JP3964291B2 - Analytical instrument - Google Patents

Analytical instrument Download PDF

Info

Publication number
JP3964291B2
JP3964291B2 JP2002261670A JP2002261670A JP3964291B2 JP 3964291 B2 JP3964291 B2 JP 3964291B2 JP 2002261670 A JP2002261670 A JP 2002261670A JP 2002261670 A JP2002261670 A JP 2002261670A JP 3964291 B2 JP3964291 B2 JP 3964291B2
Authority
JP
Japan
Prior art keywords
cuvette
sample
light
reagent
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002261670A
Other languages
Japanese (ja)
Other versions
JP2004101295A (en
JP2004101295A5 (en
Inventor
統安 木村
和久 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2002261670A priority Critical patent/JP3964291B2/en
Publication of JP2004101295A publication Critical patent/JP2004101295A/en
Publication of JP2004101295A5 publication Critical patent/JP2004101295A5/ja
Application granted granted Critical
Publication of JP3964291B2 publication Critical patent/JP3964291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、便潜血分析等が行える小型の分析機器に関するものである。
【0002】
【従来の技術】
従来より、集団検診等で集められた検体より便潜血分析を自動的に行う大型の分析装置は知られている(例えば、特許文献1参照)。
【0003】
この大型の分析装置は、使い捨てまたは洗浄して再使用するキュベット(混合容器)を多量にセットし、このキュベットを直線移送しつつ、空のキュベットに検体採取容器から検体液を、試薬ボトルから液状試薬をそれぞれ分注し、その呈色度合いの測光を行うようになっている。
【0004】
また、その測光部は、光源とフィルターと光ファイバーとで構成され、光源からの測定光がフィルターで波長変換され、光ファイバーでキュベットに対して照射するように光路が形成されてなる。
【0005】
【特許文献1】
特開平8−35969号公報
【0006】
【発明が解決しようとする課題】
上記のような従来の自動分析装置では、装置が大型で多量の検体を分析するのに適したもので、測光部も前述のように光源、フィルター、光ファイバー等を要して、装置を小型化する際の障害となっている。
【0007】
一方、検体分析に必要な特定波長を有する光源としては、LED(発光ダイオード)による発光素子を使用することが考えられるが、このLEDは点灯時の自己発熱や環境温度により発光スペクトルが変化したり、光量が変化する。そのため、前述のような試薬と検体との混合に伴う呈色変化を透過測光して検体成分を分析するような、精度を要求される分析機器の光源としては、上記のLEDによる発光素子を使用することは困難である。
【0008】
つまり、LEDは発光スペクトルの中心波長が、温度の影響を受けて変動する特性があり、環境温度の変化の影響を受けるとともに、点灯に応じた自己発熱によっても温度が変化し、測光分析に影響を与える。また、LEDは基本的に印加電流の大きさに応じて発光強度(光量)が変化する特性があり、この光量変化も測光分析に影響を与える問題がある。
【0009】
ところで、前述のようなキュベット内で混合した試薬と検体の呈色度合いより検体成分を分析するものでは、この呈色度合いも温度の影響を受けるために、上記キュベットを温調するヒーターなどが設置されているものであり、キュベットを所定温度に加熱保持して検体成分量に精度よく対応した呈色変化を得るように設置される。
【0010】
そこで、本発明は上記点に鑑み、キュベット内での試薬と検体との呈色反応をLEDによる発光素子を用いて透過測光するように構成して装置を小型化するとともに、このLEDの温度変化および電流変化による発光スペクトル、発光強度の安定化を図って精度のよい測光が行えるようにした小型の分析機器を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明の分析機器は、キュベット内で試薬と検体液とを混合し、その呈色変化を測光して検体成分の分析を行う分析機器であって、前記キュベットを温調する温調ブロックと、前記キュベット内の試薬と検体液の呈色変化を透過測光するLEDによる発光素子と受光素子とからなる測光部と備え、前記測光部の発光素子が、前記温調ブロックに挿着されて温調されるとともに、定電流駆動されることを特徴とするものである。
【0013】
【発明の効果】
上記のような本発明によれば、透過測光を行う測光部の光源としてLEDによる発光素子を用い、装置のコンパクト化を図るとともに、この発光素子を熱容量の大きい部材に固定して予熱温調するために、外気温度および自己発熱の影響を受けることなく一定温度に保持して、発光スペクトル、発光強度を安定化させるとともに、定電流駆動することによりさらに発光スペクトル、発光強度を安定化させて、高精度の測光分析を行うことができる。
【0014】
試薬と検体液が混合されたキュベットの温調を行うサンプルトレイの温調ブロックを使用して、LEDの温調を同時に行うようにしたものでは、別途の温調手段が不要で、装置のコンパクト化に有利であり、この温調ブロックは熱容量が大きく、自己発熱、外気温変化、温調の変動を受けにくく、特性が安定する。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に沿って説明する。図1は一例の自動分析機器の概略機構を示す斜視図、図2はサンプルトレイの斜視図、図3は分析状態のサンプルトレイの概略断面図、図4はキュベット、検体容器およびノズルチップの斜視図、図5は開封機構によるキュベットの開封状態を示す断面図である。
【0016】
この自動分析機器1は、図4(a)に示すような乾燥試薬Rを封入した混合容器としての使い捨てのキュベット11、同図(b)のような検体液を収容する検体容器12、同図(c)のような液を吸引吐出する後述の吸引ノズル41の先端に装着する使い捨てのノズルチップ13を消耗品として使用する。
【0017】
上記キュベット11は透光性の樹脂により略角筒状に成形され、下部壁面が特に透明で測定光が透過する測定部11aに構成され、上部外周には外側に張り出して搭載穴に係止する鍔部11bを備え、内部には便潜血分析の場合には金コロイド試薬による凍結乾燥試薬Rが収容され、上端開口部に金属箔によるシール11cが溶着されて上記試薬Rが封入されてなる。なお、この試薬Rは分析時には溶解液が注入されて溶解される。また、検体容器12は、上部外周に外側に張り出して搭載穴に係止する鍔部12aを備え、その内部には不図示の検体採取容器より採取した便検体を溶解保存した検体液が注入される。また、ノズルチップ13はピペット状に形成され、上端開口に吸引ノズル41の先端が嵌合されて装着され、吸引圧の導入で内部に液体を吸引収容し、吐出圧の導入でキュベット11へ吐出する。
【0018】
自動分析機器1は、装置本体2の前側平坦部に前記キュベット11、検体容器12、ノズルチップ13を組にして複数(例えば10組)搭載できる円形状のサンプルトレイ3と、昇降移動および旋回移動する吸引ノズル41を有する分注器4と、サンプルトレイ3の内部に設置されキュベット11内の試薬Rと検体液の呈色変化を透過測光するLEDによる測光部5(図3参照)と、この測光部5の上方部位のサンプルトレイ3を覆う遮光カバー6と、この遮光カバー6に設置され前記キュベット11のシール11cを穿孔開封する開封機構7(図5参照)と、サンプルトレイ3の近傍に配置されたチップ廃却部8と、試薬Rの溶解液を収容した溶解液ボトル14が搭載されるボトル搭載部9などを備えてなる。
【0019】
上記装置本体2は、上部に設置された操作部21と、サンプルトレイ3および分注器4などの分析機構を覆うフロントカバー22と、下部に引出可能に設置されたチップ廃却ボックス23を備える。
【0020】
そして、便潜血分析の基本動作は、まず、キュベット11のシール11cを開封してから、分注器4により溶解液を溶解液ボトル14より分注して試薬Rを溶解し、その後、検体容器12より所定量の検体液をキュベット11に分注し、攪拌する。次に、測定位置を通過する毎にその呈色変化を測光部5で測光し、初期値と所定時間後の呈色度合いから便潜血を求めるものである。
【0021】
次に、各部の構造を具体的に説明する。まず、サンプルトレイ3は、図2および図3にも示すように、正転方向および逆転方向に回転駆動される円盤状の回転テーブル31と、その下部に回転しない温調ブロック32と遮熱カバー33を備える。
【0022】
回転テーブル31には、外周側に同心上に検体容器12を保持する複数の円形搭載穴34と、内周側に同心上にキュベット11を保持する複数の矩形搭載穴35と、円形搭載穴34に隣接して外周側にノズルチップ13を保持する筒状搭載部36とが、円周を等分割して10組設置されている。回転テーブル31の下面中央には支持軸37を備え、温調ブロック32の中心部を貫通して旋回自在に支承されている。支持軸37の下端部にはギヤ38が固着され、不図示のタイミングベルトが掛けられて駆動モータにより回転駆動される。
【0023】
温調ブロック32はアルミニウム等の金属製で厚く大きな熱容量に形成され、底部にヒーター39が設置されて所定温度に加熱調整され、上面には回転テーブル31に搭載されたキュベット11の下部が移動する円環状の凹部32aを有し、この凹部32aのエアの加熱によってキュベット11を所定温度に加熱する。上記温調ブロック32の底面および外周は樹脂製の遮熱カバー33で覆われ、温調ブロック32の保温効果を得るとともに、外周部に形成された環状空間33aに検体容器12およびノズルチップ13の下部が、回転テーブル31の回転に伴って通るようになっている。
【0024】
さらに、測光部5が上記温調ブロック32の内部に設置されている。この測光部5は、凹部32aの内外周に、この凹部32a内を移動するキュベット11の測定部11aを挟むように、一方に設置されたLEDによる発光素子51と、これと対向して反対側に設置された受光素子52を備えてなる。この発光素子51(LED)がその取付部材51aによって温調ブロック32に埋設状態に取り付けられ、受光素子52(フォトセンサー)もその取付部材52aによって温調ブロック32に埋設状態に取り付けられてなり、それぞれ温調ブロック32によって、その温調温度に加熱されて、一定温度に安定して維持される。温調ブロック32の温調温度は、発光素子51の点灯時の自己発熱による温度より高い温度であり、熱容量が大きいことで温度変化が少なく測光中は一定の温度に安定して維持される。
【0025】
また、上記発光素子51(LED)には、定電流駆動回路55が接続され、規定電流値に定電流化された駆動電流が印加されて点灯が行われる。この定電流駆動と上記温調によって発光素子51による発光スペクトルおよび発光強度が一定の状態に安定し、測光分析の精度を確保する。
【0026】
受光素子52は、発光素子51より所定波長(色)の測光がキュベット11を透過して照射された受光量に応じた大きさの信号(電圧)を発生し、制御ユニットに送出するもので、制御ユニットではその信号に応じた呈色変化から検体成分(ヘモグロビン)の分析結果を演算するものである。
【0027】
便潜血分析においては、主波長と副波長の2波長の測光を行うものであって、上記発光素子51と受光素子52が2組設置されている。この2組の発光素子51のLEDは発光波長が異なり、回転テーブル31のキュベット11の搭載間隔(前記矩形搭載穴35の開口間隔)のピッチに合わせて設置され、異なるキュベット11が同時に2組の発光素子51と受光素子52の間に位置して測光が行えるもので、その都度呈色度合いを順次測光する。
【0028】
上記測光部5を覆って外光の影響を遮断する遮光カバー6は、測光部5が設置されている範囲のサンプルトレイ3の上方部位に起伏可能に設置されている。その外周側部位が水平軸によって回動可能に支持され、サンプルトレイ3の中心部を覆う部分が持ち上がるようになっている。
【0029】
また、前記遮光カバー6に設置された開封機構7は、キュベット11の回転移動軌跡と吸引ノズル41の旋回軌跡との交差位置に上下動可能に配置された開封ピン71を備え、この開封ピン71は遮光カバー6に突起状に配設されたピン設置部61内に、図5に示すように設置されている。この開封ピン71は軸部は丸棒状であるが、先端部71aは多面テーパ形状、例えば4面角錐状に形成されて、キュベット11のシール11cに穴をあけて開封する。また、上記開封ピン71はスプリング72によって上方に付勢され、分注器4の吸引ノズル41の押し下げによって開封動作が行われる。
【0030】
さらに、遮光カバー6の下面には開封後の開封ピン71がシール11cの開封穴に係合してキュベット11を持ち上げるのを阻止するための開封時のキュベット押え62を備えるとともに、遮光カバー6の側部には攪拌時のキュベット押え63(図2参照)を備える。開封時のキュベット押え62は、ピン設置部61の下部に開封ピン71が挿通する筒部の先端で構成され、その下端部がキュベット11の上面縁部に当接可能で、該キュベット押え62は開封ピン71のガイドを兼ねる。攪拌時のキュベット押え63は、ノズルチップ13の先端が開封穴からキュベット11内へ深く挿入され、シール11cの開封穴に係合してキュベット11を持ち上げるのを阻止するためのもので、遮光カバー6の側部に下方のキュベット11の縁部の上方へ板状に突出して形成されている。
【0031】
分注器4(図1)は、旋回アーム42の先端下部に下方に向けて延びる棒状の吸引ノズル41を備え、検体液および溶解液の分注、両液の攪拌混合を行う。旋回アーム42は不図示のガイドロッドに沿って上下移動可能に支持され、このガイドロッドを保持する回転板が駆動モータから掛けられたタイミングベルトによって回転駆動される。これにより旋回アーム42が旋回駆動されるとともに、旋回中心に設置された不図示の送りネジが旋回アーム42に螺合され、この送りネジの回転駆動によって旋回アーム42が上下移動するようになっている。
【0032】
吸引ノズル41の先端には、旋回アーム42の下降移動によって上述したようなピペット状のノズルチップ13が装着されるものであって、このノズルチップ13内に検体液、溶解液を吸引し吐出するもので、使用後は、チップ廃却部8の係合溝にノズルチップ13の上端を係合した状態で旋回アーム42を上動させて嵌合を外し、下方の廃却ボックス23内へ落下させて廃却する。チップ廃却部8は吸引ノズル41の旋回軌跡上に配置されている。
【0033】
吸引ノズル41は先端部に開口する不図示のエア通路を有し、このエア通路には装置本体2内に設置された不図示のシリンジポンプからのエアパイプが接続されている。シリンジポンプは、注射器状のピストンを備えたエアポンプで、このシリンジの駆動によって生成された負圧または正圧(吸引・吐出圧)が吸引ノズル41へ導入される。
【0034】
また、自動分析機器1は、装置本体2に前記操作部21に連係された不図示の制御ユニットを内蔵している。この制御ユニットは、前記サンプルトレイ3、分注器4および測光部5の作動を制御し、測光部5の測光に基づき分析結果を演算する。
【0035】
次いで、本実施形態の動作について説明する。まず、分析を行う前に、サンプルトレイ3に、各検体液を収容した検体容器12を搭載すると共に、その組となる位置へキュベット11およびノズルチップ13を搭載し、さらに、溶解液ボトル14をセットして、測定準備を行う。
【0036】
その後、操作部21のスタートボタンを操作して分析処理を開始する。初期時点で、サンプルトレイ3の回転テーブル31を1回転させ、測光部5によってキュベット11を検出し、搭載されたポジションの検体分析を順に開始する。
【0037】
次に、回転テーブル31を回転させて分析する検体容器12に対応するキュベット11を開封位置に停止させ、開封ピン71を吸引ノズル41により押し下げてシール11cを開封する。次に、回転テーブル31を回転させて吸引ノズル41の旋回位置の下方にノズルチップ13を移動させ、吸引ノズル41に装着する。続いてキュベット11を吸引ノズル41の旋回位置の下方へ位置させるとともに、吸引ノズル41を溶解液ボトル14の位置へ旋回移動させてノズルチップ13内に所定量の溶解液を吸引した後、キュベット11上へ移動して開封穴よりキュベット11内へ溶解液を注入し、試薬Rを溶解させる。
【0038】
次に、回転テーブル31を回転させて吸引ノズル41の旋回位置の下方に検体容器12を移動させ所定量の検体液をノズルチップ13内に吸引した後、キュベット11上へ移動してキュベット11内へ検体液を分注し、さらにノズルチップ13をキュベット11内へ挿入して、キュベット11内の液体をノズルチップ13内へ吸引・吐出を繰り返して、試薬液と検体液との攪拌混合を行う。使用済みのノズルチップ13はチップ廃却部8で吸引ノズル41から外して下方に落下廃却する。
【0039】
そして、試薬液と検体液とが混合されたキュベット11は、温調ブロック32によって所定温度に温調され、回転テーブル31の回転により順次測光部5に移動され、発光素子51と受光素子52とによって透過光学濃度の測光がその都度行われる。上記測定を継続しつつ、次のキュベット11の開封に続く一連の分析動作を同時に行う。上記測光に基づく分析結果を出力し、処理を終了する。
【0040】
上記のような実施の形態では、測光部5をLEDによる発光素子51と受光素子52とでコンパクトに構成し、さらに、温調ブロック32に設置して加熱保持するとともに、定電流駆動回路55によって定電流駆動することで、発光スペクトルおよび発光強度が安定し、LEDを用いても精度のよい測光分析が行え、装置の小型化が実現できた。
【0041】
なお、前記キュベット11に封入する試薬は、凍結乾燥されたもの、粉末状、顆粒状、錠剤などの乾燥状態のものが好ましいが、液状試薬も封入可能である。また、試薬は予めキュベットに封入して使い捨てとしているが、空の使い捨てまたは洗浄して再使用するキュベットを搭載して、溶解液に代えて試薬をキュベットへ分注するようにしてもよい。さらに、便潜血分析ほか、尿成分(例えば尿蛋白)の分析を行うように設計変更可能である。
【図面の簡単な説明】
【図1】本発明の一つの実施の形態における自動分析機器の概略構成を示す斜視図
【図2】図1のサンプルトレイの斜視図
【図3】分析状態のサンプルトレイの概略断面図
【図4】キュベット、検体容器およびノズルチップの斜視図
【図5】開封機構によるキュベットの開封状態を示す断面図
【符号の説明】
1 自動分析機器
2 装置本体
3 サンプルトレイ
4 分注器
5 測光部
6 遮光カバー
7 開封機構
8 チップ廃却部
9 ボトル搭載部
11 キュベット
R 試薬
12 検体容器
13 ノズルチップ
21 操作部
31 回転テーブル
32 温調ブロック
41 吸引ノズル
42 旋回アーム
51 発光素子(LED)
52 受光素子
55 定電流駆動回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a small analytical instrument that can perform fecal occult blood analysis and the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, large analyzers that automatically perform fecal occult blood analysis from samples collected by mass screening or the like are known (see, for example, Patent Document 1).
[0003]
In this large analyzer, a large amount of cuvettes (mixing containers) that are disposable or washed and reused are set, and while the cuvette is linearly transferred, the sample liquid from the sample collection container and the liquid from the reagent bottle are transferred to an empty cuvette. Each reagent is dispensed, and photometric measurement of the degree of coloration is performed.
[0004]
The photometric unit is composed of a light source, a filter, and an optical fiber, and the optical path is formed so that the measurement light from the light source is wavelength-converted by the filter and irradiated to the cuvette by the optical fiber.
[0005]
[Patent Document 1]
JP-A-8-35969 [0006]
[Problems to be solved by the invention]
The conventional automatic analyzers as described above are large and suitable for analyzing a large amount of specimens, and the photometry unit also requires a light source, a filter, an optical fiber, etc. It has become an obstacle when doing.
[0007]
On the other hand, as a light source having a specific wavelength necessary for sample analysis, it is conceivable to use a light emitting element by an LED (light emitting diode). However, the emission spectrum of this LED changes due to self-heating at the time of lighting or environmental temperature. The amount of light changes. Therefore, the light-emitting element using the above-mentioned LED is used as a light source for an analytical instrument that requires high accuracy, such as analyzing the sample component through transmission photometry of the color change caused by mixing the reagent and the sample as described above. It is difficult to do.
[0008]
In other words, LEDs have the characteristic that the center wavelength of the emission spectrum fluctuates under the influence of temperature, and is affected by changes in the environmental temperature, and the temperature also changes due to self-heating as a result of lighting, affecting photometric analysis. give. Further, the LED basically has a characteristic that the light emission intensity (light quantity) changes according to the magnitude of the applied current, and this light quantity change also has a problem of affecting photometric analysis.
[0009]
By the way, in the case of analyzing the sample component based on the color mixing degree of the reagent and the sample mixed in the cuvette as described above, the coloration degree is also affected by the temperature. The cuvette is heated and held at a predetermined temperature and installed so as to obtain a color change corresponding to the amount of the sample component with high accuracy.
[0010]
Accordingly, in view of the above points, the present invention reduces the size of the apparatus by configuring the colorimetric reaction between the reagent and the sample in the cuvette to be transmitted and measured using a light emitting element of the LED, and changes the temperature of the LED. It is another object of the present invention to provide a small analytical instrument which can stabilize light emission spectrum and light emission intensity due to current change and perform accurate photometry.
[0011]
[Means for Solving the Problems]
The analytical instrument of the present invention is an analytical instrument that analyzes a sample component by mixing a reagent and a sample liquid in a cuvette, photometrically measuring the color change thereof, and a temperature control block for controlling the temperature of the cuvette; and a photometry unit consisting of a light emitting element and a light receiving element by the LED for transmitting metering the color change of the reagent and the specimen solution in the cuvette, the light emitting element of the photometric unit, temperature is inserted into the temperature control block It is characterized by being adjusted and driven by a constant current.
[0013]
【The invention's effect】
According to the present invention as described above, a light-emitting element using an LED is used as a light source of a photometry unit that performs transmission photometry, and the apparatus is made compact, and the light-emitting element is fixed to a member having a large heat capacity, and preheating temperature control is performed. In order to stabilize the emission spectrum and emission intensity by maintaining a constant temperature without being affected by the outside temperature and self-heating, and further stabilizing the emission spectrum and emission intensity by driving at a constant current, High-precision photometric analysis can be performed.
[0014]
Using a temperature control block on the sample tray that controls the temperature of the cuvette mixed with the reagent and the sample liquid, the LED temperature is controlled at the same time. This temperature control block has a large heat capacity, is less susceptible to self-heating, changes in outside air temperature, and temperature control, and has stable characteristics.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a perspective view showing a schematic mechanism of an example of an automatic analyzer, FIG. 2 is a perspective view of a sample tray, FIG. 3 is a schematic sectional view of a sample tray in an analysis state, and FIG. 4 is a perspective view of a cuvette, a specimen container, and a nozzle tip. FIG. 5 and FIG. 5 are cross-sectional views showing a cuvette opening state by the opening mechanism.
[0016]
This automatic analyzer 1 includes a disposable cuvette 11 as a mixing container in which a dry reagent R is enclosed as shown in FIG. 4A, a sample container 12 containing a sample liquid as shown in FIG. A disposable nozzle tip 13 attached to the tip of a later-described suction nozzle 41 for sucking and discharging the liquid as shown in (c) is used as a consumable item.
[0017]
The cuvette 11 is formed into a substantially rectangular tube shape with a translucent resin, and is configured as a measurement unit 11a that has a particularly transparent lower wall surface and allows measurement light to pass therethrough. In the case of fecal occult blood analysis, a lyophilized reagent R made of a colloidal gold reagent is accommodated, and a seal 11c made of metal foil is welded to the upper end opening to enclose the reagent R therein. The reagent R is dissolved by injecting a lysis solution at the time of analysis. Further, the sample container 12 includes a collar portion 12a that protrudes outward on the outer periphery of the upper portion and engages with the mounting hole, into which a sample solution in which a fecal sample collected from a sample collection container (not shown) is dissolved and stored is injected. The In addition, the nozzle tip 13 is formed in a pipette shape, and the tip of the suction nozzle 41 is fitted to the upper end opening, and a liquid is sucked and accommodated by introducing suction pressure, and discharged to the cuvette 11 by introducing discharge pressure. To do.
[0018]
The automatic analyzer 1 includes a circular sample tray 3 that can mount a plurality (for example, 10 sets) of the cuvette 11, the sample container 12, and the nozzle chip 13 on the front flat portion of the apparatus main body 2, and the vertical movement and swivel movement. A dispenser 4 having an aspirating nozzle 41, a photometric unit 5 (see FIG. 3) by an LED which is installed inside the sample tray 3 and transmits and measures the color change of the reagent R and the sample liquid in the cuvette 11; A light shielding cover 6 that covers the sample tray 3 above the photometric unit 5, an unsealing mechanism 7 (see FIG. 5) that is installed in the light shielding cover 6 and that opens and seals the seal 11 c of the cuvette 11, and in the vicinity of the sample tray 3 The chip discarding unit 8 is disposed, and a bottle mounting unit 9 on which a solution bottle 14 containing a solution of the reagent R is mounted.
[0019]
The apparatus main body 2 includes an operation unit 21 installed at the upper part, a front cover 22 that covers the analysis mechanism such as the sample tray 3 and the dispenser 4, and a chip disposal box 23 installed at the lower part so as to be able to be pulled out. .
[0020]
The basic operation of fecal occult blood analysis is as follows. First, the seal 11c of the cuvette 11 is opened, and then the solution is dispensed from the solution bottle 14 by the dispenser 4 to dissolve the reagent R, and then the sample container A predetermined amount of sample liquid is dispensed from 12 to the cuvette 11 and stirred. Next, every time the measurement position is passed, the change in color is measured by the photometry unit 5, and fecal occult blood is obtained from the initial value and the degree of coloration after a predetermined time.
[0021]
Next, the structure of each part will be specifically described. First, as shown in FIGS. 2 and 3, the sample tray 3 includes a disk-shaped rotary table 31 that is rotationally driven in the forward direction and the reverse direction, a temperature control block 32 that does not rotate below, and a heat shield cover. 33.
[0022]
The rotary table 31 has a plurality of circular mounting holes 34 concentrically holding the sample container 12 on the outer peripheral side, a plurality of rectangular mounting holes 35 concentrically holding the cuvette 11 on the inner peripheral side, and a circular mounting hole 34. Ten cylindrical mounting portions 36 that are adjacent to each other and hold the nozzle tip 13 on the outer peripheral side are equally divided into the circumference. A support shaft 37 is provided at the center of the lower surface of the rotary table 31 and is pivotably supported through the central portion of the temperature control block 32. A gear 38 is fixed to the lower end portion of the support shaft 37, and a timing belt (not shown) is hung and is rotated by a drive motor.
[0023]
The temperature control block 32 is made of a metal such as aluminum and has a large and large heat capacity. A heater 39 is installed at the bottom to adjust the heating to a predetermined temperature, and the lower part of the cuvette 11 mounted on the rotary table 31 moves on the upper surface. An annular recess 32a is provided, and the cuvette 11 is heated to a predetermined temperature by heating the air in the recess 32a. The bottom surface and the outer periphery of the temperature control block 32 are covered with a heat insulating cover 33 made of resin to obtain the heat retaining effect of the temperature control block 32, and the sample container 12 and the nozzle chip 13 are placed in the annular space 33a formed in the outer periphery. The lower part passes along with the rotation of the rotary table 31.
[0024]
Further, the photometric unit 5 is installed inside the temperature control block 32. The photometric unit 5 includes a light emitting element 51 of an LED installed on one side and an opposite side opposite to the measuring unit 11a of the cuvette 11 moving in the concave portion 32a between the inner and outer circumferences of the concave portion 32a. The light receiving element 52 is provided. The light emitting element 51 (LED) is attached to the temperature control block 32 by the mounting member 51a, and the light receiving element 52 (photo sensor) is also attached to the temperature control block 32 by the mounting member 52a. Each of them is heated by the temperature control block 32 to the temperature control temperature and stably maintained at a constant temperature. The temperature control temperature of the temperature control block 32 is higher than the temperature due to self-heating when the light emitting element 51 is turned on, and since the heat capacity is large, the temperature change is small and it is stably maintained at a constant temperature during photometry.
[0025]
The light emitting element 51 (LED) is connected to a constant current drive circuit 55, and is lit by applying a constant drive current to a specified current value. The constant current drive and the temperature control stabilize the emission spectrum and emission intensity of the light emitting element 51 in a constant state, and ensure the accuracy of photometric analysis.
[0026]
The light receiving element 52 generates a signal (voltage) having a magnitude corresponding to the amount of light received from the light emitting element 51 through which the photometry of a predetermined wavelength (color) is transmitted through the cuvette 11 and sends it to the control unit. The control unit calculates the analysis result of the specimen component (hemoglobin) from the color change according to the signal.
[0027]
In the fecal occult blood analysis, two wavelengths of the main wavelength and the sub wavelength are measured, and two sets of the light emitting element 51 and the light receiving element 52 are provided. The LEDs of the two sets of light emitting elements 51 have different emission wavelengths, and are installed in accordance with the pitch of the mounting interval of the cuvettes 11 of the rotary table 31 (the opening interval of the rectangular mounting holes 35). It is located between the light-emitting element 51 and the light-receiving element 52 and can perform photometry, and the coloration degree is sequentially measured each time.
[0028]
The light-shielding cover 6 that covers the light metering unit 5 and blocks the influence of external light is installed on the upper portion of the sample tray 3 in a range where the light metering unit 5 is installed so as to be undulated. The outer peripheral side portion is rotatably supported by a horizontal shaft, and a portion covering the center portion of the sample tray 3 is lifted.
[0029]
The unsealing mechanism 7 installed in the light shielding cover 6 includes an unsealing pin 71 that is arranged so as to be movable up and down at the intersection of the rotational movement locus of the cuvette 11 and the turning locus of the suction nozzle 41. Is installed in a pin installation portion 61 arranged in a protruding manner on the light shielding cover 6 as shown in FIG. The opening pin 71 has a round bar shape in the shaft portion, but the tip end portion 71a is formed in a multi-sided taper shape, for example, a four-sided pyramid shape, and is opened by opening a hole in the seal 11c of the cuvette 11. The unsealing pin 71 is biased upward by a spring 72, and the unsealing operation is performed by depressing the suction nozzle 41 of the dispenser 4.
[0030]
Furthermore, the lower surface of the light shielding cover 6 is provided with a cuvette presser 62 at the time of opening for preventing the unsealed opening pin 71 from engaging with the opening hole of the seal 11 c and lifting the cuvette 11. A cuvette presser 63 (see FIG. 2) at the time of stirring is provided on the side portion. The cuvette presser 62 at the time of opening is constituted by a tip of a cylindrical portion through which the unsealing pin 71 is inserted at the lower portion of the pin installation portion 61, and a lower end portion thereof can be brought into contact with an upper surface edge portion of the cuvette 11. Also serves as a guide for the opening pin 71. The cuvette presser 63 at the time of stirring is for preventing the tip of the nozzle tip 13 from being inserted deeply into the cuvette 11 from the opening hole and engaging the opening hole of the seal 11c to lift the cuvette 11, and the light shielding cover 6 is formed so as to protrude in the shape of a plate above the edge of the lower cuvette 11 on the side portion.
[0031]
The dispenser 4 (FIG. 1) is provided with a rod-like suction nozzle 41 extending downward at the lower end of the swivel arm 42, and dispenses the sample liquid and the dissolved liquid and stirs and mixes both liquids. The swivel arm 42 is supported so as to be vertically movable along a guide rod (not shown), and a rotary plate holding the guide rod is rotationally driven by a timing belt hung from a drive motor. As a result, the turning arm 42 is driven to turn, and a feed screw (not shown) installed at the turning center is screwed to the turning arm 42, and the turning arm 42 is moved up and down by the rotational drive of the feed screw. Yes.
[0032]
The tip of the suction nozzle 41 is mounted with the pipette-shaped nozzle tip 13 as described above by the downward movement of the swivel arm 42, and the sample liquid and the lysate are sucked into the nozzle tip 13 and discharged. After use, the swivel arm 42 is moved upward with the upper end of the nozzle tip 13 engaged with the engaging groove of the tip discarding portion 8 to be disengaged and dropped into the lower disposal box 23 To dispose of it. The tip discarding unit 8 is disposed on the turning locus of the suction nozzle 41.
[0033]
The suction nozzle 41 has an air passage (not shown) that opens at the tip, and an air pipe from a syringe pump (not shown) installed in the apparatus main body 2 is connected to the air passage. The syringe pump is an air pump having a syringe-like piston, and a negative pressure or a positive pressure (suction / discharge pressure) generated by driving the syringe is introduced into the suction nozzle 41.
[0034]
In addition, the automatic analyzer 1 includes a control unit (not shown) linked to the operation unit 21 in the apparatus main body 2. This control unit controls the operation of the sample tray 3, the dispenser 4 and the photometry unit 5, and calculates the analysis result based on the photometry of the photometry unit 5.
[0035]
Next, the operation of this embodiment will be described. First, before the analysis, the sample container 12 containing each sample solution is mounted on the sample tray 3, and the cuvette 11 and the nozzle chip 13 are mounted at the set position, and the solution bottle 14 is further attached. Set and prepare for measurement.
[0036]
Thereafter, the start button of the operation unit 21 is operated to start the analysis process. At the initial time, the rotary table 31 of the sample tray 3 is rotated once, the cuvette 11 is detected by the photometric unit 5, and the sample analysis of the mounted positions is started in order.
[0037]
Next, the cuvette 11 corresponding to the sample container 12 to be analyzed is rotated by rotating the rotary table 31 and the opening pin 71 is pushed down by the suction nozzle 41 to open the seal 11c. Next, the rotary table 31 is rotated to move the nozzle tip 13 below the swiveling position of the suction nozzle 41 and is attached to the suction nozzle 41. Subsequently, the cuvette 11 is positioned below the swiveling position of the suction nozzle 41 and the suction nozzle 41 is swung to the position of the dissolving liquid bottle 14 to suck a predetermined amount of the dissolving liquid into the nozzle tip 13. It moves up and inject | pours a solution into cuvette 11 from an opening hole, and reagent R is dissolved.
[0038]
Next, the rotary table 31 is rotated to move the sample container 12 below the swiveling position of the suction nozzle 41 to suck a predetermined amount of sample liquid into the nozzle tip 13 and then move onto the cuvette 11 to move into the cuvette 11. The sample liquid is dispensed, and the nozzle tip 13 is further inserted into the cuvette 11, and the liquid in the cuvette 11 is repeatedly aspirated and discharged into the nozzle tip 13 to stir and mix the reagent liquid and the sample liquid. . The used nozzle tip 13 is removed from the suction nozzle 41 by the tip discarding unit 8 and dropped and discarded downward.
[0039]
Then, the cuvette 11 in which the reagent solution and the sample solution are mixed is adjusted to a predetermined temperature by the temperature adjustment block 32, and is sequentially moved to the photometry unit 5 by the rotation of the rotary table 31, and the light emitting element 51, the light receiving element 52, and the like. Thus, photometry of the transmission optical density is performed each time. While continuing the above measurement, a series of analysis operations following the opening of the next cuvette 11 are performed simultaneously. The analysis result based on the photometry is output, and the process is terminated.
[0040]
In the embodiment as described above, the photometric unit 5 is configured compactly by the light emitting element 51 and the light receiving element 52 by LEDs, and further installed in the temperature control block 32 to be heated and held, and by the constant current drive circuit 55. By driving at a constant current, the emission spectrum and emission intensity were stabilized, and photometric analysis with high accuracy could be performed even if an LED was used, and the apparatus could be downsized.
[0041]
The reagent to be enclosed in the cuvette 11 is preferably a freeze-dried, powdered, granular, or tablet-dried reagent, but a liquid reagent can also be enclosed. In addition, the reagent is enclosed in the cuvette in advance and made disposable. However, an empty disposable or washed cuvette may be mounted, and the reagent may be dispensed into the cuvette instead of the solution. In addition to fecal occult blood analysis, the design can be changed to analyze urine components (for example, urine protein).
[Brief description of the drawings]
1 is a perspective view showing a schematic configuration of an automatic analyzer according to an embodiment of the present invention. FIG. 2 is a perspective view of a sample tray in FIG. 1. FIG. 3 is a schematic sectional view of a sample tray in an analysis state. 4] Perspective view of cuvette, specimen container and nozzle tip [FIG. 5] Cross-sectional view showing the cuvette opening state by the opening mechanism [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2 Apparatus main body 3 Sample tray 4 Dispenser 5 Photometry part 6 Shading cover 7 Unsealing mechanism 8 Chip discard part 9 Bottle mounting part
11 Cuvette R Reagent
12 Sample container
13 Nozzle tip
21 Operation unit
31 Rotating table
32 Temperature control block
41 Suction nozzle
42 Swivel arm
51 Light Emitting Element (LED)
52 Photo detector
55 Constant current drive circuit

Claims (1)

キュベット内で試薬と検体液とを混合し、その呈色変化を測光して検体成分の分析を行う分析機器であって、
前記キュベットを温調する温調ブロックと、前記キュベット内の試薬と検体液の呈色変化を透過測光するLEDによる発光素子と受光素子とからなる測光部を備え、
前記測光部の発光素子が、前記温調ブロックに挿着されて温調されるとともに、定電流駆動されることを特徴とする分析機器。
An analytical instrument that analyzes a sample component by mixing a reagent and a sample solution in a cuvette and measuring the color change thereof,
Comprising a temperature control block for temperature control of the cuvette, and a photometry unit consisting of LED and by the light emitting element and a light receiving element for transmitting metering the color change of the reagent and the specimen solution in said cuvette,
The light-emitting element of the photometry unit is inserted into the temperature control block to be temperature-controlled, and is driven with a constant current.
JP2002261670A 2002-09-06 2002-09-06 Analytical instrument Expired - Fee Related JP3964291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261670A JP3964291B2 (en) 2002-09-06 2002-09-06 Analytical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261670A JP3964291B2 (en) 2002-09-06 2002-09-06 Analytical instrument

Publications (3)

Publication Number Publication Date
JP2004101295A JP2004101295A (en) 2004-04-02
JP2004101295A5 JP2004101295A5 (en) 2005-10-27
JP3964291B2 true JP3964291B2 (en) 2007-08-22

Family

ID=32261980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261670A Expired - Fee Related JP3964291B2 (en) 2002-09-06 2002-09-06 Analytical instrument

Country Status (1)

Country Link
JP (1) JP3964291B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013777A1 (en) 2008-07-30 2010-02-04 株式会社日立ハイテクノロジーズ Sample analysis device
CN103201632A (en) * 2010-11-18 2013-07-10 株式会社日立高新技术 Automatic analysis device
US8675187B2 (en) 2008-12-24 2014-03-18 Hitachi High-Technologies Corporation Photometer and analyzing system provided with photometer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2603209A1 (en) * 2005-04-01 2006-10-12 Mitsubishi Kagaku Iatron, Inc. Biosample multiple autoanalyzer, method of autoanalysis and reaction cuvette
JP2007309840A (en) * 2006-05-19 2007-11-29 Olympus Corp Light source device and analyzer
JP5828728B2 (en) * 2011-09-28 2015-12-09 株式会社日立ハイテクノロジーズ Automatic analyzer
CN103543285B (en) * 2013-10-25 2015-03-18 万华普曼生物工程有限公司 Automatic fecal occult blood detection device
JP7453086B2 (en) 2020-08-06 2024-03-19 キヤノンメディカルシステムズ株式会社 automatic analyzer
CN113252650B (en) * 2021-04-13 2024-03-15 珠海迪尔生物工程股份有限公司 Group B workstation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013777A1 (en) 2008-07-30 2010-02-04 株式会社日立ハイテクノロジーズ Sample analysis device
JP5112518B2 (en) * 2008-07-30 2013-01-09 株式会社日立ハイテクノロジーズ Sample analyzer
US9194793B2 (en) 2008-07-30 2015-11-24 Hitachi High-Technologies Corporation Sample analysis device
US8675187B2 (en) 2008-12-24 2014-03-18 Hitachi High-Technologies Corporation Photometer and analyzing system provided with photometer
CN103201632A (en) * 2010-11-18 2013-07-10 株式会社日立高新技术 Automatic analysis device

Also Published As

Publication number Publication date
JP2004101295A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP3964289B2 (en) Analytical instrument
EP0076406B1 (en) Analytical device and method
CA2715306C (en) Auxiliary sample supply for a clinical analyzer
EP0909383B1 (en) Nephelometer and turbidimeter combination
JP2003098182A (en) Chemical system for clinical analyzer
JPS6321139B2 (en)
JP3964291B2 (en) Analytical instrument
JP2008151594A (en) Analyzer
JP2003322656A (en) Method for calibrating clinical analyzer and method for automatically aligning dispenser of the same
EP3508858A1 (en) Sample measurement method and sample measurement device
JPH10260118A (en) Automatic extraction device and automatic concentration-measuring apparatus for component substance in liquid sample
JP3964290B2 (en) Analytical instrument
JP2004233123A (en) Automatic analyzer
JPS6188158A (en) Automatic analysis instrument
JP2590688Y2 (en) Blood coagulation analyzer
JP2004117133A (en) Method for correcting device difference in analyzer
JP4475223B2 (en) Automatic analyzer
JP2001165937A (en) Automatic biochemical analyzer
JP2004101293A (en) Automatic analytical instrument
JP2004117134A (en) Method for calculating calibration curve in analyzer
EP3508859A1 (en) Sample measurement device and sample measurement method
JP3681885B2 (en) Biochemical analyzer
JPS62217163A (en) Automatic analyzing instrument
JP3715149B2 (en) Biochemical analyzer
JP2023146883A (en) automatic analyzer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees