結により安定岩盤に固定し、相対して固定したPC鋼撚り線を崩壊の恐れのある岩塊に巻きつけ、相対するPC鋼撚り線をこれらを互いに緊張状態で緊結する鋼線接続具に通し、ジャッキにより相対するPC鋼撚り線を緊張して緊結し、岩塊を安定岩盤に緊結固定すると共に、前記岩塊の周囲部を通してその下方の安定岩盤まで複数本の削孔を行い、この削孔内にモルタル等のセメント系の定着材を注入し、その中に必要な長さの鋼棒を挿入して固結一体化させるので、PC鋼撚り線により岩塊を仮設的に緊結固定した安定状態で、鋼棒の設置施工を安全に行うことができ、これによって岩塊を定着材で固結した鋼棒により安定岩盤に一体化させて崩落を確実に防止することができる。
【0045】
請求項2の発明では、崩落の危険性がある岩塊を挟んでこれが置かれている崩壊の危険のない安定岩盤の相対する1対又は複数対の位置に削孔を行い、各削孔の中にそれぞれ1〜複数本のPC鋼撚り線の端部を挿入すると共に、モルタル等のセメント系の定着材を注入してその固結により安定岩盤に固定し、相対して固定した周囲に防錆被覆を施したPC鋼撚り線を崩壊の恐れのある岩塊に巻きつけ、相対するPC鋼撚り線を緊張状態で接続する周囲に防錆被覆を施した鋼線接続具に通し、ジャッキによりPC鋼撚り線を緊張して、岩塊を安定岩盤に緊結固定した安定状態で、前記岩塊の周囲部を通してその下方の安定岩 盤まで複数本の削孔を行い、この削孔内にモルタル等のセメント系の定着材を注入し、その中に必要な長さの鋼棒を挿入して固結一体化させるので、PC鋼撚り線により岩塊を緊結固定した安定状態で鋼棒の設置施工を行うことができ、これによって岩塊を定着材で固結した鋼棒により安定岩盤に一体化させ、PC鋼撚り線の緊結固定と併せて崩落をより確実に防止することができると共に、PC鋼撚り線により緊結固定された岩塊が長期的な風化によってさらに小さく割れて剥離、分離する恐れがある場合においても、岩塊の崩落を確実に防止することができる。
【0046】
請求項3の発明では、崩壊の危険のある不安定岩盤を通してその底層にある安定岩盤まで所要数の削孔を行い、この削孔内にモルタル等のセメント系の定着材を注入し、その中に必要な長さの鋼棒を挿入して固結一体化させることにより、不安定岩盤を安定岩盤に縫い付けて一体化するので、簡単な作業で迅速かつ低コストで不安定岩盤を安定化することができる。
【0047】
さらに請求項3の発明では、崩壊の危険のある不安定岩盤の下方の部分を通してその底層にある安定岩盤まで、所要数の削孔を行い、この削孔内にモルタル等のセメント系の定着材を注入し、その中に必要な長さの鋼棒を挿入して固結一体化させ、前記不安定岩盤の下方の部分に最初に岩盤に固定した鋼棒の露出頭部に鋼棒設置作業を行うのに必要な仮設移動足場を仮止めし、この仮設移動足場においてさらに上方の岩盤部に上記同様の鋼棒設置工(削孔−定着材注入−鋼棒挿入−固定)を施工した後、仮設移動足場を取り外して上方に少し引き上げ、先に固定された鋼棒に再度仮設移動足場を仮止し、順次同様に先行して施工した鋼棒を利用しながら鋼棒設置工と仮設移動足場の移動を繰り返して上方に施工を進行することにより、大規模な足場を用いることなく小さくて廉価な仮設移動足場を用い、しかも先行して施工した鋼棒を利用して仮設足場を順次仮止め及び取り外しを繰り返して上方に向かって移動しながら円滑かつ迅速に施工することができる。
【図面の簡単な説明】
【図1】この発明の総合的な実施例を示す側面図である。
【図2】この発明の第一実施例の一施工態様を示す横断面図である。
【図3】この発明の第一実施例の一施工態様を示す側面図である。
【図4】この発明の第一実施例の一施工態様を示す平面図である。
【図5】この発明の第一実施例の他の施工態様を示す側面図である。
【図6】この発明の第一実施例の他の施工態様を示す平面図である。
【図7】この発明の第一実施例におけるPC鋼撚り線の固定状態の一態様を示す断面図である。
【図8】この発明の第一実施例におけるPC鋼撚り線の固定状態の他の態様を示す断面図である。
【図9】この発明の第一実施例におけるPC鋼撚り線の接続状態の一態様を示す断面図である。
【図10】この発明の第一実施例におけるPC鋼撚り線の接続状態の他の態様を示す断面図である。
【図11】この発明の第二実施例の施工態様を示す側面図である。
【図12】この発明の第二実施例の施工態様を示す拡大断面図である。
【図13】この発明の第三実施例の施工態様を示す側面図である。
【図14】この発明の第四実施例の施工態様を示す横断面図である。
【図15】この発明の第四実施例の施工態様を示す平面図である。
【符号の説明】
1 岩塊
2 安定岩盤
3 削孔
3’ 削孔
4 PC鋼撚り線
4’ PC鋼撚り線
5 定着材
6 保護シース
7 鋼線接続具
7’ 防水保護膜
8 防錆油
9 削孔
10 定着材
11 鋼棒
12 仮設移動足場
13 根固め硬化材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to measures for preventing damage caused by rock collapse that affects the living environment on natural or constructed slopes of roads and railways, and a rock mass collapse countermeasure construction method that stabilizes rocks, rocks, rock masses, etc. that are likely to collapse. .
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a crusher that removes a stable boulder by dividing it with human power or gunpowder is known.
[0003]
In addition, rope wrapping and rope netting are known in which wire ropes are wound around a bedrock or rolling stone separated from the base in a grid pattern, or surrounded by a rope net.
[0004]
In addition, a rock mass adhesion work is known in which an injecting material with adhesive strength is injected into a rock block or a boulder that is likely to fall off from the base and is fixed in close contact.
[0005]
In addition, anchors and rock bolts are also known in which concrete tension or pressure plates are attached to the front of rock masses or rocks that are at risk of collapse, and are firmly fixed to the stable rock by anchors or rock bolts.
[0006]
[Problems to be solved by the invention]
There is a problem that the conventional crushing method cannot remove the falling rocks.
[0007]
Also, with conventional rope hangers and rope nets, it is only possible to hang a rope on a rock mass, so it is impossible to construct a rock mass that is likely to fall because the work involves danger. There is a problem that it is not possible to stabilize the contact (just wrap the collapsed rock in a rope).
[0008]
In addition, with conventional rock mass adhesion work, it is impossible to construct rock blocks and rocks that are likely to fall in addition to stable rocks and rock blocks at the present time because work involves danger, and because of the surface adhesion, the bonded rock is weathered. In the current situation where there are many cases, there is a problem that it is difficult to verify the effect of adhesion, in addition to the expectation of the effect of the adhesive strength of the material used.
[0009]
In addition, anchor work and rock bolt work require a large-scale work scaffolding, which increases the temporary cost, and in the case of a rock mass that is likely to fall during construction, it cannot be constructed as it is, and from the front of the collapsed rock mass There is a problem that it is very dangerous for construction and cost of safety measures during construction is required.
[0010]
[Means for Solving the Problems]
According to the first aspect of the present invention, the holes 3 and 3 'are formed at a pair or a plurality of pairs of positions of the stable rock mass 2 where there is no risk of collapse where the rock mass 1 which is at risk of collapse is placed. And insert the ends of one or more PC steel stranded wires 4 and 4 'into each of the drilling holes 3 and 3', and inject a cement-based fixing material 5 such as mortar to consolidate them. PC steel stranded wire 4, which is fixed to stable bedrock 2 by wrapping the PC steel stranded wire 4, 4 'fixed relative to the rock mass 1 which is likely to collapse, and which has a rust-proof coating around the surrounding 4 'is connected in a tensioned state through a steel wire connector 7 having a rust-proof coating around it, and a PC steel stranded wire 4, 4' is tensioned with a jack to make the rock mass 1 a relatively safe rock mass 1 By tightening and fixing to the stable rock mass 2 in the periphery of the rock, the unstable rock mass 1 with less danger of collapsing and less risk of collapsing is PC It can be stably Tightened adhesion by strands 4 and 4 '.
[0011]
Further, according to the first aspect of the present invention, the holes 3 and 3 ′ are formed at a pair or a plurality of pairs of positions of the stable rock mass 2 where the rock mass 1 having the risk of collapse is placed and the stable rock mass 2 without the risk of collapse is placed. And insert the ends of one or more PC steel stranded wires 4 and 4 'into the drilled holes 3 and 3', respectively, and inject a cement-type fixing material 5 such as mortar to fix them. Fastened to stable rock mass 2 by wrapping, wrapping PC steel stranded wires 4 and 4 'fixed relative to each other and wrapping them around rock mass 1 where there is a risk of collapse, and connecting opposing PC steel stranded wires 4 and 4' in tension The steel wire connector 7 is tightened and the PC steel stranded wires 4 and 4 'are tensioned by a jack, and the rock mass 1 is tightly fixed to the stable rock mass 2, and in this state, the lower portion of the rock mass 1 is below the rock mass 1 A plurality of drilling holes 9 are made up to the stable rock mass 2, and a cement-based fixing material 10 such as mortar is injected into the drilling holes 9. The steel rod 11 is installed in a stable state in which the rock lump 1 is temporarily tightly fixed by inserting the steel rod 11 of a necessary length into the solid and integrated by consolidation. Construction can be performed safely, whereby the rock mass 1 can be sewn to and integrated with the stable rock mass by the steel bar 11 consolidated with the fixing material 10 to prevent the collapse.
[0012]
According to the second aspect of the present invention, the holes 3 and 3 ′ are formed at a pair or a plurality of pairs of positions of the stable rock mass 2 where the rock mass 1 having the risk of collapsing is placed and the rock mass 1 is not at risk of collapsing. performed, is inserted the end of the 'respectively 1 a plurality of PC steel strands 4 and 4 in the' each drilling 3,3, the solid by injecting fixing material 5 cementitious such mortar PC steel fixed to the stable rock mass 2 by ligation, and PC steel stranded wires 4 and 4 'coated with rust-proof coating around the fixed relative to each other are wound around the rock mass 1 which may collapse, and fixed relative to each other The stranded wire 4, 4 'is connected to the tensioned state through the steel wire connector 7 having a rust-proof coating around it, and the PC steel stranded wire 4, 4' is tensioned with a jack, and the rock mass 1 is stabilized with the stable rock mass 2 In a stable state tightly fixed to the rock mass 1, a plurality of drill holes 9 are made from the periphery of the rock mass 1 to the stable rock mass 2 below the rock mass 1. A cement-type fixing material 10 such as mortar is injected, and a steel rod 11 of a necessary length is inserted into the cement-type fixing material 10 and solidified and integrated. The steel rod 11 can be installed and constructed in a stable state, whereby the rock mass 1 is sewn to the stable rock mass with the steel rod 11 consolidated by the fixing material 10 and integrated to form a PC steel stranded wire 4, 4 In addition to 'tightening and fixing', the rock mass 1 fixed by PC steel strands 4 and 4 'can be further broken and separated and separated due to long-term weathering. Even when there is, the collapse of the rock mass 1 can be reliably prevented.
[0013]
In the invention of claim 3, a required number of drill holes 9 are made through the unstable rock mass 2 'at risk of collapse to the stable rock mass 2 in the bottom layer, and a cement-based fixing material 10 such as mortar is formed in the drill holes 9. Is inserted, and the steel rod 11 of the required length is inserted into it and consolidated and integrated, so that the unstable rock mass 2 'is sewn to the stable rock mass 2 and integrated, making it easy and low cost. Can quickly stabilize unstable rock mass.
[0014]
Furthermore, in the invention of claim 3, a required number of holes 9 are made through the lower part of the unstable rock mass 2 'which is at risk of collapse to the stable rock mass 2 in the bottom layer, and mortar or the like is formed in the hole 9 A cement-based fixing material 10 is injected, and a steel rod 11 having a required length is inserted into the cement-type fixing material 10 to be consolidated and integrated. The rocks 2 and 2 'are first placed in the lower part of the unstable rock 2'. The temporary moving scaffold 12 necessary for performing the steel bar installation work is temporarily fixed to the exposed head of the fixed steel bar 11, and the same steel bar installation work (cutting) as described above is applied to the upper rock mass in the temporary moving scaffold 12. Hole-fixing material injection-steel rod insertion-fixing), remove the temporary moving scaffold 12 and pull it upward slightly, temporarily fix the temporary moving scaffold again to the previously fixed steel rod 11, and sequentially While using the steel bar 11 constructed in advance, the steel bar installation work and the temporary moving scaffold 12 By repeating the movement and proceeding upward, a small and inexpensive temporary moving scaffold is used without using a large-scale scaffold, and the temporary scaffolding 12 is sequentially provisionally made using the steel rod 11 that was previously constructed. Construction can be carried out smoothly and quickly while moving upwards by repeatedly stopping and removing.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
As one invention of the countermeasure method against rock mass (rolling stone) with the risk of collapse, the unstable rock mass is firmly connected to the rock mass without risk of collapse with PC steel stranded wire with anti-corrosion coating around it. It is a method to do.
[0016]
Prior to the tightening of the PC steel strands, drilling holes at one or more opposing positions on the stable rock mass where there is no risk of collapse across the rock mass with the risk of collapse, The ends of one or more PC steel stranded wires are inserted into the drilling holes, and a cement-based fixing material such as mortar is injected and fixed to the stable rock mass by consolidation.
[0017]
The PC steel stranded wires fixed relative to each other are wound around a rock block that may collapse, and the PC steel stranded wires are tightened with a steel wire connector having a rust-proof coating around the surroundings.
[0018]
As one invention of the countermeasure construction method for unstable rock mass with the risk of collapse, drilling is carried out to the stable rock mass in the bottom layer through unstable rock mass with risk of collapse, and cement system such as mortar is put in this drilled hole In this method, a steel rod of the required length is inserted, and the unstable rock mass is sewn to the stable rock mass through the steel rod consolidated and integrated with this fixing material. is there.
[0019]
In this construction, the temporary moving scaffolding necessary to install the steel rod on the exposed head of the steel rod first fixed to the rock mass is constructed from the lower part of the unstable rock mass that is at risk of collapse. , Temporarily install the same steel rod installation work (drilling-fixing material injection-steel rod insertion-fixing) on the upper rock mass in this temporary moving scaffold, then remove the temporary moving scaffold and move upward Pull it up a little, temporarily fix the temporary moving scaffold to the steel rod fixed earlier, and repeat the movement of the steel rod installation work and temporary moving scaffold while using the steel rods that were constructed in advance in the same way, and work upward Will proceed.
[0020]
As another invention of the countermeasure method for the rock mass with the risk of collapsing, there is concrete or mortar around the bottom when there is a risk of scouring around the stable rock mass due to the tightness of the rock mass by PC steel stranded wire This is a method to prevent scouring by placing hardened hardeners such as.
[0021]
As another invention of the countermeasure method for the rock mass with the risk of collapse, a plurality of holes are drilled through the periphery of the rock mass tightly fixed with PC steel strands to the stable rock mass below it. A cement-type fixing material such as mortar is injected into the hole, and a steel rod of the required length is inserted into the hole and solidified and integrated. In this stable state, the steel bar can be installed and constructed, and by this, the rock mass is sewn to the stable rock mass with the steel bar consolidated by the fixing material, and integrated.
[0022]
As another invention of the countermeasure method against the rock mass with the risk of collapsing, there are a plurality of pieces up to the stable rock mass below it through the circumference of the rock mass tightly fixed by PC steel stranded wire with rust-proof coating on the circumference By drilling a cement-type fixing material such as mortar into this drilling hole, inserting a steel rod of the required length into the hole and solidifying and integrating it, the PC steel stranded wire The steel bar can be installed and installed in a stable state where the rock mass is tightly fixed, and by this, the rock mass is sewn and integrated with the stable rock mass by the steel rod solidified with a fixing material. In addition to preventing the collapse more reliably in conjunction with the tightening, the rock collapse even when there is a risk that the rock fixed tightly by the PC steel stranded wire may be further broken and separated and separated by long-term weathering In a way that reliably prevents That.
[0023]
【Example】
Example 1
[0024]
2 to 10 show examples of a rock mass binding method in which a rock block (roll stone) with a risk of collapse is bonded to a rock mass with no risk of collapse with a PC steel stranded wire. First, there is a risk of collapse. A rock block (including a boulder) 1 is placed between the stable rock mass 2 where there is no risk of collapse. Holes 3 and 3 'are made.
[0025]
Next, the end portions of one to a plurality of PC steel stranded wires 4 and 4 ′ are inserted into the holes 3 and 3 ′, respectively, and a cement-based fixing material 5 such as mortar is injected to fix the solid portions. Fix to the stable rock mass 2 by ligation.
[0026]
Relatively fixed PC steel stranded wires 4 and 4 ′ are wound around a rock mass 1 which is likely to collapse together with a protective sheath 6 covering the periphery thereof.
[0027]
In this case, the PC steel stranded wires 4 and 4 'to be wound are taken out from the plurality of pairs of holes 3 and 3' one by one and wound in parallel, or from a pair or a plurality of pairs of holes 3 and 3 '. A plurality of wires are wound around in a radial manner, and each opposing PC steel stranded wire 4, 4 'is passed through a steel wire connector 7 which is fastened in an oblique crossing manner with a wedge fixing tool provided at the end of the cross sleeve, The PC steel stranded wires 4, 4 ′ are tensioned by a jack and fastened with a wedge fixing tool of the steel wire connector 7, and the rock mass 1 is tightly fixed to the stable rock mass 2.
[0028]
As shown in FIG. 8, the PC steel stranded wires 4 and 4 'used in this rock mass binding method are sealed at the ends of the protective sheath 6 covering the periphery in order to maintain long-term durability (rust prevention). As shown in FIG. 10, the periphery of the steel wire connector 7 is rust-proofed with a waterproof protective film 7 '.
[0029]
In addition, when performing this rock mass binding method as temporary provision so that it may mention later, as shown in FIG. 7, the PC steel strand wire which covered the circumference | surroundings with the protective sheath 6 as shown in FIG. 4, 4 ′, and a steel wire connector 7 whose periphery is not covered with a rust preventive protective film 7 ′ is used as shown in FIG.
[0030]
(Example 2)
[0031]
11 and 12 show an embodiment of a steel rod insertion method in which a steel rod is fixed to an unstable rock mass having a risk of collapsing. First, it is in the bottom layer through the unstable rock mass 2 'which has a risk of collapse. Up to the stable rock mass 2, drilling holes 9 with a diameter of 40 mm to 55 mm and the required depth in parallel, two by two.
[0032]
A cement-type fixing material 10 such as mortar or concrete is injected into the hole 9 and a steel rod 11 such as a reinforcing bar, a PC steel rod or a lock bolt is inserted into the hole, and solidified and integrated. Thus, the unstable rock mass 2 'is sewn to the stable rock mass 2 and stably integrated.
[0033]
In addition, as the steel bar 11, it is preferable to use a deformed total screw type steel bar used as a reinforcing bar.
[0034]
Work is done from the lower part of the unstable rock mass 2 'where there is a risk of collapse upward, and the steel bars are installed on the exposed heads of the upper and lower steel bars 11 fixed to the rock masses 2, 2' first. The temporary moving scaffold 12 necessary for performing is temporarily fixed.
[0035]
And after constructing the same steel rod installation work (drilling-fixing material injection-steel rod insertion-fixing) in the upper rock mass in this temporary moving scaffold 12, the temporary moving scaffold 12 is removed and a little upward The temporary moving scaffolding 12 is temporarily fixed again to the two upper and lower steel bars 11 that have been fixed earlier, and the steel bar installation work and the temporary moving scaffolding 12 are used while using the steel bars 11 that have been constructed in advance. Continue to move upwards by repeating the movement.
[0036]
After completion of the entire construction, the head of the unnecessary steel rod 11 that has come out of the hole 9 is cut.
[0037]
(Example 3)
[0038]
FIG. 13 shows an embodiment in which a solidified concrete method is used in combination with the above-described bedrock binding method. When there is a risk of scouring around the rock mass 1 that is stable due to bedrock bonding, concrete or The hardened material 13 such as mortar is placed by spraying or spraying to prevent scouring.
[0039]
Example 4
[0040]
FIGS. 14 and 15 show an embodiment in which a steel rod insertion method is used in combination with the rock mass binding method. First, when the rock mass binding method is temporarily used in combination, the protective sheath 6 and the anti-shock 6 as described above are used. In a state where the rock mass 1 is temporarily tightly fixed using a steel wire connector 7 that is not rust-proof coated with PC steel stranded wires 4 and 4 'that are not rust-proof coated with rust oil 8 and rust-proof protective film 7'. A plurality of drilling holes 9 are made from the periphery of the rock mass 1 to the stable rock mass 2 below, and a cement-based fixing material 10 such as mortar is injected into the drilling hole 9 and the required length is inserted therein. By inserting the steel bar 11 and solidifying and integrating it, the rock bar 1 is temporarily fixed tightly by the PC steel stranded wires 4, 4 ′, and the steel bar 11 is safely installed and installed. As a result, the rock mass 1 is integrated with the stable rock mass by the steel rod 11 consolidated with the fixing material 10, and the collapse is surely prevented. To.
[0041]
Next, when the above-mentioned bedrock binding method is used in combination, the PC steel stranded wires 4, 4 'and the rust-preventing protective film 7' coated with the protective sheath 6 and the rust-preventing oil 8 as described above are provided. In the state where the rock mass 1 is durablely fixed and fixed using the steel wire connector 7 coated with rust prevention, a plurality of holes 9 are made through the periphery of the rock mass 1 to the stable rock mass 2 below it. By injecting a cement-based fixing material 10 such as mortar into the hole 9 and inserting a steel rod 11 having a required length into the hole 9 for consolidation, a PC steel stranded wire 4, 4 ′ is used. In a stable state in which the rock mass 1 is tightly fixed, the steel rod 11 is safely installed and constructed, so that the rock mass 1 is sewn to the stable rock mass by the steel rod 11 solidified by the fixing material 10 and collapsed. The rock mass 1 tightly fixed by the PC steel stranded wires 4, 4 'is further prevented by long-term weathering. Even in the case where there is a risk of separation and separation, the rock lump 1 is reliably prevented from collapsing.
[0042]
【The invention's effect】
As described above, the present invention has the following effects.
[0043]
According to the first aspect of the present invention, a hole is drilled at a pair or a plurality of pairs of positions of a stable rock mass where there is no risk of collapse where a rock block with a risk of collapse is sandwiched. Insert the ends of one or more PC steel strands into each, and inject a cement-based fixing material such as mortar and fix it to the stable rock mass by consolidation, and prevent the surrounding fixed Wrap a PC steel stranded wire with rust coating around a rock mass that may collapse, pass the opposite PC steel stranded wire in a tensioned state, and pass it through a steel wire connector with a rust-proof coating around it. Tighten the PC steel strands to tightly fix the rock mass to the stable rock mass at the periphery of the relatively safe rock mass, so that the PC steel maintains the durability of the unstable rock mass with less dangerous work Tightening can be stably performed by a stranded wire.
[0044]
Furthermore, in the invention of claim 1, holes are drilled at one or more pairs of opposing positions on a stable rock mass where there is no risk of collapse where a rock mass that is at risk of collapse is sandwiched. Insert one or more ends of PC steel strands into each, and inject a cement-based fixing material such as mortar and fix it to the stable rock mass by consolidation, PC steel fixed relative to each other Wrap the stranded wire around a rock mass that may collapse, pass the opposing PC steel stranded wire through a steel wire connector that is tightly connected to each other, and tighten the opposing PC steel stranded wire with a jack In addition, the rock mass is tightly fixed to the stable rock mass, and a plurality of holes are drilled through the periphery of the rock mass to the lower stable rock mass, and a cement-based fixing material such as mortar is injected into the borehole, Insert a steel rod of the required length into it and consolidate it Therefore, it is possible to safely install and install the steel bar in a stable state where the rock block is temporarily fixed tightly with PC steel stranded wire, and this allows the rock block to be stably fixed by the steel bar consolidated with a fixing material. Can be reliably prevented from collapsing.
[0045]
According to the second aspect of the present invention, a hole is drilled at one or more pairs of positions in a stable rock mass that is not at risk of collapsing where a rock block that is at risk of collapsing is placed. Insert the ends of one or more PC steel strands into each, and inject a cement-based fixing material such as mortar and fix it to the stable rock mass by consolidation, and prevent the surrounding fixed Wrap a PC steel stranded wire with rust coating around a rock mass that may collapse, pass the opposite PC steel stranded wire in a tensioned state, and pass it through a steel wire connector with a rust-proof coating around it. nervous the PC steel strands, in a stable state in which Tightened secure the rock mass in a stable rock performs plural drilling through the surrounding portion to a stable rock Release thereunder of the rocks, the mortar in the drilling Inject a cement-based fixing material such as a steel rod and insert a steel rod of the required length into it. Therefore, it is possible to install the steel bar in a stable state where the rock mass is tightly fixed with PC steel strands, and this makes the rock mass stable with the steel rod consolidated with the fixing material. Combined with PC steel stranded wire tightly fixed, it can prevent collapse more reliably, and the rock mass tightly fixed by PC steel stranded wire is further broken and separated and separated by long-term weathering Even when there is a risk of failure, the rock mass can be reliably prevented from collapsing.
[0046]
In the invention of claim 3, a required number of holes are drilled through the unstable rock mass that is at risk of collapse to the stable rock mass in the bottom layer, and a cement-based fixing material such as mortar is injected into the borehole, Since the unstable rock mass is sewn and integrated with the stable rock mass by inserting the steel rod of the length required for consolidation, the unstable rock mass can be stabilized quickly and at low cost with simple work. can do.
[0047]
Furthermore, in the invention of claim 3, a required number of holes are drilled from the lower part of the unstable rock mass, which is at risk of collapse, to the stable rock mass in the bottom layer, and a cement-based fixing material such as mortar is formed in the bored hole. And insert the steel rod of the required length into it, consolidate it, and install the steel rod on the exposed head of the steel rod first fixed to the rock in the lower part of the unstable rock mass After temporarily fixing the temporary moving scaffold necessary for carrying out the work, the steel rod installation work (drilling-fixing material injection-steel rod insertion-fixing) similar to the above is applied to the upper rock mass in this temporary moving scaffold Remove the temporary moving scaffold, lift it slightly upward, temporarily fix the temporary moving scaffold to the previously fixed steel bar, and use the steel bar that has been constructed in the same way in order to make a temporary move with the steel bar installer By moving the scaffold repeatedly and proceeding upward, large scale Using a small and inexpensive temporary moving scaffold without using a scaffold, and using a previously constructed steel rod, the temporary scaffold is repeatedly temporarily fixed and removed, and then moved smoothly upwards while moving upward. can do.
[Brief description of the drawings]
FIG. 1 is a side view showing a comprehensive embodiment of the present invention.
FIG. 2 is a cross-sectional view showing one construction mode of the first embodiment of the present invention.
FIG. 3 is a side view showing one construction mode of the first embodiment of the present invention.
FIG. 4 is a plan view showing one construction mode of the first embodiment of the present invention.
FIG. 5 is a side view showing another construction mode of the first embodiment of the present invention.
FIG. 6 is a plan view showing another construction mode of the first embodiment of the present invention.
FIG. 7 is a cross-sectional view showing one embodiment of a fixed state of a PC steel stranded wire in the first embodiment of the present invention.
FIG. 8 is a sectional view showing another aspect of the fixed state of the PC steel stranded wire in the first embodiment of the present invention.
FIG. 9 is a cross-sectional view showing one embodiment of a connection state of PC steel stranded wires in the first embodiment of the present invention.
FIG. 10 is a cross-sectional view showing another aspect of the connection state of the PC steel stranded wire in the first embodiment of the present invention.
FIG. 11 is a side view showing a construction mode of a second embodiment of the present invention.
FIG. 12 is an enlarged sectional view showing a construction mode of the second embodiment of the present invention.
FIG. 13 is a side view showing a construction mode of a third embodiment of the present invention.
FIG. 14 is a transverse sectional view showing a construction mode of a fourth embodiment of the present invention.
FIG. 15 is a plan view showing a construction mode of a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rock block 2 Stable rock 3 Hole 3 'Hole 4 PC steel strand 4' PC steel strand 5 Fixing material 6 Protective sheath 7 Steel wire connector 7 'Waterproof protective film 8 Antirust oil 9 Hole 10 Fixing material 11 Steel rod 12 Temporary moving scaffold 13 Root hardening hardener

Claims (3)

崩落の危険性がある岩塊を挟んでこれが置かれている崩壊の危険のない安定岩盤の相対する1対又は複数対の位置に削孔を行い、各削孔の中にそれぞれ1〜複数本のPC鋼撚り線の端部を挿入すると共に、モルタル等のセメント系の定着材を注入してその固結により安定岩盤に固定し、相対して固定したPC鋼撚り線を崩壊の恐れのある岩塊に巻きつけ、相対するPC鋼撚り線をこれらを互いに緊張状態で緊結する鋼線接続具に通し、ジャッキにより相対するPC鋼撚り線を緊張して緊結し、岩塊を安定岩盤に緊結固定し、この状態で前記岩塊の周囲部を通してその下方の安定岩盤まで複数本の削孔を行い、この削孔内にモルタル等のセメント系の定着材を注入し、その中に必要な長さの鋼棒を挿入して固結一体化させることを特徴とする岩盤崩落対策工法。 Drill holes in one or more pairs of stable rock masses where there is no risk of collapse where a rock mass that is at risk of collapse is placed. Insert the end of the PC steel stranded wire, inject a cement-based fixing material such as mortar and fix it to the stable rock mass by consolidation, there is a risk of collapse of the PC steel stranded wire fixed relative to Wrap around the rock mass, pass the opposing PC steel stranded wires through the steel wire fittings that are tightly connected to each other, tighten the opposing PC steel stranded wires with a jack, and tighten the rock mass to the stable bedrock In this state, a plurality of holes are drilled from the periphery of the rock mass to the stable rock mass below it, and a cement-based fixing material such as mortar is injected into the hole, and the required length is filled therein. A rock characterized by inserting a steel rod of length Collapse measures construction method. 崩落の危険性がある岩塊を挟んでこれが置かれている崩壊の危険のない安定岩盤の相対する1対又は複数対の位置に削孔を行い、各削孔の中にそれぞれ1〜複数本のPC鋼撚り線の端部を挿入すると共に、モルタル等のセメント系の定着材を注入してその固結により安定岩盤に固定し、相対して固定した周囲に防錆被覆を施したPC鋼撚り線を崩壊の恐れのある岩塊に巻きつけ、相対するPC鋼撚り線をこれらを互いに緊張状態で緊結する周囲に防錆被覆を施した鋼線接続具に通し、ジャッキにより相対するPC鋼撚り線を緊張して緊結し、岩塊を安定岩盤に緊結固定し、この状態で前記岩塊の周囲部を通してその下方の安定岩盤まで複数本の削孔を行い、この削孔内にモルタル等のセメント系の定着材を注入し、その中に必要な長さの鋼棒を挿入して固結一体化させることを特徴とする岩盤崩落対策工法。Drill holes in one or more pairs of stable rock masses where there is no risk of collapse where a rock mass that is at risk of collapse is placed. PC steel with a rust-preventing coating around the fixed and fixed end of the PC steel strand wire, cemented fixing material such as mortar, etc. PC wires are twisted around rocks that may collapse, and the opposing PC steel strands are passed through a steel wire connector with a rust-proof coating around them that are tightly connected to each other. Tighten the twisted wires and tighten them together. The rock mass is tightly fixed to the stable rock mass. In this state, multiple holes are drilled through the periphery of the rock mass to the stable rock mass below it, and mortar etc. Injected cement-based fixing material and steel rod of required length in it Rock collapse measures construction method, characterized in that to insert and caking integrated. 崩壊の危険のある不安定岩盤の下方の部分を通してその底層にある安定岩盤まで所要数の削孔を行い、この削孔内にモルタル等のセメント系の定着材を注入し、その中に必要な長さの鋼棒を挿入して固結一体化させ、前記不安定岩盤の下方の部分に最初に岩盤に固定した鋼棒の露出頭部に鋼棒設置作業を行うのに必要な仮設移動足場を仮止めし、この仮設移動足場においてさらに上方の岩盤部に上記同様の鋼棒設置工(削孔−定着材注入−鋼棒挿入−固定)を施工した後、仮設移動足場を取り外して上方に少し引き上げ、先に固定された鋼棒に再度仮設移動足場を仮止し、順次同様に先行して施工した鋼棒を利用しながら鋼棒設置工と仮設移動足場の移動を繰り返して上方に施工を進行することにより、不安定岩盤を安定岩盤に縫い付けて一体化することを特徴とする岩盤崩落対策工法。  Drill the required number of holes through the lower part of the unstable rock mass at risk of collapse to the stable rock mass in the bottom layer, and inject a cement-based fixing material such as mortar into the borehole. Temporary moving scaffold required to perform steel rod installation work on the exposed head of the steel rod first fixed to the rock in the lower part of the unstable rock mass by inserting the length steel rod and consolidating and integrating , Temporarily install the same steel rod installation work (drilling-fixing material injection-steel rod insertion-fixing) on the upper rock mass in this temporary moving scaffold, then remove the temporary moving scaffold and move upward Pull it up a little, temporarily fix the temporary moving scaffold to the steel rod fixed earlier, and repeat the movement of the steel rod installation work and temporary moving scaffold while using the steel rod that was constructed in advance in the same way and work upward To sew the unstable rock mass to the stable rock mass. Rock collapse measures construction method which is characterized in that reduction.
JP29161397A 1997-10-07 1997-10-07 Bedrock collapse prevention method Expired - Fee Related JP3966432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29161397A JP3966432B2 (en) 1997-10-07 1997-10-07 Bedrock collapse prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29161397A JP3966432B2 (en) 1997-10-07 1997-10-07 Bedrock collapse prevention method

Publications (2)

Publication Number Publication Date
JPH11107224A JPH11107224A (en) 1999-04-20
JP3966432B2 true JP3966432B2 (en) 2007-08-29

Family

ID=17771226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29161397A Expired - Fee Related JP3966432B2 (en) 1997-10-07 1997-10-07 Bedrock collapse prevention method

Country Status (1)

Country Link
JP (1) JP3966432B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802205B2 (en) * 2008-04-02 2011-10-26 有限会社吉田構造デザイン Rock fall prevention structure
CN104912005A (en) * 2015-04-20 2015-09-16 同济大学 Fixing and traction device used for preventing critical rock from falling or rolling down
CN112697000B (en) * 2020-12-21 2022-11-22 鄂尔多斯市万兴隆工贸有限责任公司 Coal open-pit mining blasting method

Also Published As

Publication number Publication date
JPH11107224A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
US6939084B2 (en) Soil nailing system
US20050028468A1 (en) Concrete forming method using gripping ribs
JP3966432B2 (en) Bedrock collapse prevention method
US3971226A (en) Prestressed roof support system
KR100632977B1 (en) The method of plasma anchor in the construction
EP0545471B1 (en) Method for fixing an anchor for anchoring earth-retaining walls, buildings, bank sheet-pilings, quay walls and the like
KR100944199B1 (en) Prestressed concrete anchor body structure using together poly bar nail
CN210766868U (en) Reinforcing structure for existing gravity retaining wall
JP3051706B2 (en) Slope fall prevention method
JP3051707B2 (en) Slope fall prevention method
HRP20010245A2 (en) Jacket tube for a drilling and anchoring device
KR100913320B1 (en) Multifunctional complex type anchor body
JP2655820B2 (en) Earth anchor method
KR100382300B1 (en) A fireproof reinforcement method by burying steel strand
JPH08134923A (en) Cut surface stabilizing construction method
JP3471602B2 (en) Slope, method of constructing slope and method of drilling slope
GB2360047A (en) A removable mechanical anchor with a non-stick coating
JP4059380B2 (en) Self-drilling lock bolt construction method and anchor structure
RU2465404C1 (en) Bench slope reinforcement method
KR100682555B1 (en) Ground reinforcement method appliying prestress
CN109296390B (en) Anchor cable supporting method for broken surrounding rock roadway
Herbst Removable ground anchors-answer for urban excavations
JPH1150460A (en) Foundation work for avalanche-protecting facilities and construction method therefor
JPH0978544A (en) Work execution method for concrete guard fence and concrete guard fence
JP4116794B2 (en) Slope reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees