JP3963501B2 - Electronic component mounting method - Google Patents

Electronic component mounting method Download PDF

Info

Publication number
JP3963501B2
JP3963501B2 JP17294896A JP17294896A JP3963501B2 JP 3963501 B2 JP3963501 B2 JP 3963501B2 JP 17294896 A JP17294896 A JP 17294896A JP 17294896 A JP17294896 A JP 17294896A JP 3963501 B2 JP3963501 B2 JP 3963501B2
Authority
JP
Japan
Prior art keywords
solder
temperature
electronic component
weight
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17294896A
Other languages
Japanese (ja)
Other versions
JPH09327791A (en
Inventor
嘉明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP17294896A priority Critical patent/JP3963501B2/en
Publication of JPH09327791A publication Critical patent/JPH09327791A/en
Application granted granted Critical
Publication of JP3963501B2 publication Critical patent/JP3963501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は無鉛はんだを使用してプリント回路基板に電子部品をフロ−法により実装する方法に関するものである。
【0002】
【従来の技術】
ブリント回路基板への電子部品の実装には、フロ−法(すなわち、電子部品をプリント回路基板に仮固定し、フラックスを塗布し、次いで、はんだ浴に接触(浸漬)させてはんだ付け箇所をはんだで濡らし、この付着はんだを冷却・凝固させる方法)が汎用されている。
従来、上記フロ−法でのはんだには、Sn−Pb共晶はんだが主に使用されてきたが、Pbは毒性の強い重金属である。
近来、環境問題が地球規模で取り上げられ、鉛についても生態系への悪影響や汚染が問題視されつつあり、はんだの無鉛化が検討されている。
【0003】
【発明が解決しようとする課題】
上記フロ−法に使用する無鉛はんだとして、例えば、Sn−7.5Bi−2Ag−0.5CuやSn−3.5AgやSn−3.4Ag−4.8Bi等が知られているが、Pbを含有していないために表面張力が大きく、融点も高いために、Sn−Pb共晶はんだを使用したフロ−法と同じはんだ付け温度(約240℃)のもとでは濡れ速度が遅く、従来のフロ−法に較べ、はんだ付け温度を高くしたり、はんだ付け時間(はんだ接触時間または浴浸漬時間)を長くすることが必要である。
しかしながら、かかる過酷なフロ−条件下では、溶融はんだの熱による電子部品の樹脂パッケ−ジのクラックやふくれの発生が懸念される。これを防止する手段として封止樹脂材料のガラス転移温度を高くすることが考えられるが、ガラス転移温度の高い樹脂材料ではパッケ−ジの吸湿率が高くなり、その吸湿水の蒸発で樹脂パッケ−ジの上記ふくれが助長されるから、有効な手段とは言い難い。
【0004】
フロ−法はんだ付けにおいては、はんだ付け箇所がはんだ浴に接触されても、そのはんだ付け箇所がはんだの固相線温度以上に加熱されるまでは、はんだ付け箇所へのはんだの濡れは生じない。而るに、従来の無鉛はんだにおいては、固相線温度と液相線温度との差が小さくて固相線温度が高く、はんだ付け箇所が固相線温度にまで加熱されるまでの時間tがそれだけ長くなり、はんだ浴に接触される時間中、そのかなり長い時間tでは単に電子部品が加熱されるだけであってそれだけ長い時間にわたり電子部品をはんだ浴に接触させなければならないので、電子部品の寿命低下若しくは破損が問題となる。
【0005】
而るに、固相線温度を低くすれば、電子部品のはんだ付け箇所がそれだけ早く固相線温度以上に加熱され、それだけ早くはんだの初期濡れが開始されるので、電子部品のはんだ浴浸漬時間を短くでき、ひいては、はんだ浴の温度を低く設定でき、電子部品をフロ−法により熱的に安全に実装することが可能となる。
【0006】
本発明の目的は、はんだの固相線温度を低くし初期濡れを早くから開始させて電子部品のはんだ浴浸漬時間を短くし、ひいては、はんだ浴の温度を低く設定し、電子部品をフロ−法により熱的に安全に実装することを可能とするフロ−法用無鉛はんだ合金を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る電子部品の実装方法は、Agが0.5〜1.0重量%、Biが12.0〜20.0重量%、Cu0.5〜2.0重量%、残部がSnからなる無鉛はんだを使用して電子部品をフロー法により実装することを特徴とする。
請求項2に係る電子部品の実装方法は、Agが0.5〜1.0重量%、Biが12.0〜20.0重量%、Cu0.5〜2.0重量%、PまたはGaが0〜0.5重量%、残部がSnからなる無鉛はんだを使用して電子部品をフロー法により実装することを特徴とする。
【0008】
【発明の実施の形態】
本発明において使用する無鉛はんだ合金において、Snを基材とする理由は、毒性が極めて少なく、母材に対する優れた濡れ性を付与でき、産出量も安定であり、安価であることによる。
本発明において、Agを0.5〜1.0重量%添加する理由は、はんだの融点をSnの融点以下とすると共に、生成する金属間化合物であるAgSnを緻密に分散させることによる機械的強度、特に引張り強度の向上を得るためである(Ag量が多くなると、液相線温度が高くなり過ぎるばかりかAgSn金属間化合物初晶の晶出量が多くなり、機械的特性、特に伸び特性が低下し脆くなり、また、表面からAgSnがウイスカとなって突き出すためにショ−トサ−キット発生の畏れがある)。
【0009】
本発明において、Biを12.0〜20.0重量%添加する理由は、はんだの液相線温度の大幅な降下を達成するためである。20.0重量%以上ではSnとの固溶体の多量発生により低温部に共晶点が出現し、使用環境温度がこの共晶点温度に近づいて組織の粗大化、伸び特性の劣化が招来され、ひいては、はんだ付け接合部のクラック発生が懸念される
【0010】
本発明において、Cuを添加する理由は、はんだの融点を低下させるばかりでなくAgとの相乗効果により機械的特性を更に向上させるためである。その添加量を0.3〜2.0重量%とした理由は、0.3重量%以下では融点の低下及び機械的強度の向上に殆ど寄与させ得ず、2.0重量%以上では、液相線温度が高くなり過ぎるばかりかSn−Cu金属間化合物が多量に発生し、かえって機械的強度が低下するからである。
【0011】
本発明において、PまたはGaを添加する理由は、はんだ溶融時にこれらの元素が優先的に酸化して他の元素の酸化を防止し、溶融はんだ表面に浮いて巻き込まれることがなく、酸化による合金組成の変動を排除するためであり、その添加料を0.5重量%以下とした理由は、これ以上では高価となるばかりか、はんだの脆弱化が招来されるからである。
【0012】
本発明においては、上記以外の元素を、JIS Z−3282に規定されているA級の範囲内で不純物として含んでいてもよい。(但し、Pbは0.10重量%以下)
本発明に係る無鉛はんだの液相線温度は200℃〜220℃であり、固相線温度は140℃〜175℃であって、固相線温度は液相線温度に対し40℃〜60℃低い。
【0013】
本発明により電子部品を実装するには、はんだ浴温度を従来の共晶Sn−Pbはんだ使用のフロ−法の場合と同様にほぼ240℃に保持し、電子部品を仮取付けした基板をフラックス浴槽に通したうえで、はんだ浴に接触(または浸漬)通過させる。
はんだ浴に接触(または浸漬)された基板のはんだ付け箇所ははんだ浴熱で加熱されていき、固相線温度を越えるとはんだ付け箇所へのはんだ濡れ・付着が開始され、はんだ付け箇所の温度上昇に伴いはんだ付け界面の合金化が進行し、はんだ浴通過後での付着はんだの冷却・凝固によってはんだ付けが完結される。
【0014】
上記固相線温度は140℃〜175℃と低く、基板のはんだ浴への接触(浸漬)後充分に短時間ではんだ付け箇所がこの固相線温度に加熱され、それだけ早くはんだの初期濡れが開始されるので、電子部品のはんだ浴接触(浸漬)時間を短くでき(はんだ浴温度同一のもとで、固相線温度が高いと、はんだ付け箇所の固相線温度への加熱にそれだけ長い時間を必要とし、はんだ浴時間中、はんだの濡れに寄与しない時間がそれだけ長くなるので、はんだ浴時間をその分、長くする必要がある)、ひいては、はんだ浴の温度を低く設定でき、電子部品をフロ−法により熱的に安全に実装することが可能となる。
【0015】
上記フロ−法のはんだ浴槽には、フロ−方式、ウェ−ブ方式、二段ウェ−ブ方式、フロ−ディップ方式、多段フロ−方式、カスケ−ド方式等の噴流浴槽(溶融はんだをポンプ等の駆動装置によって噴出させ、その噴流はんだにはんだ付け部材を接触させる方式)、またはバ−ティカルフラット方式、パイ方式、フラットブィップ方式等の静止浴槽(溶融はんだを静止させておき、そのはんだ浴にはんだ付け部材を浸漬させる方式)を使用できる。
【0016】
【実施例】
〔実施例1〜5〕
表1に示す組成の無鉛はんだを調整した。
各実施例品について、固相線温度、液相線温度を測定したところ、表1の通りであった。
また、共晶Sn−Pbはんだ使用のフロ−法の場合と同じ溶融はんだ温度240℃での表面張力法によるゼロクロスタイム及び最大濡れ力を測定したところ表1の通りであった〔溶融はんだに試験片の一端を浸漬すると、試験片に、はんだの付着張力によって下方に引き下げる力fと、浮力によって上方に引上げられる力f’とが作用し、濡れ力(f’−f)は接触角θの経時的変化に追従して変動していき、時間0〜tの間は負であり、t を経過すると正となって増大し、飽和値に達する。t はゼロクロスタイムであり、接触角θがほぼ90°になるときの時間である〕。ただし、試験片には、30×30×0.3mmのリン脱酸銅板に樹脂系フラックスを塗布したものを使用し、浸漬速度は2mm/秒、浸漬深さは4mm、浸漬時間は10秒とした。
【0017】
表1
実施例1 実施例2 実施例3 実施例4
Ag(重量%) 0.5 0.5 0.5 1.0
Bi(重量%) 12.0 15.0 20.0 12.0
Cu(重量%) 0.5 0.5 0.5 0.5
Sn(重量%) 残部 残部 残部 残部
固相線温度(℃) 170 162 145 169
液相線温度(℃) 215 212 205 213
ゼロクロス
タイム(秒) 1.2 1.1 1.0 0.9
最大濡れ力
(dyne/cm) 268 265 264 272
【0018】
実施例5
Ag(重量%) 1.0
Bi(重量%) 15.0
Cu(重量%) 0.5
Sn(重量%) 残部
固相線温度(℃) 158
液相線温度(℃) 209
ゼロクロス
タイム(秒) 0.8
最大濡れ力
(dyne/cm) 272
【0019】
〔比較例1〜3〕
表2に示す組成の無鉛はんだを調整した。実施例と同様に、固相線温度、液相線温度、ゼロクロスタイム及び最大濡れ力を測定したところ表2の通りであった。
【0020】
表2
比較例1 比較例2 比較例3
Ag(重量%) 2.0 3.5 3.4
Bi(重量%) 7.5 0 4.8
Cu(重量%) 0.5 0 0
Sn(重量%) 残部 残部 残部
固相線温度(℃) 185 221 209
液相線温度(℃) 215 221 222
ゼロクロス
タイム(秒) 1.5 2.7 2.0
最大濡れ力
(dyne/cm) 280 300 265
【0021】
また、各実施例のそれぞれに対し、Pを100ppm、またはGaを0.3重量%添加してゼロクロスタイム及び最大濡れ力を測定したところ、ほぼ同様の結果が得られ、かつ、フロ−法にてはんだを用いた際、酸化物の発生を著しく軽度にとどめ得たことから、P、Ga添加による酸化抑制効果を確認できた。
【0022】
【発明の効果】
本発明に係る電子部品のフロー実装法においては、140℃〜175℃の低温域に固相線を有する無鉛はんだを使用しているから、フロ−法はんだ付け時、溶融はんだとの接触または浸漬の初期からはんだ付け箇所をはんだで濡らし得、高温域に固相線を有する従来の無鉛はんだ合金に較べ緩い加熱条件でフロ−はんだ付けを行い得、Sn−Pb共晶はんだよりも液相線温度が高いにもかかわらず、従来のフロ−法はんだ付け温度(240℃)のもとでの無鉛はんだによるフロ−法はんだ付けが可能となる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of mounting electronic components on a printed circuit board by using a lead method using lead-free solder .
[0002]
[Prior art]
For mounting electronic components on a blunt circuit board, the flow method (that is, temporarily fixing the electronic parts to the printed circuit board, applying flux, and then contacting (immersing) the soldered portion in the solder bath) And a method of cooling and solidifying the adhered solder).
Conventionally, Sn—Pb eutectic solder has been mainly used as the solder in the above flow method, but Pb is a toxic heavy metal.
In recent years, environmental problems have been taken up on a global scale, and the adverse effects on the ecosystem and contamination of lead have been regarded as problems, and lead-free solder is being studied.
[0003]
[Problems to be solved by the invention]
For example, Sn-7.5Bi-2Ag-0.5Cu, Sn-3.5Ag, Sn-3.4Ag-4.8Bi, etc. are known as lead-free solders used in the above-mentioned flow method. Since it does not contain, the surface tension is large and the melting point is high, so the wetting rate is low under the same soldering temperature (about 240 ° C.) as the flow method using Sn—Pb eutectic solder. Compared to the flow method, it is necessary to increase the soldering temperature or to increase the soldering time (solder contact time or bath immersion time).
However, under such severe flow conditions, there is a concern about the occurrence of cracks and blisters in the resin package of electronic parts due to the heat of the molten solder. As a means for preventing this, it is conceivable to increase the glass transition temperature of the sealing resin material. However, the resin material having a high glass transition temperature increases the moisture absorption rate of the package. Because the above-mentioned blistering is encouraged, it is not an effective means.
[0004]
In flow soldering, even if a soldering point is brought into contact with a solder bath, the soldering point does not get wet until the soldering point is heated above the solidus temperature of the solder. . Thus, in the conventional lead-free solder, the difference between the solidus temperature and the liquidus temperature is small, the solidus temperature is high, and the time t until the soldered portion is heated to the solidus temperature t Since the electronic component is heated only during the time when it is in contact with the solder bath and the electronic component is heated for a long time t, the electronic component must be brought into contact with the solder bath for such a long time. There is a problem that the life of the battery is reduced or broken.
[0005]
Therefore, if the solidus temperature is lowered, the soldering spot of the electronic component is heated to the solidus temperature faster than that, and the initial wetting of the solder is started as soon as that. Thus, the temperature of the solder bath can be set low, and electronic components can be thermally and safely mounted by the flow method.
[0006]
The object of the present invention is to lower the solidus temperature of the solder and start the initial wetting early, thereby shortening the solder bath immersion time of the electronic component, and consequently setting the temperature of the solder bath to be low, It is an object of the present invention to provide a lead-free solder alloy for the flow method that can be thermally and safely mounted.
[0007]
[Means for Solving the Problems]
In the electronic component mounting method according to claim 1, Ag is 0.5 to 1.0% by weight, Bi is 12.0 to 20.0% by weight, Cu is 0.5 to 2.0% by weight, and the balance is Sn. An electronic component is mounted by a flow method using a lead-free solder.
The electronic component mounting method according to claim 2 is such that Ag is 0.5 to 1.0% by weight, Bi is 12.0 to 20.0% by weight, Cu 0.5 to 2.0% by weight, P or Ga is contained. The electronic component is mounted by a flow method using a lead-free solder composed of 0 to 0.5% by weight and the balance being Sn.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the lead-free solder alloy used in the present invention, the reason for using Sn as a base material is that it has extremely low toxicity, can impart excellent wettability to a base material, is stable in yield, and is inexpensive.
In the present invention, the reason for adding 0.5 to 1.0% by weight of Ag is that the melting point of the solder is not higher than the melting point of Sn, and Ag 3 Sn which is an intermetallic compound to be formed is densely dispersed. This is to improve the mechanical strength, particularly the tensile strength (when the Ag amount increases, not only the liquidus temperature becomes too high, but also the crystallization amount of the Ag 3 Sn intermetallic compound primary crystal increases, the mechanical properties, In particular, the elongation characteristics are lowered and brittle, and since Ag 3 Sn protrudes from the surface as whisker, there is a possibility of occurrence of a short circuit kit).
[0009]
In the present invention, the reason for adding 12.0 to 20.0% by weight of Bi is to achieve a significant drop in the liquidus temperature of the solder. If it is 20.0% by weight or more, a eutectic point appears in the low temperature part due to a large amount of solid solution with Sn, and the use environment temperature approaches this eutectic point temperature, resulting in coarsening of the structure and deterioration of elongation characteristics. hence, cracking of the soldered joints is concerned.
[0010]
In the present invention, the reason for adding Cu is not only to lower the melting point of the solder but also to further improve the mechanical properties due to a synergistic effect with Ag. The reason why the added amount is 0.3 to 2.0% by weight is that if it is 0.3% by weight or less, it can hardly contribute to the reduction of the melting point and the mechanical strength. This is because not only the phase line temperature becomes too high, but a large amount of Sn—Cu intermetallic compounds are generated, which in turn reduces the mechanical strength.
[0011]
In the present invention, the reason for adding P or Ga is that these elements are preferentially oxidized when the solder is melted to prevent other elements from being oxidized. The reason for this is to eliminate the variation of the composition, and the reason why the additive is made 0.5% by weight or less is that if it is more than this, it becomes expensive, and also weakening of the solder is caused.
[0012]
In the present invention, elements other than those described above may be contained as impurities within the class A range defined in JIS Z-3282. (However, Pb is 0.10% by weight or less)
The liquidus temperature of the lead-free solder according to the present invention is 200 ° C to 220 ° C, the solidus temperature is 140 ° C to 175 ° C, and the solidus temperature is 40 ° C to 60 ° C with respect to the liquidus temperature. Low.
[0013]
In order to mount an electronic component according to the present invention, the solder bath temperature is maintained at about 240 ° C. as in the case of the flow method using conventional eutectic Sn—Pb solder, and the substrate on which the electronic component is temporarily mounted is mounted on the flux bath. And pass through (or dipping) the solder bath.
The soldering part of the board that is in contact with (or immersed in) the solder bath is heated by the solder bath heat, and when the solidus temperature is exceeded, solder wetting and adhesion to the soldering part starts, and the temperature of the soldering part As the temperature rises, alloying at the soldering interface proceeds, and soldering is completed by cooling and solidifying the adhered solder after passing through the solder bath.
[0014]
The solidus temperature is as low as 140 ° C. to 175 ° C., and the soldered portion is heated to this solidus temperature in a sufficiently short time after contact (immersion) of the substrate to the solder bath, and the initial wetting of the solder is accelerated as much Since the solder bath contact (immersion) time of the electronic component can be shortened (when the solidus temperature is high under the same solder bath temperature, the heating to the solidus temperature of the soldering point is much longer. Time is required and the time that does not contribute to solder wetting becomes longer during the solder bath time, so it is necessary to increase the solder bath time accordingly), and in turn, the temperature of the solder bath can be set low, and electronic components Can be mounted thermally and safely by the flow method.
[0015]
The above-mentioned solder baths for the flow method include a flow method, a wave method, a two-stage wave method, a flow dip method, a multi-stage flow method, a cascade method, etc. (A method in which a soldering member is brought into contact with the jet solder) or a vertical bath, a pie method, a flat-bip method, etc. A method of immersing the attachment member) can be used.
[0016]
【Example】
[Examples 1 to 5]
Lead-free solder having the composition shown in Table 1 was prepared.
About each Example goods, it was as Table 1 when the solidus temperature and the liquidus temperature were measured.
The zero cross time and the maximum wetting force measured by the surface tension method at the same molten solder temperature of 240 ° C. as in the flow method using eutectic Sn—Pb solder were as shown in Table 1. When one end of the piece is immersed, a force f that is pulled down by the adhesion tension of the solder and a force f ′ that is pulled up by the buoyancy act on the test piece, and the wetting force (f′−f) is determined by the contact angle θ. It fluctuates in accordance with the change with time, is negative between time 0 and t, increases positively after elapse of time, and reaches a saturation value. t is the zero crossing time, which is the time when the contact angle θ is approximately 90 °]. However, the test piece used was a 30 × 30 × 0.3 mm phosphorous deoxidized copper plate coated with a resin flux, the immersion speed was 2 mm / second, the immersion depth was 4 mm, and the immersion time was 10 seconds. did.
[0017]
Table 1
Example 1 Example 2 Example 3 Example 4
Ag (% by weight) 0.5 0.5 0.5 1.0
Bi (% by weight) 12.0 15.0 20.0 12.0
Cu (% by weight) 0.5 0.5 0.5 0.5
Sn (wt%) Remainder Remainder Remainder Remainder Solidus temperature (° C) 170 162 145 169
Liquidus temperature (° C.) 215 212 205 213
Zero cross time (seconds) 1.2 1.1 1.0 0.9
Maximum wettability
(dyne / cm) 268 265 264 272
[0018]
Example 5
Ag (% by weight) 1.0
Bi (% by weight) 15.0
Cu (% by weight) 0.5
Sn (wt%) remainder Solidus temperature (° C) 158
Liquidus temperature (° C) 209
Zero cross time (seconds) 0.8
Maximum wettability
(dyne / cm) 272
[0019]
[Comparative Examples 1-3]
Lead-free solders having the compositions shown in Table 2 were prepared. As in the examples, the solidus temperature, liquidus temperature, zero cross time, and maximum wetting force were measured and as shown in Table 2.
[0020]
Table 2
Comparative Example 1 Comparative Example 2 Comparative Example 3
Ag (% by weight) 2.0 3.5 3.4
Bi (% by weight) 7.5 0 4.8
Cu (% by weight) 0.5 0 0
Sn (% by weight) Remainder Remainder Remainder Solidus temperature (° C.) 185 221 209
Liquidus temperature (° C.) 215 221 222
Zero cross time (seconds) 1.5 2.7 2.0
Maximum wettability
(dyne / cm) 280 300 265
[0021]
Further, for each of the examples, P was added at 100 ppm, or Ga was added at 0.3 wt%, and the zero cross time and the maximum wetting force were measured. The same results were obtained, and the flow method was used. When solder was used, the generation of oxides was extremely light, so that the effect of suppressing oxidation by addition of P and Ga could be confirmed.
[0022]
【The invention's effect】
In the flow mounting method of the electronic component according to the present invention, since lead-free solder having a solidus wire is used in a low temperature range of 140 ° C. to 175 ° C., contact or immersion with molten solder during flow soldering The soldering part can be wetted with solder from the initial stage of the solder, and the flow soldering can be performed under mild heating conditions as compared with the conventional lead-free solder alloy having a solidus wire in a high temperature range, and the liquidus line is higher than the Sn-Pb eutectic solder. Despite the high temperature, it is possible to perform flow soldering with lead-free solder under the conventional flow soldering temperature (240 ° C.).

Claims (2)

Agが0.5〜1.0重量%、Biが12.0〜20.0重量%、Cu0.5〜2.0重量%、残部がSnからなる無鉛はんだを使用して電子部品をフロー法により実装することを特徴とする電子部品の実装方法。Flow method of electronic parts using lead-free solder consisting of Ag 0.5-1.0 wt%, Bi 12.0-20.0 wt%, Cu 0.5-2.0 wt%, the balance Sn An electronic component mounting method, characterized in that the electronic component is mounted by the method described above. Agが0.5〜1.0重量%、Biが12.0〜20.0重量%、Cu0.5〜2.0重量%、PまたはGaが0〜0.5重量%、残部がSnからなる無鉛はんだを使用して電子部品をフロー法により実装することを特徴とする電子部品の実装方法。Ag is 0.5 to 1.0 wt%, Bi is 12.0 to 20.0 wt%, Cu is 0.5 to 2.0 wt%, P or Ga is 0 to 0.5 wt%, and the balance is Sn An electronic component mounting method comprising mounting the electronic component by a flow method using lead-free solder.
JP17294896A 1996-06-12 1996-06-12 Electronic component mounting method Expired - Fee Related JP3963501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17294896A JP3963501B2 (en) 1996-06-12 1996-06-12 Electronic component mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17294896A JP3963501B2 (en) 1996-06-12 1996-06-12 Electronic component mounting method

Publications (2)

Publication Number Publication Date
JPH09327791A JPH09327791A (en) 1997-12-22
JP3963501B2 true JP3963501B2 (en) 2007-08-22

Family

ID=15951331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17294896A Expired - Fee Related JP3963501B2 (en) 1996-06-12 1996-06-12 Electronic component mounting method

Country Status (1)

Country Link
JP (1) JP3963501B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416883B1 (en) * 1997-04-22 2002-07-09 Ecosolder International Pty Ltd Lead-free solder
JP3829475B2 (en) * 1998-05-13 2006-10-04 株式会社村田製作所 Solder composition for joining a Cu base material
US6204490B1 (en) * 1998-06-04 2001-03-20 Hitachi, Ltd. Method and apparatus of manufacturing an electronic circuit board
US6365097B1 (en) * 1999-01-29 2002-04-02 Fuji Electric Co., Ltd. Solder alloy
JP3580731B2 (en) 1999-06-11 2004-10-27 和美 松重 Lead-free solder soldering method and joined body soldered by the soldering method
EP1405687B1 (en) * 2000-09-26 2009-12-09 Panasonic Corporation Method and device for flow soldering
KR100366131B1 (en) * 2001-11-21 2002-12-31 이재옥 Lead-free solder with lower melting point and lower dross

Also Published As

Publication number Publication date
JPH09327791A (en) 1997-12-22

Similar Documents

Publication Publication Date Title
JP3152945B2 (en) Lead-free solder alloy
JP5024380B2 (en) Lead-free solder for in-vehicle mounting and in-vehicle electronic circuit
CN100534699C (en) Lead-free welding flux alloy
JPH09326554A (en) Solder alloy for electrode for joining electronic component and soldering method therefor
WO1997012719A1 (en) Lead-free solder
JP2008521619A (en) Solder alloy
JP2000197988A (en) Leadless solder alloy
JP2002018589A (en) Lead-free solder alloy
WO2006052049A1 (en) Pb free solder alloy
JP3221670B2 (en) Copper concentration control method for dip solder bath
JPH09155586A (en) Leadless solder alloy
JP3963501B2 (en) Electronic component mounting method
JP4392020B2 (en) Lead-free solder balls
JP4337326B2 (en) Lead-free solder and soldered articles
JP3673021B2 (en) Lead-free solder for electronic component mounting
JP3945915B2 (en) Zn alloy for solder
JP2005021958A (en) Lead-free solder paste
JPH11221694A (en) Packaging structural body using lead-free solder and packaging method using the same
JPH01237095A (en) Soldering flux
KR100904651B1 (en) Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904656B1 (en) Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
JPH1052791A (en) Lead free solder alloy
KR100445350B1 (en) Lead-free solder alloy
JP5825265B2 (en) Soldering method for printed circuit boards
JP2004330259A (en) LEAD-FREE SnCu SOLDER ALLOY

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees