JP3965560B2 - 画像処理装置および方法、撮像装置および方法、並びにプログラム - Google Patents

画像処理装置および方法、撮像装置および方法、並びにプログラム Download PDF

Info

Publication number
JP3965560B2
JP3965560B2 JP2002086516A JP2002086516A JP3965560B2 JP 3965560 B2 JP3965560 B2 JP 3965560B2 JP 2002086516 A JP2002086516 A JP 2002086516A JP 2002086516 A JP2002086516 A JP 2002086516A JP 3965560 B2 JP3965560 B2 JP 3965560B2
Authority
JP
Japan
Prior art keywords
image
pixel
square
pixel value
omnidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002086516A
Other languages
English (en)
Other versions
JP2003284058A (ja
Inventor
哲二郎 近藤
継彦 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002086516A priority Critical patent/JP3965560B2/ja
Publication of JP2003284058A publication Critical patent/JP2003284058A/ja
Application granted granted Critical
Publication of JP3965560B2 publication Critical patent/JP3965560B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Closed-Circuit Television Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、画像処理装置および方法、撮像装置および方法、並びにプログラムに関し、特に、全周囲を撮像した画像を処理するか、全周囲を撮像する画像処理装置および方法、撮像装置および方法、並びにプログラムに関する。
【0002】
【従来の技術】
コンピュータの発達により、双曲面ミラーや魚眼レンズを介して、全周囲を一括して撮像した、いわゆる全方位画像が積極的に利用されるようになってきた。
【0003】
このような画像は、主として、観賞用として撮像される。
【0004】
【発明が解決しようとする課題】
しかしながら、このような全方位画像には、原理的に粗である部分と密である部分が発生する。特に、撮像される半球面の極点に当たる部分では、解像度が不足し、このような全方位画像を方形の画像に展開しても、臨場感のあるパノラマ画像とすることは困難であった。
【0005】
本発明はこのような状況に鑑みてなされたものであり、全周囲を撮像した、より高精細な画像を得ることができるようにすることを目的とする。
【0006】
【課題を解決するための手段】
本発明の画像処理装置は、第1の全方位画像および第2の全方位画像に対して経度緯度変換を行うことにより、第1の全方位画像および第2の全方位画像を第1の方形画像および第2の方形画像にそれぞれ変換する変換手段と、角度に対応した、第1の方形画像に対する第2の方形画像の基準位置を算出する算出手段と、第1の方形画像の任意の第1の画素の画素値を、当該第1の画素の画素値と基準位置を基準とした対応する位置の第2の方形画像の第2の画素の画素値を基に、更新する更新手段とを含むことを特徴とする。
【0007】
更新手段は、第1の方形画像の第1の画素が存在しないとき、第1の画素に第2の画素の画素値を設定することにより、第1の方形画像の第1の画素の画素値を更新するようにしてもよい。
【0008】
更新手段は、第1の画素と第2の画素との差分が所定の閾値以下であるとき、第1の画素に、第1の画素の画素値および第2の画素の画素値の平均値を設定することにより、第1の方形画像の第1の画素の画素値を更新するようにしてもよい。
【0009】
更新手段は、第1の画素と第2の画素との差分が所定の閾値を越えるとき、第2の画素に類似する第2の方形画像の第3の画素に対応する、基準位置を基準とした位置の第1の画像の第4の画素と第1の画素との間の画素に、第2の画素の画素値を設定することにより、第1の方形画像の画素値を更新するようにしてもよい。
【0010】
画像処理装置は、第1の方形画像および第2の方形画像の動き量を基に、角度を検出する検出手段をさらに設けることができる。
【0011】
本発明の画像処理方法は、第1の全方位画像および第2の全方位画像に対して経度緯度変換を行うことにより、第1の全方位画像および第2の全方位画像を第1の方形画像および第2の方形画像にそれぞれ変換する変換ステップと、角度に対応した、第1の方形画像に対する第2の方形画像の基準位置を算出する算出ステップと、第1の方形画像の任意の第1の画素の画素値を、当該第1の画素の画素値と基準位置を基準とした対応する位置の第2の方形画像の第2の画素の画素値を基に、更新する更新ステップとを含むことを特徴とする。
【0012】
本発明のプログラムは、コンピュータに、第1の全方位画像および第2の全方位画像に対して経度緯度変換を行うことにより、第1の全方位画像および第2の全方位画像を第1の方形画像および第2の方形画像にそれぞれ変換する変換ステップと、角度に対応した、第1の方形画像に対する第2の方形画像の基準位置を算出する算出ステップと、第1の方形画像の任意の第1の画素の画素値を、当該第1の画素の画素値と基準位置を基準とした対応する位置の第2の方形画像の第2の画素の画素値を基に、更新する更新ステップとを含む処理を実行させることを特徴とする。
【0013】
本発明の撮像装置は、全方位画像を撮像する撮像手段と、撮像手段の撮像の光軸を回転軸として、撮像手段を回転させる回転手段と、第1の全方位画像、および第1の全方位画像に対して、所定の角度で回転された位置から撮像された第2の全方位画像を経度緯度変換によって第1の方形画像および第2の方形画像にそれぞれ変換する変換手段と、角度に対応した、第1の方形画像に対する第2の方形画像の基準位置を算出する算出手段と、第1の方形画像の任意の第1の画素の画素値を、当該第1の画素の画素値と基準位置を基準とした対応する位置の第2の方形画像の第2の画素の画素値を基に、更新する更新手段とを含むことを特徴とする。
【0014】
撮像装置は、撮像手段が回転された角度を検出する検出手段をさらに設けることができる。
【0015】
更新手段は、第1の方形画像の第1の画素が存在しないとき、第1の画素に第2の画素の画素値を設定することにより、第1の方形画像の第1の画素の画素値を更新するようにしてもよい。
【0016】
更新手段は、第1の画素と第2の画素との差分が所定の閾値以下であるとき、第1の画素に、第1の画素の画素値および第2の画素の画素値の平均値を設定することにより、第1の方形画像の第1の画素の画素値を更新するようにしてもよい。
【0017】
更新手段は、第1の画素と第2の画素との差分が所定の閾値を越えるとき、第2の画素に類似する第2の方形画像の第3の画素に対応する、基準位置を基準とした位置の第1の画像の第4の画素と第1の画素との間の画素に、第2の画素の画素値を設定することにより、第1の方形画像の画素値を更新するようにしてもよい。
【0018】
撮像装置は、第1の方形画像および第2の方形画像の動き量を基に、角度を検出する検出手段をさらに設けることができる。
【0019】
本発明の撮像方法は、全方位画像を撮像する撮像ステップと、撮像ステップにおける撮像の光軸を回転軸として、撮像の位置を回転させる回転ステップと、第1の全方位画像、および第1の全方位画像に対して、所定の角度で回転された位置から撮像された第2の全方位画像を経度緯度変換によって第1の方形画像および第2の方形画像にそれぞれ変換する変換ステップと、角度に対応した、第1の方形画像に対する第2の方形画像の基準位置を算出する算出ステップと、第1の方形画像の任意の第1の画素の画素値を、当該第1の画素の画素値と基準位置を基準とした対応する位置の第2の方形画像の第2の画素の画素値を基に、更新する更新ステップとを含むことを特徴とする。
【0020】
本発明の画像処理装置および方法、並びにプログラムにおいては、第1の全方位画像および第2の全方位画像に対して経度緯度変換を行うことにより、第1の全方位画像および第2の全方位画像が第1の方形画像および第2の方形画像にそれぞれ変換され、角度に対応した、第1の方形画像に対する第2の方形画像の基準位置が算出される。そして、第1の方形画像の任意の第1の画素の画素値が、当該第1の画素の画素値と基準位置を基準とした対応する位置の第2の方形画像の第2の画素の画素値を基に、更新される。
【0021】
画像処理装置は、独立した装置であってもよいし、例えば、表示装置の画像処理を行うブロックであってもよい。
【0022】
第1の全方位画像および第2の全方位画像は、静止画像であってもよいし、動画像であってもよい。
【0023】
本発明の撮像装置および方法においては、撮像の光軸を回転軸として、撮像範囲を回転させて、全方位画像が撮像され、第1の全方位画像、および第2の全方位画像が経度緯度変換によって第1の方形画像および第2の方形画像にそれぞれ変換される。角度に対応した、第1の方形画像に対する第2の方形画像の基準位置が算出され、第1の方形画像の任意の第1の画素の画素値が、当該第1の画素の画素値と基準位置を基準とした対応する位置の第2の方形画像の第2の画素の画素値を基に、更新される。
【0024】
撮像装置は、独立した装置であってもよいし、例えば、記録装置の撮像を行うブロックであってもよい。
【0025】
第1の全方位画像および第2の全方位画像は、静止画像であってもよいし、動画像であってもよい。
【0026】
【発明の実施の形態】
図1は、本発明に係る撮像システムの一実施の形態を示す図である。
【0027】
カメラ1は、例えば、CCD(Charge-Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの撮像素子を有し、双曲面ミラー11に反射された画像を撮像し、カメラ1の周囲全体を切れ目無く撮像する。カメラ1は、いわゆる全方位画像(全周囲画像)を撮像し、撮像した全方位画像を情報処理装置4に供給する。
【0028】
カメラ1は、全方位画像を撮像するものであればよく、双曲面ミラー11に限らず、例えば、球面ミラーにより周囲全体の画像を反射して、撮像するものでもよく、または、魚眼レンズを有するものであってもよい。また、カメラ1は、スチルカメラでもよく、ビデオカメラであってもよい。
【0029】
回転装置2は、カメラ1を所定のステップ角(回転角)で、カメラ1の上下方向の軸を中心の回転させる。回転装置2がカメラ1を回転させる軸は、カメラ1の撮像の光軸および全方位画像の中心と一致している。
【0030】
従って、回転した後のカメラ1の撮像範囲は、回転する前のカメラ1の撮像範囲と同一である。
【0031】
しかしながら、回転した後のカメラ1により撮像された全方位画像は、被写体の画像とカメラ1の撮像素子の画素との関係から、回転する前のカメラ1により撮像された全方位画像と異なる画素値を有する。
【0032】
例えば、カメラ1が回転する前において、被写体の画像のエッジがカメラ1の撮像素子の画素の並びに対して斜めに入力されたとき、撮像素子の画素の感光領域の大きさにより、被写体の画像のエッジがつぶれてしまい、撮像された全方位画像に被写体の画像のエッジが明確に表現されない場合がある。カメラ1が回転した後、被写体の画像のエッジがカメラ1の撮像素子の画素の並びと一致したとき、撮像された全方位画像に被写体の画像のエッジが明確に表現される。
【0033】
回転装置2の駆動源は、例えば、ステップ角を制御可能なサーボモータまたは5相ステッピングモータとすることができる。回転装置2の最小ステップ角は、微少にすることが望ましい。
【0034】
なお、回転装置2の回転およびその回転角度を、情報処理装置4が制御するようにしてもよい。
【0035】
また、回転装置2は、所定の範囲でカメラ1を回動させるものであってもよい。この明細書において、回転には、回動を含むものとする。
【0036】
回転角度計測器3は、カメラ1の回転角度を取得する装置である。回転角度計測器3は、取得した回転角度を情報処理装置4に供給する。例えば、回転角度計測器3は、相対型または絶対型のロータリエンコーダなどにより構成することができる。
【0037】
回転角計測器3の検出可能な回転角は、回転装置2のステッピング角より小さいことが望ましい。すなわち、回転角計測器3の分解能は、回転装置2のステッピング角に対して、充分大きいことが望ましい。
【0038】
回転角計測器3は、回転装置2と一体に設けるようにしてもよい。
【0039】
情報処理装置4は、カメラ1から供給された一連の全方位画像(以下、画像シーケンスとも称する)を取得すると共に、回転角計測器3から供給されたカメラ1の回転角度を取得する。情報処理装置4は、画像シーケンスおよび回転角度を基に、全方位画像を展開して、全方位画像に対応する高精細の方形の画像を生成する。以下、全方位画像に対応する方形の画像を、パノラマ画像とも称する。情報処理装置4は、生成したパノラマ画像を表示装置5に供給する。
【0040】
情報処理装置4は、例えば、専用の画像処理装置、または汎用のコンピュータとすることができる。すなわち、情報処理装置4は、専用のハードウェアにより、後述する通信部21乃至出力バッファ26の機能を実現するようにしてもよく、所定のプログラムを実行することにより、通信部21乃至出力バッファ26の機能を実現するようにしてもよい。
【0041】
表示装置5は、情報処理装置4から供給された高精細度のパノラマ画像を表示する。表示装置5は、高精細度のパノラマ画像を表示することができるだけの解像能力を有することが望ましい。表示装置5は、例えば、CRT(Cathode-Ray Tube)モニタまたは液晶モニタとすることができる。
【0042】
図2は、情報処理装置4の機能を示すブロック図である。
【0043】
通信部21は、カメラ1から画像を受信し、回転角計測器3から回転角を受信するとともに、生成したパノラマ画像をモニタ5に出力するインタフェースである。また、通信部21は、カメラ1の撮像および撮像した全方位画像の送信、並びに回転角計測器3の回転角度の計測および回転角度の送信の処理を制御するための信号をカメラ1または回転角計測器3に送信する。
【0044】
制御部22は、カメラ1、回転角計測器3、通信部21、角度補正部24、および高精細化処理部25の動作を制御する。制御部22は、カメラ1に撮像させるか、若しくは撮像した全方位画像を送信させるか、または回転角計測器3にカメラ1の回転角度を計測させるか、若しくは計測した回転角度を送信させるとき、送信通信部21に所定の信号をカメラ1または回転角計測器3に送信させる。
【0045】
入力バッファ23は、カメラ1から送信され、通信部21で受信された全方位画像を記憶し、記憶している全方位画像を角度補正部24に供給する。また、入力バッファ23は、回転角計測器3から供給されたカメラ1の回転角度を記憶し、記憶しているカメラ1の回転角度を角度補正部24に供給する。
【0046】
さらに、入力バッファ23は、角度補正部24により、全方位画像が展開され、カメラ1の回転角度に対応して基準位置が設定された方形の画像を記憶する。入力バッファ23は、記憶している方形の画像を高精細化処理部25に供給する。
【0047】
角度補正部24は、入力バッファ23に記憶されている全方位画像を、緯度経度表現に変換する。すなわち、角度補正部24は、ほぼ円形の全方位画像を展開して方形の画像を生成する。角度補正部24は、カメラ1の回転角度を基に、展開した方形の画像の基準位置を算出する。
【0048】
高精細化処理部25は、入力バッファ23から供給された最初の方形の画像を、そのまま出力バッファ26に記憶させる。
【0049】
高精細化処理部25は、入力バッファ23から供給された基準位置が設定された方形の画像、出力バッファ26に記憶されている方形の画像を基に、より高精細な方形の画像を生成し、生成した方形の画像を高精細度のパノラマ画像として出力バッファ26に記憶させる。
【0050】
出力バッファ26は、高精細化処理部25により生成された、高精細度のパノラマ画像を記憶し、記憶されている高精細度のパノラマ画像を通信部21を介して、表示装置5に供給する。
【0051】
図3および図4に示すフローチャートを参照して、本発明に係る撮像システムによる撮像およびパノラマ画像を生成する処理を説明する。
【0052】
ステップS201において、情報処理装置4の制御部22は、通信部21を介して、カメラ1に、撮像要求信号を送信する。ステップS301において、カメラ1は、情報処理装置4から送信された撮像要求信号を受信し、ステップS302において、1フレームを撮像する。
【0053】
1フレームの撮像が終了したとき、ステップS303において、カメラ1は、撮像完了信号を情報処理装置4および回転角度計測器3に送信する。
【0054】
ステップS401において、回転角度計測器3は、カメラ1から送信された撮像完了信号を受信し、ステップS402に進み、カメラ1の回転角度を計測する。
【0055】
ステップS403において、回転角度計測器3は、計測したカメラ1の回転角度を保持する。
【0056】
ステップS202において、情報処理装置4の通信部21は、カメラ1から送信された撮像完了信号を受信し、受信した撮像完了信号に対応する信号を制御部22に供給する。ステップS203において、情報処理装置の制御部22は、通信部21から、撮像完了信号に対応する信号を受信すると、通信部21に、データ転送要求信号をカメラ1および回転角度計測器3に送信させる。
【0057】
ステップS304において、カメラ1は、情報処理装置4から送信されたデータ転送要求信号を受信すると、ステップS305において、ステップS302の処理で撮像した全方位画像を情報処理装置4に送信する。
【0058】
ステップS204において、情報処理装置4の通信部21は、カメラ1から送信された全方位画像を受信し、入力バッファ23に記憶させる。
【0059】
ステップS404において、回転角度計測器3は、情報処理装置4から送信されたデータ転送要求信号を受信すると、ステップS405において、ステップS402の処理で計測した、カメラ1の回転角度を情報処理装置4に送信する。
【0060】
ステップS205において、情報処理装置4の通信部21は、回転角度計測器3から送信された、カメラ1の回転角度を受信し、入力バッファ23に記憶させる。
【0061】
ステップS206において、情報処理装置4の角度補正部24は、入力バッファ23に記憶されている全方位画像、およびカメラ1の回転角度を基に、撮影角度補正の処理を実行する。撮影角度補正の処理により、全方位画像を展開した方形の画像が、入力バッファ23に格納される。また、方形の画像に設定された基準位置が入力バッファ23に格納される。撮影角度補正の処理の詳細は後述する。
【0062】
ステップS207において、情報処理装置4の高精細化処理部25は、入力バッファ23に記憶されている、基準位置が設定された、全方位画像を展開した方形の画像を基に、高精細な方形の画像を生成する高精細化の処理を実行する。生成された高精細な方形の画像は、出力バッファ26に格納される。高精細化の処理の詳細は、後述する。
【0063】
ステップS208において、情報処理装置4の通信部21は、制御部22の制御の基に、出力バッファ26に格納されている、高精細な方形の画像を表示装置5に送信する。
【0064】
ステップS101において、表示装置5は、情報処理装置4から送信された高精細な方形の画像を受信し、ステップS102において、受信した高精細な方形の画像を表示して、処理は終了する。
【0065】
なお、図3および図4のフローチャートを参照して説明した処理は、同期式の通信を利用する処理であるが、カメラ1が、常に全方位画像の画像信号を情報処理装置4に送信し、情報処理装置4が、画像信号のフレームの開始信号を用いて、回転角度計測器3から回転角度をラッチするようにしてもよい。
【0066】
図5は、ステップS206に対応する撮像角度補正の処理の詳細を説明するフローチャートである。
【0067】
ステップS11において、角度補正部24は、入力バッファ23に記憶されている全方位画像を、緯度経度表現に変換し、方形の画像を生成する。
【0068】
図6は、カメラ1により撮像され、入力バッファ23に記憶されている全方位画像の例を示す図である。全方位画像は、有効な画素がほぼ円形に配置される。全方位画像の中心側の画像は、周辺側の画像に比較して、より少ない撮像素子の画素で取得される。
【0069】
図7は、角度補正部24により、全方位画像から緯度経度表現に変換された、方形の画像の例を示す図である。
【0070】
角度補正部24は、全方位画像を、カメラ1の撮像素子の画素に対応して展開するので、全方位画像の中心側に対応する、図7中の方形の画像の下側のAの部分の画素には、画素値が設定されない。例えば、角度補正部24は、図7中の方形の画像の下側のAの部分の画素に、画素値が無いことを示す、ヌルを設定する。
【0071】
ステップS12において、角度補正部24は、入力バッファ23に記憶されている回転角度に対応させて、方形の画像に基準位置を設定して、すなわち、ステップS11の処理で展開された方形の画像をスクロールして、処理は終了する。
【0072】
撮像角度補正の処理により、カメラ1の回転に対応した画像シーケンスのそれぞれの画像について、基準位置が設定されて、対応する位置が特定されることにより、固定されたカメラで撮像された画像と同等の固定撮影画像シーケンスに変換されることになる。
【0073】
図8は、ステップS11の処理により、展開された方形の画像の例を示す図である。図中の上側は、基準フレームFrの画像を示す図である。図中の上から2番目は、基準フレームの次のフレームである、フレームF1の画像を示す図である。図中の下側は、フレームF1の次のフレームである、フレームF2の画像を示す図である。
【0074】
図9は、ステップS12の処理により、回転角度に対応させて、基準位置を設定した画像の例を示す図である。
【0075】
展開された方形の画像の右端から左端までの距離は、360度に対応する。
【0076】
画像の右端を基準として説明すると、フレームF1の画像は、図6中において、反時計方向に、基準フレームFrから角度α1回転したとき撮像されたものであるとき、角度α1に対応する距離V1だけ、基準フレームFrの画像を基準として、左側に移動される(スクロールされる)。V1は、例えば、画像の幅×α1/360で算出される。但し、α1は、0以上360未満である。
【0077】
同様に、フレームF2の画像は、図6中において、反時計方向に、基準フレームFrから角度α2回転したとき撮像されたものであるとき、角度α2に対応する距離V2だけ、基準フレームFrの画像を基準として、左側に移動される(スクロールされる)。
【0078】
言い換えれば、フレームFrの画像の基準位置が、フレームFrの画像の右端としたとき、フレームF1の画像の基準位置は、フレームF1の画像の右端から右側にV1だけ移動した位置であり、フレームF2の画像の基準位置は、フレームF2の画像の右端から右側にV2だけ移動した位置である。
【0079】
角度補正部24は、このような、基準位置を、全方位画像が展開された方形の画像に設定する。
【0080】
このようにすることで、基準位置を基準とした、基準フレームFrの画像、フレームF1の画像、およびフレームF2の画像の対応する位置の画素は、静止している同一の被写体の同一の部分の画像を含むことになる。
【0081】
次に、ステップS207の処理に対応する、高精細化の処理を図10のフローチャートを参照して説明する。
【0082】
ステップS31において、高精細化処理部25は、入力バッファ23から取得した最初の展開された方形の画像を基準フレームの画像として、出力バッファ26に記憶させる。
【0083】
ステップS32において、高精細化処理部25は、次のフレームであるフレームnの展開された方形の画像を入力バッファ23から読み込む。ステップS32の処理が最初に実行されたとき、高精細化処理部25は、基準フレームの次のフレームの方形の画像を入力バッファ23から読み出す。
【0084】
ステップS33において、高精細化処理部25は、画像の更新の処理を実行する。画像の更新の処理の詳細は、図11のフローチャートを参照して後述する。
【0085】
ステップS34において、高精細化処理部25は、最終フレームであるか否かを判定し、最終フレームでないと判定された場合、ステップS35に進み、フレームの番号をインクリメントした、ステップS32に進み、さらに次のフレームを読み出して、画像を更新する。すなわち、入力バッファ23から、順次、方形の画像を読み出して、方形の画像の更新の処理を繰り返す。
【0086】
ステップS34において、最終フレームであると判定された場合、ステップS36に進み、高精細化処理部25は、出力バッファ26に格納されている画像を通信部21に出力させ、処理は終了する。言い換えれば、ステップS36において、最終フレームである旨の信号を高精細化処理部25から受信した制御部22は、通信部21に、出力バッファ26に格納されている画像を取得させる。
【0087】
このように、高精細化処理部25は、全方位画像を展開した複数の方形の画像を基に、高精細な方形の画像を生成する。
【0088】
図11は、ステップS33に対応する画像の更新の処理の詳細を説明するフローチャートである。
【0089】
ステップS51において、高精細化処理部25は、基準位置を基準に、出力バッファ26に格納されている画像の画素と、ステップS32の処理で読み込んだフレームnの同一位置の画素とを比較する。
【0090】
ステップS52において、高精細化処理部25は、ステップS51の処理で比較した、出力バッファ26に格納されている画像の画素が存在しないか否かを判定し、出力バッファ26に格納されている画像の画素が存在しないと判定された場合、ステップS53に進み、基準位置を基準とした同一位置の、フレームnの画素の画素値を、存在しないと判定された画像の画素として、出力バッファ26に書き込み、ステップS54に進む。
【0091】
すなわち、図12に示すように、出力バッファ26に格納されている方形の画像には、全方位画像を展開することにより、例えば、画像の下側に、有効な画素値を有しない画素が存在している。比較の対象とされた画素が、このような有効な画素値を有しない画素である、すなわち、画素が存在しないとき、フレームnの画像の、基準位置を基準とした同一の位置の画素の画素値を、出力バッファ26の有効な画素値を有しない画素に上書きする。
【0092】
このようにすることで、出力バッファ26の有効な画素値を有しない画素が配置されていた、図12のAに示す部分に、フレームnの画素の画素値が設定されることになり、出力バッファ26に記憶されている画像を高精細化することができる。
【0093】
ステップS52において、画素が存在すると判定された場合、出力バッファ26の画像に画素値を上書きする必要がないので、ステップS53の処理はスキップされ、処理は、ステップS54に進む。
【0094】
ステップS54において、高精細化処理部25は、出力バッファ26に格納されている画像の画素の画素値と、基準位置を基準とした、フレームnの同一位置の画素の画素値の差分が、閾値TH1以下であるか否かを判定し、画素値の差分が閾値TH1以下であると判定された場合、静止している被写体に対応する画素なので、ステップS55に進み、出力バッファ26に格納されている画像の画素の画素値、および基準位置を基準とした、フレームnの同一位置の画素の画素値の平均値を算出し、算出した平均値を、比較された出力バッファ26に格納されている画像の画素の画素値として、出力バッファ26に書き込む。
【0095】
すなわち、画素値の差分が閾値TH1以下であると判定された場合、出力バッファ26に格納されている画像の画素、および基準位置を基準とした、フレームnの同一位置の画素が、同一の被写体の同一の部分を撮像して得られた画素である、すなわち、静止している被写体を撮像した画素であると言える。そこで、出力バッファ26に格納されている画像の画素の画素値と、基準位置を基準とした、フレームnの同一位置の画素の画素値との平均値が算出され、算出された平均値が、出力バッファ26の比較の対象となった画素に設定される。
【0096】
このようにすることで、静止している被写体が撮像された画像の部分である、例えば、図12のBに示す部分に、同一の被写体の同一部分に対応する画素値の平均値が設定されることになり、ノイズ等が低減されることとなり、出力バッファ26に記憶されている画像を高精細化することができる。
【0097】
ステップS56において、高精細化処理部25は、画素位置ポインタを、出力バッファ26に格納されている画像の次の画素を指すように、進める。
【0098】
ステップS57において、高精細化処理部25は、画素位置ポインタを基に、出力バッファ26に格納されている画像の全ての画素を比較したか否かを判定し、全ての画素を比較していないと判定された場合、ステップS51に戻り、次の画素について、更新の処理を繰り返す。
【0099】
ステップS57において、全ての画素を比較したと判定された場合、処理は終了する。
【0100】
ステップS54において、画素値の差分が閾値TH1以下でないと判定された場合、動いている被写体に対応する画素なので、ステップS58に進み、高精細化処理部25は、動き検出の処理を実行する。その後、処理は、ステップS56に進み、次の画素の更新の処理を実行する。
【0101】
以上のように、高精細化処理部25は、基準位置が設定された、2つ以上の方形の画像を基に、より高精細な方形の画像を生成することができる。
【0102】
図13は、ステップS58の処理に対応する動き検出の処理の詳細を説明するフローチャートである。
【0103】
ステップS71において、高精細化処理部25は、フレームnの画像内の対応する位置の画素の近傍の画素であって、フレームnの画像内の対応する位置の画素に類似した画素(近似した画素値を有する画素)を探索する。ステップS71において、高精細化処理部25は、所定の数の画素からなるブロックを基に、類似する画素を探索するようにしてもよい。
【0104】
ステップS72において、高精細化処理部25は、探索の結果、類似した画素が存在するか否かを判定し、類似した画素が存在すると判定された場合、ステップS73に進み、出力バッファ26に格納されている画像のうち、対象となる画素と、基準位置を基準とした、フレームnの類似している画素に対応する位置の画素との間を、フレームnの画像内の対応する位置の画素の画素値で補間する。
【0105】
例えば、図14に示すように、全方位画像上で被写体が移動しているとき、展開された画像においては、図15に示すように、移動している被写体の画像について、画素値が得られない場合がある。
【0106】
そこで、フレームnの画像のうち、基準位置を基準として、出力バッファ26の画素位置ポインタで指定される画素に対応する位置の画素が図15中のCであり、画素Cに類似する画素が図中のDであるとき、高精細化処理部25は、出力バッファ26に格納されている画像の画素であって、基準位置を基準として、画素Cおよび画素Dの間に位置する画素Eに対応する画素に、画素Cの画素値を設定する。
【0107】
これにより、フレームnで撮像された、移動している被写体の大まかな画像を、出力バッファ26に格納されている画像に表すことができる。
【0108】
一方、ステップS72において、類似した画素が存在しないと判定された場合、孤立点であるとみなして、ステップS74に進み、高精細化処理部25は、フレームnの画素の画素値に適切な重みを乗算し、輝度を補正した画素値を生成する。
【0109】
ステップS75において、高精細化処理部25は、ステップS74の処理において、生成された画素値を出力バッファ26の画素位置ポインタで指定される画素の画素値として足し込み、処理は終了する。
【0110】
このようにすることで、動いている被写体を撮像した場合であっても、動いている被写体が静止している画像に溶け込んでしまうことを防止でき、動いている被写体の画像を含む高精細なパノラマ画像を取得することができる。
【0111】
次に、図16および図17のフローチャートを参照して、回転角度計測器3を有しない撮像システムによる撮像およびパノラマ画像を生成する処理を説明する。
【0112】
ステップS1201において、情報処理装置4の制御部22は、通信部21を介して、カメラ1に、撮像要求信号を送信する。ステップS1301において、カメラ1は、情報処理装置4から送信された撮像要求信号を受信し、ステップS1302において、1フレームを撮像する。
【0113】
1フレームの撮像が終了したとき、ステップS1303において、カメラ1は、撮像完了信号を情報処理装置4に送信する。
【0114】
ステップS1202において、情報処理装置4の通信部21は、カメラ1から送信された撮像完了信号を受信し、受信した撮像完了信号に対応する信号を制御部22に供給する。ステップS1203において、情報処理装置の制御部22は、撮像完了信号に対応する信号を受信すると、通信部21に、データ転送要求信号をカメラ1に送信させる。
【0115】
ステップS1304において、カメラ1は、情報処理装置4から送信されたデータ転送要求信号を受信すると、ステップS1305において、ステップS302の処理で撮像した画像を情報処理装置4に送信する。
【0116】
ステップS1204において、情報処理装置4の通信部21は、カメラ1から送信された画像を受信し、入力バッファ23に記憶させる。
【0117】
ステップS1205において、情報処理装置4の角度補正部24は、入力バッファ23に記憶されている全方位画像を基に、撮影角度補正の処理を実行する。撮影角度補正の処理により、基準位置が設定された、全方位画像を展開した方形の画像が、入力バッファ23に格納される。ステップS1205における、撮影角度補正の処理の詳細は、図18のフローチャートを参照して後述する。
【0118】
ステップS1206において、情報処理装置4の高精細化処理部25は、入力バッファ23に記憶されている基準位置が設定された、全方位画像を展開した方形の画像を基に、高精細なパノラマ画像を生成する高精細化の処理を実行する。生成された高精細なパノラマ画像は、出力バッファ26に格納される。ステップS1206における高精細化の処理は、ステップS207の処理と同様なので、その説明は省略する。
【0119】
ステップS1207において、情報処理装置4の通信部21は、制御部22の制御の基に、出力バッファ26に格納されている、高精細なパノラマ画像を表示装置5に送信する。
【0120】
ステップS1101において、表示装置5は、情報処理装置4から送信された高精細なパノラマ画像を受信し、ステップS1102において、受信した高精細なパノラマ画像を表示して、処理は終了する。
【0121】
図18のフローチャートを参照して、ステップS1205に対応する、撮影角度補正の処理の詳細を説明する。
【0122】
ステップS91において、角度補正部24は、入力バッファ23に記憶されている全方位画像を、緯度経度表現に変換し、方形の画像を生成する。
【0123】
ステップS92において、角度補正部24は、生成した方形の画像のうち、全方位画像の円周部に対応する高解像度の部分を切り出す。
【0124】
ステップS93において、角度補正部24は、基準フレームの画像と、切り出した画像と間の動き量を求める。ステップS93における、基準フレームは、角度補正部24により、適宜選択された所定のフレームである。
【0125】
ステップS94において、角度補正部24は、求めた動き量を基に、動きがあるか否かを判定し、動きがあると判定された場合、ステップS95に進み、角度補正部24は、動き量に対応させて、方形の画像に基準位置を設定して、すなわち、ステップS91の処理で展開された方形の画像をスクロールして、処理は終了する。
【0126】
ステップS94において、動きがないと判定された場合、撮像素子に対して、撮像された画像が動いていないので、ステップS93に戻り、基準フレームに対して動きを有するフレームを取得するまで、処理を繰り返す。
【0127】
このように、回転角度計測器3を有しない場合であっても、全方位画像を展開した方形の画像に基準位置を設定することができる。
【0128】
以上のように、本発明によれば、より簡単な構成で、臨場感のある高精細な全方位パノラマ画像を生成することができるようになる。
【0129】
広画角および高精細でありながら、動いている被写体の画像も取得できるようになる。
【0130】
また、静止画像に限らず、動画像である全方位パノラマ画像を取得することができるようになる。
【0131】
このように、本発明によれば、第1の全方位画像および第2の全方位画像を第1の方形画像および第2の方形画像にそれぞれ変換し、角度に対応した、第1の方形画像に対する第2の方形画像の基準位置を算出し、第1の方形画像の第1の画素の画素値を、基準位置を基準とした対応する位置の第2の方形画像の第2の画素の画素値を基に、更新するようにした場合には、全周囲を撮像した、より高精細な画像を得ることができる。
【0132】
第1の方形画像の第1の画素が存在しないとき、第1の画素に第2の画素の画素値を設定することにより、第1の方形画像の第1の画素の画素値を更新するようにしてもよい。
【0133】
第1の画素と第2の画素との差分が所定の閾値以下であるとき、第1の画素に、第1の画素の画素値および第2の画素の画素値の平均値を設定することにより、第1の方形画像の第1の画素の画素値を更新するようにしてもよい。
【0134】
第1の画素と第2の画素との差分が所定の閾値を越えるとき、第2の画素に類似する第2の方形画像の第3の画素に対応する、基準位置を基準とした位置の第1の画像の第4の画素と第1の画素との間の画素に、第2の画素の画素値を設定することにより、第1の方形画像の画素値を更新するようにしてもよい。
【0135】
第1の方形画像および第2の方形画像の動き量を基に、角度を検出するようにすることができる。
【0136】
また、本発明によれば、全方位画像を撮像し、撮像の光軸を回転軸として、撮像範囲を回転させ、第1の全方位画像、および第1の全方位画像に対して、所定の角度で回転された位置から撮像された第2の全方位画像を第1の方形画像および第2の方形画像にそれぞれ変換し、角度に対応した、第1の方形画像に対する第2の方形画像の基準位置を算出し、第1の方形画像の第1の画素の画素値を、基準位置を基準とした対応する位置の第2の方形画像の第2の画素の画素値を基に、更新するようにした場合には、全周囲を、より高精細に撮像することができる。
【0137】
撮像範囲が回転された角度を検出するようにすることができる。
【0138】
第1の方形画像の第1の画素が存在しないとき、第1の画素に第2の画素の画素値を設定することにより、第1の方形画像の第1の画素の画素値を更新するようにしてもよい。
【0139】
第1の画素と第2の画素との差分が所定の閾値以下であるとき、第1の画素に、第1の画素の画素値および第2の画素の画素値の平均値を設定することにより、第1の方形画像の第1の画素の画素値を更新するようにしてもよい。
【0140】
第1の画素と第2の画素との差分が所定の閾値を越えるとき、第2の画素に類似する第2の方形画像の第3の画素に対応する、基準位置を基準とした位置の第1の画像の第4の画素と第1の画素との間の画素に、第2の画素の画素値を設定することにより、第1の方形画像の画素値を更新するようにしてもよい。
【0141】
第1の方形画像および第2の方形画像の動き量を基に、角度を検出するようにしてもよい。
【0142】
上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。
【0143】
図19は、本発明に係る画像処理を実行するコンピュータシステムの構成の例を示すブロック図である。CPU(Central Processing Unit)101は、ROM(Read Only Memory)102、または記憶部108に記憶されているプログラムに従って各種の処理を実行する。CPU101は、表示制御部11に対応する処理を実行する。
【0144】
RAM(Random Access Memory)103には、CPU101が実行するプログラムやデータなどが適宜記憶される。これらのCPU101、ROM102、およびRAM103は、バス104により相互に接続されている。
【0145】
CPU101にはまた、バス104を介して入出力インタフェース105が接続されている。入出力インタフェース105には、キーボード、マウス、マイクロホンなどよりなる入力部106、ディスプレイ、スピーカなどよりなる出力部107が接続されている。出力部107は、表示部12に対応する。
【0146】
CPU101は、入力部106から入力される指令に対応して各種の処理を実行する。そして、CPU101は、処理の結果得られたデータ等を出力部107に出力する。例えば、CPU101は、入力部106から入力された全方位画像について、撮影角度の補正の処理を適用し、高精細化の処理を適用する。CPU101は、出力部107から、生成した高精細のパノラマ画像を出力する。
【0147】
なお、入力部106として、カメラ1、回転装置2、および回転角計測器3を設けるようにしてもよい。
【0148】
入出力インタフェース105に接続されている記憶部108は、例えばハードディスクなどで構成され、CPU101が実行するプログラムや各種のデータを記憶する。通信部109は、インターネット、その他のネットワークを介して外部の装置と通信する。
【0149】
また、通信部109を介してプログラムを取得し、記憶部108に記憶してもよい。
【0150】
入出力インタフェース105に接続されているドライブ110は、磁気ディスク151、光ディスク152、光磁気ディスク153、或いは半導体メモリ154などが装着されたとき、それらを駆動し、そこに記録されているプログラムやデータなどを取得する。取得されたプログラムやデータは、必要に応じて記憶部108に転送され、記憶される。
【0151】
一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。
【0152】
この記録媒体は、図19に示すように、コンピュータとは別に、ユーザにプログラムを提供するために配布される、プログラムが記録されている磁気ディスク151(フレキシブルディスクを含む)、光ディスク152(CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Versatile Disc)を含む)、光磁気ディスク153(MD(Mini-Disc)(商標)を含む)、若しくは半導体メモリ154などよりなるパッケージメディアにより構成されるだけでなく、コンピュータに予め組み込まれた状態でユーザに提供される、プログラムが記録されているROM102や、記憶部108に含まれるハードディスクなどで構成される。
【0153】
なお、上述した一連の処理を実行させるプログラムは、必要に応じてルータ、モデムなどのインタフェースを介して、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の通信媒体を介してコンピュータにインストールされるようにしてもよい。
【0154】
また、本明細書において、記録媒体に格納されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
【0155】
なお、本明細書において、システムとは、複数の装置により構成される装置全体を表すものである。
【0156】
【発明の効果】
以上のように、第1の本発明によれば、パノラマ画像を得ることができる。
【0157】
また、第1の本発明によれば、全周囲を撮像した、より高精細な画像を得ることができるようになる。
【0158】
第2の本発明によれば、パノラマ画像を撮像することができる。
【0159】
また、第2の本発明によれば、全周囲を、より高精細に撮像することができるようになる。
【図面の簡単な説明】
【図1】本発明に係る撮像システムの一実施の形態を示す図である。
【図2】情報処理装置4の機能を示すブロック図である。
【図3】撮像およびパノラマ画像を生成する処理を説明するフローチャートである。
【図4】撮像およびパノラマ画像を生成する処理を説明するフローチャートである。
【図5】撮像角度補正の処理を説明するフローチャートである。
【図6】全方位画像の例を示す図である。
【図7】全方位画像から変換された、方形の画像の例を示す図である。
【図8】方形の画像の例を示す図である。
【図9】基準位置を設定した方形の画像の例を示す図である。
【図10】高精細化の処理を説明するフローチャートである。
【図11】画像の更新の処理を説明するフローチャートである。
【図12】画像の更新の処理を説明する図である。
【図13】動き検出の処理を説明するフローチャートである。
【図14】動いている被写体を含む全方位画像の例を示す図である。
【図15】動いている被写体を含む画像の例を示す図である。
【図16】撮像およびパノラマ画像を生成する他の処理を説明するフローチャートである。
【図17】撮像およびパノラマ画像を生成する他の処理を説明するフローチャートである。
【図18】撮影角度補正の他の処理を説明するフローチャートである。
【図19】コンピュータシステムの構成の例を示すブロック図である。
【符号の説明】
1 カメラ, 2 回転装置, 3 回転角度計測装置, 4 情報処理装置, 5 表示装置, 11 双曲面ミラー, 21 通信部, 22 制御部,23 入力バッファ, 24 角度補正部, 25 高精細化処理部, 26出力バッファ, 101 CPU, 102 ROM, 103 RAM, 108 記憶部, 151 磁気ディスク, 152 光ディスク, 153 光磁気ディスク, 154 半導体メモリ

Claims (14)

  1. 第1の全方位画像、および撮像の光軸を回転軸として、前記第1の全方位画像に対して、所定の角度で回転された位置から撮像された第2の全方位画像を処理する画像処理装置において、
    前記第1の全方位画像および前記第2の全方位画像に対して経度緯度変換を行うことにより、前記第1の全方位画像および前記第2の全方位画像を第1の方形画像および第2の方形画像にそれぞれ変換する変換手段と、
    前記角度に対応した、前記第1の方形画像に対する前記第2の方形画像の基準位置を算出する算出手段と、
    前記第1の方形画像の任意の第1の画素の画素値を、当該第1の画素の画素値と前記基準位置を基準とした対応する位置の前記第2の方形画像の第2の画素の画素値を基に、更新する更新手段と
    を含むことを特徴とする画像処理装置。
  2. 前記更新手段は、前記第1の方形画像の前記第1の画素が存在しないとき、前記第1の画素に前記第2の画素の画素値を設定することにより、前記第1の方形画像の第1の画素の画素値を更新する
    ことを特徴とする請求項1に記載の画像処理装置。
  3. 前記更新手段は、前記第1の画素と前記第2の画素との差分が所定の閾値以下であるとき、前記第1の画素に、前記第1の画素の画素値および前記第2の画素の画素値の平均値を設定することにより、前記第1の方形画像の第1の画素の画素値を更新する
    ことを特徴とする請求項1に記載の画像処理装置。
  4. 前記更新手段は、前記第1の画素と前記第2の画素との差分が所定の閾値を越えるとき、前記第2の画素に類似する前記第2の方形画像の第3の画素に対応する、前記基準位置を基準とした位置の前記第1の画像の第4の画素と前記第1の画素との間の画素に、前記第2の画素の画素値を設定することにより、前記第1の方形画像の画素値を更新する
    ことを特徴とする請求項1に記載の画像処理装置。
  5. 前記第1の方形画像および前記第2の方形画像の動き量を基に、前記角度を検出する検出手段
    をさらに含むことを特徴とする請求項1に記載の画像処理装置。
  6. 第1の全方位画像、および撮像の光軸を回転軸として、前記第1の全方位画像に対して、所定の角度で回転された位置から撮像された第2の全方位画像を処理する画像処理方法において、
    前記第1の全方位画像および前記第2の全方位画像に対して経度緯度変換を行うことにより、前記第1の全方位画像および前記第2の全方位画像を第1の方形画像および第2の方形画像にそれぞれ変換する変換ステップと、
    前記角度に対応した、前記第1の方形画像に対する前記第2の方形画像の基準位置を算出する算出ステップと、
    前記第1の方形画像の任意の第1の画素の画素値を、当該第1の画素の画素値と前記基準位置を基準とした対応する位置の前記第2の方形画像の第2の画素の画素値を基に、更新する更新ステップと
    を含むことを特徴とする画像処理方法。
  7. 第1の全方位画像、および撮像の光軸を回転軸として、前記第1の全方位画像に対して、所定の角度で回転された位置から撮像された第2の全方位画像を処理するコンピュータに、
    前記第1の全方位画像および前記第2の全方位画像に対して経度緯度変換を行うことにより、前記第1の全方位画像および前記第2の全方位画像を第1の方形画像および第2の方形画像にそれぞれ変換する変換ステップと、
    前記角度に対応した、前記第1の方形画像に対する前記第2の方形画像の基準位置を算出する算出ステップと、
    前記第1の方形画像の任意の第1の画素の画素値を、当該第1の画素の画素値と前記基準位置を基準とした対応する位置の前記第2の方形画像の第2の画素の画素値を基に、更新する更新ステップと
    を含む処理を実行させるプログラム。
  8. 全方位画像を撮像する撮像手段と、
    前記撮像手段の撮像の光軸を回転軸として、前記撮像手段を回転させる回転手段と、
    前記第1の全方位画像、および前記第1の全方位画像に対して、所定の角度で回転された位置から撮像された第2の全方位画像を経度緯度変換によって第1の方形画像および第2の方形画像にそれぞれ変換する変換手段と、
    前記角度に対応した、前記第1の方形画像に対する前記第2の方形画像の基準位置を算出する算出手段と、
    前記第1の方形画像の任意の第1の画素の画素値を、当該第1の画素の画素値と前記基準位置を基準とした対応する位置の前記第2の方形画像の第2の画素の画素値を基に、更新する更新手段と
    を含むことを特徴とする撮像装置。
  9. 前記撮像手段が回転された前記角度を検出する検出手段をさらに含むことを特徴とする請求項8に記載の撮像装置。
  10. 前記更新手段は、前記第1の方形画像の前記第1の画素が存在しないとき、前記第1の画素に前記第2の画素の画素値を設定することにより、前記第1の方形画像の第1の画素の画素値を更新する
    ことを特徴とする請求項8に記載の撮像装置。
  11. 前記更新手段は、前記第1の画素と前記第2の画素との差分が所定の閾値以下であるとき、前記第1の画素に、前記第1の画素の画素値および前記第2の画素の画素値の平均値を設定することにより、前記第1の方形画像の第1の画素の画素値を更新する
    ことを特徴とする請求項8に記載の撮像装置。
  12. 前記更新手段は、前記第1の画素と前記第2の画素との差分が所定の閾値を越えるとき、前記第2の画素に類似する前記第2の方形画像の第3の画素に対応する、前記基準位置を基準とした位置の前記第1の画像の第4の画素と前記第1の画素との間の画素に、前記第2の画素の画素値を設定することにより、前記第1の方形画像の画素値を更新する
    ことを特徴とする請求項8に記載の撮像装置。
  13. 前記第1の方形画像および前記第2の方形画像の動き量を基に、前記角度を検出する検出手段
    をさらに含むことを特徴とする請求項8に記載の撮像装置。
  14. 全方位画像を撮像する撮像ステップと、
    前記撮像ステップにおける撮像の光軸を回転軸として、撮像の位置を回転させる回転ステップと、
    前記第1の全方位画像、および前記第1の全方位画像に対して、所定の角度で回転された位置から撮像された第2の全方位画像を経度緯度変換によって第1の方形画像および第2の方形画像にそれぞれ変換する変換ステップと、
    前記角度に対応した、前記第1の方形画像に対する前記第2の方形画像の基準位置を算出する算出ステップと、
    前記第1の方形画像の任意の第1の画素の画素値を、当該第1の画素の画素値と前記基準位置を基準とした対応する位置の前記第2の方形画像の第2の画素の画素値を基に、更新する更新ステップと
    を含むことを特徴とする撮像方法。
JP2002086516A 2002-03-26 2002-03-26 画像処理装置および方法、撮像装置および方法、並びにプログラム Expired - Fee Related JP3965560B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086516A JP3965560B2 (ja) 2002-03-26 2002-03-26 画像処理装置および方法、撮像装置および方法、並びにプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002086516A JP3965560B2 (ja) 2002-03-26 2002-03-26 画像処理装置および方法、撮像装置および方法、並びにプログラム

Publications (2)

Publication Number Publication Date
JP2003284058A JP2003284058A (ja) 2003-10-03
JP3965560B2 true JP3965560B2 (ja) 2007-08-29

Family

ID=29233091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086516A Expired - Fee Related JP3965560B2 (ja) 2002-03-26 2002-03-26 画像処理装置および方法、撮像装置および方法、並びにプログラム

Country Status (1)

Country Link
JP (1) JP3965560B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6271917B2 (ja) * 2013-09-06 2018-01-31 キヤノン株式会社 画像記録装置及び撮像装置
CN105980962B (zh) * 2014-02-17 2019-07-23 索尼公司 信息处理设备和信息处理方法
US10325391B2 (en) 2016-11-21 2019-06-18 Qualcomm Incorporated Oriented image stitching for spherical image content

Also Published As

Publication number Publication date
JP2003284058A (ja) 2003-10-03

Similar Documents

Publication Publication Date Title
JP6819801B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム。
CN106133794B (zh) 信息处理方法、信息处理设备以及程序
US10437545B2 (en) Apparatus, system, and method for controlling display, and recording medium
JP5835384B2 (ja) 情報処理方法、情報処理装置、およびプログラム
JP5121673B2 (ja) 画像投影装置及び画像投影方法
KR101339193B1 (ko) 카메라 플랫폼 시스템
JP6497965B2 (ja) 画像処理装置及び画像処理方法
JP2012222674A (ja) 画像処理装置、画像処理方法、プログラム
JP2006333133A (ja) 撮像装置、撮像方法、プログラム、プログラム記録媒体並びに撮像システム
JPWO2008114499A1 (ja) 撮影装置および撮影方法
JP2018110375A (ja) 表示装置、プログラム、表示方法
JP2006262030A (ja) 画角調整装置、カメラシステムおよび画角調整方法
JP7086552B2 (ja) 情報処理装置、撮像装置、情報処理方法及びプログラム
JP6544996B2 (ja) 制御装置及び制御方法
US20240087157A1 (en) Image processing method, recording medium, image processing apparatus, and image processing system
WO2007119712A1 (ja) カメラ装置、画像処理装置および画像処理方法
JP6350695B2 (ja) 装置、方法、およびプログラム
JP2024114712A (ja) 撮像装置、撮像方法、及び、プログラム
JP2018109946A (ja) 表示装置、プログラム、表示方法
JP3965560B2 (ja) 画像処理装置および方法、撮像装置および方法、並びにプログラム
CN104754192A (zh) 摄像设备及其控制方法
JP6583486B2 (ja) 情報処理方法、情報処理プログラムおよび情報処理装置
JP6128185B2 (ja) 装置、方法、およびプログラム
JP6777208B2 (ja) プログラム
JP7447403B2 (ja) 情報処理装置、情報処理システム、情報処理方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees