JP3963408B2 - Method and apparatus for detecting scale of hot-rolled steel sheet - Google Patents

Method and apparatus for detecting scale of hot-rolled steel sheet Download PDF

Info

Publication number
JP3963408B2
JP3963408B2 JP34418597A JP34418597A JP3963408B2 JP 3963408 B2 JP3963408 B2 JP 3963408B2 JP 34418597 A JP34418597 A JP 34418597A JP 34418597 A JP34418597 A JP 34418597A JP 3963408 B2 JP3963408 B2 JP 3963408B2
Authority
JP
Japan
Prior art keywords
steel sheet
scale
hot
temperature
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34418597A
Other languages
Japanese (ja)
Other versions
JPH11156424A (en
Inventor
正勝 土屋
文鎮 朴
權宣 朴
起原 催
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP34418597A priority Critical patent/JP3963408B2/en
Publication of JPH11156424A publication Critical patent/JPH11156424A/en
Application granted granted Critical
Publication of JP3963408B2 publication Critical patent/JP3963408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Radiation Pyrometers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、熱延鋼板のスケール検知方法および装置、とくに、熱間粗圧延工程終了後、脱スケール装置に送られて脱スケールされた後、仕上圧延工程に送給するために走行する熱延鋼板の表面のスケールの存在を検知するための熱延鋼板のスケール検知方法および装置に関する。
【0002】
【従来の技術】
熱間圧延された鋼板の表面にはスケールが生成しており、そのままの状態で冷間圧延すると、圧延ロールの表面に疵をつけたり、鋼板表面に押し疵による表面欠陥を生じる原因となるため、通常、熱間粗圧延工程後、熱間仕上圧延工程に送られる前に、脱スケール装置でスケールの除去が行われる。
【0003】
脱スケール(デスケール)には、ブラスト法、ワイヤブラシ法、水ジェット法などが適用されるが、例えば、高圧水を鋼板表面に噴射してスケールを吹き飛ばす水ジェット法においては、高圧水の噴射状態が適切でない場合や、密着度の高いスケールが形成されている場合などには、スケールを十分に除去することが難しく、若干のスケールが残存した状態で冷間圧延工程に送られて圧延されるため、上記の問題を生じることとなる。
【0004】
そのために、脱スケール工程において、熱延鋼板のデスケールが完全に行われたかどうかを検知することが必要となる。従来、走行中の熱延鋼板表面のスケール付着状態の監視は、一般に、目視により行われていたため、正確な検知ができず、一部、テレビカメラを設置して監視する方法も行われているが、スケールを鋼板上に存在する水膜や水滴と区別することが困難なことが多く、十分な信頼性が得られていない。
【0005】
発明者らは、テレビカメラを使用して、走行する鋼板の表面に付着しているスケールを検知する方法における上記の難点を改善するために、テレビカメラを用いる熱画像測定装置で測定した熱延鋼板の表面温度とスケールの有無との関連性について実験、検討を重ねた結果、スケールは鋼板に比べて熱伝達率が低く、鋼板表面との密着度も小さいため、スケールの表面温度は鋼板に比べて低くなること、鋼板表面に存在する冷却水の水膜や水滴は、スケールと同様に、局部的な温度低下を引き起こすが、とくに、テレビカメラとして特定の波長感度を有するCCDカメラを使用することにより水膜や水滴の影響を受け難くなることを見出した。
【0006】
【発明が解決しようとする課題】
本発明は、上記の知見に基づいてなされたものであり、その目的は、テレビカメラを用いて、走行する鋼板の表面に付着しているスケールを検知する方式における従来の問題点を解消し、CCDカメラを用いる熱画像測定装置による熱延鋼板表面の輝度分布または温度分布に基づいてスケールの有無を検知することができ、鋼板表面の水膜や水滴の影響をなくして、スケールの正確な検知を可能とする熱延鋼板のスケール検知方法および装置を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するための本発明による熱延鋼板のスケール検知方法は、走行する熱延鋼板の表面に付着しているスケールを水ジェット方式により脱スケールした後のスケールの存在を検知する方法であって、該熱延鋼板の表面の熱画像を、CCDカメラで波長が0.8〜2.0μmの近赤外領域を用いて一定時間毎に鋼板の幅方向に測定して、輝度分布または輝度分布から算出される温度分布のヒストグラムを求め、該ヒストグラムから鋼板表面の輝度または温度の最高値および最低値を検出し、最高値と最低値との差をスケール信号として、これを時間経過とともに算出し、該スケール信号が実験により決定したしきい値よりも大きい場合にスケールが存在するものとしてスケールを検知することを特徴とする。
【0008】
また、走行する熱延鋼板の表面に付着しているスケールを水ジェット方式により脱スケールした後のスケールの存在を検知する方法であって、該熱延鋼板の表面の熱画像を、CCDカメラで波長が0.8〜2.0μmの近赤外領域を用いて一定時間毎に鋼板の幅方向に測定して、輝度分布のヒストグラムを求め、該ヒストグラムから鋼板表面の輝度の最高値および最低値を検出し、この値を温度に変換して最高温度と最低温度との差を時間経過とともに算出し、最高温度と最低温度との差のピークを観察することにより鋼板表面に付着しているスケールの存在を検知することを特徴とする。
【0009】
本発明による熱延鋼板のスケール検知装置は、走行する熱延鋼板の表面に付着しているスケールを水ジェット方式により脱スケールした後のスケールの存在を検知する装置であって、熱延鋼板の表面の熱画像を一定時間毎に測定するCCDカメラと、測定された熱画像から鋼板表面の輝度分布または輝度分布から算出される温度分布のヒストグラムを求める画像処理装置と、該ヒストグラムから鋼板表面の輝度または温度の最高値および最低値を検出して最高値と最低値との差を時間経過とともに算出する信号処理・出力装置と、信号処理・出力装置からの出力信号に基づいて、最高値と最低値との差をスケール信号として、これを時間経過とともに表示する表示装置を備え、前記CCDカメラによる熱延鋼板の表面の熱画像の測定は波長が0.8〜2.0μmの近赤外領域を用いて行われるよう構成されることを特徴とする。
【0010】
本発明においては、熱延鋼板の表面の熱画像を測定するためのテレビカメラとしてはCCDカメラを適用する。波長領域が0.8〜2.0μmの近赤外領域の波長感度をそなえたCCDカメラを使用するのが好ましく、この波長領域のみに波長感度のあるCCDカメラを用いることによって、鋼板表面の水膜や水滴の影響を受け難くなり、スケールのみの検知が可能となる。
【0011】
種々の波長感度を有するCCDカメラで、鋼板表面を観測した場合の検出感度を表1に示す。表1にみられるように、可視領域は水膜を透過して鋼板表面を観測でき、スケールを測定できるが、照明等の影響を受け易く温度測定には適しない。赤外領域は、スケールを感度良く検知することができ、照明や迷光の影響も受けないが、水膜や水滴とスケールとの区別ができないため正確なスケール検知は期待できない。これに対して、近赤外領域(波長領域:0.8〜2.0μm)は、水膜や照明の影響を受けることなく、水膜を透過して直接鋼板表面温度の測定が可能となる。鋼板上に付着しているスケールの表面温度は鋼板表面の温度より低くなっているから、近赤外領域を使用することによりスケールのみを感度良く検知できる。
【0012】
【表1】

Figure 0003963408
《表注》○:感度大 △:感度小 ×:感度無し
【0013】
CCDカメラにより近赤外領域の波長を用いて鋼板表面の熱画像を測定して温度分布を求めると、図1に示すようなヒストグラムが得られる。ヒストグラムの横軸は温度または輝度、縦軸は熱画像の画素数を示す頻度である。図1に示すように、まず鋼板表面温度に対応するピークがあらわれる。このピークは、鋼板の種類や厚さにもよるが比較的安定したもので変動は緩慢である。
【0014】
さらに、鋼板の表面にスケールが存在すると、スケール部の温度に対応するピークがあらわれるが、鋼板表面のスケールは熱伝導率が低く、鋼板との密着性も高くなく、鋼板に比べて温度が低いため、このピークは、鋼板表面温度に対応するピーク付近の平均温度を鋼板表面温度とすると、この鋼板表面温度から50〜200℃程度低い温度レベルにあらわれる。スケール部温度のピークはスケールの付着状況により激しく変動する。
【0015】
鋼板表面の水膜や水滴は、温度は低いにもかかわらず、近赤外領域では検出感度がなく透明であるため、見掛け上鋼板表面温度に近い温度を示す。水膜、水滴は、厚さや大きさによって透過度は変動するが、水膜や水滴を通して鋼板および鋼板上のスケールを観測することができるため、ヒストグラムには実質的な影響を及ぼすことはない。
【0016】
鋼板の表面にスケールや水膜がない場合は、鋼板表面温度のみが観測される。走行する鋼板の表面温度を、各測定個所で一定時間毎に検出した場合、視野内の最高温度および最低温度は、それぞれ鋼板表面の最高温度および最低温度に相当する。視野内にスケールがあらわれると、スケール部の温度が検出されるため、最高温度は変化しないが、最低温度は急激に低下する。
【0017】
CCDカメラにより近赤外領域の波長を用いて測定された鋼板表面の熱画像から、温度分布のヒストグラムを介して熱延鋼板の表面の最高温度および最低温度を検出し、これらを時間経過とともに図示すると2に示すようになる。最高温度(θmax(t))は鋼板表面そのものの温度を示し、最低温度(θmin(t))は、スケールがない場合は最高温度より僅かに低い値を示すが、スケールがあらわれると急激に低下する。輝度分布のヒストグラムから、最高輝度および最低輝度を検出して、これらを図示した場合も同様である。
【0018】
最高温度(θmax(t))と最低温度(θmin(t))との差(s(t))(以下、スケール信号)を算出して図示すると、図2中に点線で示すように、スケールの出現とともに急上昇するのが認められる。例えば、δをしきい値とし、これを実験により決定して、スケール信号(s(t))がしきい値δよりも大きい場合(s(t)=θmax(t)−θmin(t)>δ)にスケールが存在するものとしてスケールを検知することができる。
【0019】
【発明の実施の形態】
本発明におけるスケール検知の好ましい態様を例示すると、熱間粗圧延を終了した熱延鋼板が、次工程の熱間仕上圧延工程に送られる前にデスケーラで脱スケールされる場合、図3に示すように、デスケーラの後にCCDカメラBを配置してスケールの検知を行い、デスケーラによってスケールが十分に除去されたかどうかを確認する。
【0020】
本発明の装置構成は、図4に示すように、熱延鋼板の表面の熱画像を一定時間毎に測定するCCDカメラ1、画像信号をデジタル信号に変換するAD変換器(図示せず)、測定された熱画像から鋼板表面の輝度分布または輝度分布から算出される温度分布のヒストグラムを求める画像処理装置2、このヒストグラムから鋼板表面の輝度または温度の最高値および最低値を検出して最高値と最低値との差を時間経過とともに算出し、これを出力する信号処理・出力装置4、最高値と最低値との差を時間経過とともに表示するビデオモニターなどの表示装置3からなる。表示装置3の表示画面を監視することにより、熱延鋼板のどこにスケールが残存しているかを判断することができる。
【0021】
輝度または温度の最高値と最低値との差(s(t))は、ビデオモニターなどの表示装置3に時間経過とともに表示されるとともに、この差は、スケール検出信号5として信号処理・出力装置4から出力され、このスケール検出信号5は演算装置を介してしきい値(δ)と比較されて、しきい値(δ)より大きい場合には、適宜の警報装置を介して警報を与え、あるいは鋼板走行ラインとの間に制御装置を介設しラインを停止させるよう制御することも可能である。
【0022】
走行する熱延鋼板の表面の熱画像を、CCDカメラで一定時間毎に鋼板の幅方向に測定して、輝度分布のヒストグラムを求め、該ヒストグラムから鋼板表面の輝度の最高値および最低値を検出し、この値を温度に変換して最高温度と最低温度との差を時間経過とともに算出し、最高温度と最低温度との差のピークを観察することにより鋼板表面に付着しているスケールの存在を検知することも、図4に示す装置構成により基本的に可能である。使用するCCDカメラとしては、前記のように、0.8〜2.0μmの近赤外領域の波長感度をそなえたものが最も好ましく、効果的に走行する熱延鋼板の表面に付着しているスケールを検知することができる。
【0023】
【実施例】
以下、本発明の実施例を説明する。
実施例1
熱間粗圧延工程で圧延された熱延鋼板の表面に生成しているスケールをデスケーラで脱スケールした後、仕上圧延工程に送る熱間圧延ラインにおいて、図3に示すように、デスケーラの前後にCCDカメラAおよびCCDカメラBを設置し、走行する熱延鋼板表面の熱画像を1/30秒毎に鋼板の幅方向に測定した。CCDカメラとしては、0.8〜2.0μmの近赤外領域の波長感度をそなえたものを使用した。なお、デスケーラは、鋼板表面に高圧水を吹き付けてスケールを剥離させる水ジェット方式のものである。
【0024】
測定された熱画像の処理は、図4に示す装置構成により、熱画像をAD変換器を通してデジタル変換した後、画像処理装置2で板幅内の輝度分布のヒストグラムを求め、信号処理・出力装置4で、このヒストグラムから鋼板表面の輝度の最高値および最低値を検出して、この値を温度に変換して最高温度と最低温度との差を時間経過とともに算出し、温度分布画像としてビデオモニタに表示する。
【0025】
最高温度より一定値だけ低い値をしきい値として二値化画像を作成すると、スケールのみが強調された画像(スケール信号)としてビデオモニタに表示される。デスケーラの前後に設置されたCCDカメラAおよびCCDカメラBにより得られた熱延鋼板表面の温度分布画像を、それぞれ図5および図6に示す。
【0026】
図5に示すように、脱スケール前の熱延鋼板の表面には、経過時間の最初と最後、すなわち、デスケーラを通過する熱延鋼板の先端部および後端部にスケールが付着しているのがわかる。脱スケール後は、図6にみられるように、スケール信号に変化はなく一定であり、デスケーラによって鋼板表面のスケールが除去されたことが認められる。
【0027】
【発明の効果】
本発明によれば、CCDカメラを用いる熱画像測定装置による熱延鋼板表面の輝度分布または温度分布に基づいてスケールの存在を検知することができ、鋼板表面の水膜や水滴の影響をなくして、スケールの正確な検知が可能となる。
【図面の簡単な説明】
【図1】本発明においてCCDカメラで測定した鋼板表面の熱画像から求められた鋼板表面の温度分布のヒストグラムである。
【図2】図1のヒストグラムから検出された鋼板表面の最高温度、最低温度およびスケール信号を時間経過とともに表示した温度分布画像の模式図である。
【図3】走行する熱延鋼板の表面の熱画像を測定するCCDカメラの配置例を示す略式側面図である。
【図4】本発明の装置構成の実施例を示す図である。
【図5】脱スケーラ前における鋼板表面の最高温度、最低温度およびスケール信号を時間経過とともに表示した温度分布画像の実施例である。
【図6】脱スケーラ後における鋼板表面の最高温度、最低温度およびスケール信号を時間経過とともに表示した温度分布画像の実施例である。
【符号の説明】
1 CCDカメラ
2 画像処理装置
3 表示装置
4 信号処理・出力装置
5 スケール検出信号[0001]
[Industrial application fields]
The present invention relates to a method and apparatus for detecting a scale of a hot-rolled steel sheet, and in particular, hot-rolling which is run after being sent to a descaling device after desiccation after the hot rough rolling step and then fed to the finishing rolling step. The present invention relates to a scale detection method and apparatus for a hot-rolled steel sheet for detecting the presence of scale on the surface of the steel sheet.
[0002]
[Prior art]
Scale is generated on the surface of the hot-rolled steel sheet, and if it is cold-rolled as it is, it will cause wrinkles on the surface of the rolling roll or cause surface defects due to pressing on the steel sheet surface, Usually, after the hot rough rolling process, before being sent to the hot finish rolling process, the scale is removed by a descaling apparatus.
[0003]
For descaling, a blast method, a wire brush method, a water jet method, or the like is applied. For example, in the water jet method in which high pressure water is sprayed on the surface of a steel sheet and the scale is blown away, the high pressure water injection state Is not appropriate, or when a scale with high adhesion is formed, it is difficult to remove the scale sufficiently, and it is sent to the cold rolling process with some scale remaining and rolled. Therefore, the above problem occurs.
[0004]
Therefore, it is necessary to detect whether or not the hot-rolled steel sheet has been completely descaled in the descaling process. Conventionally, monitoring of the scale adhesion state on the surface of a hot-rolled steel sheet during traveling has been generally performed by visual observation, so accurate detection cannot be performed, and a method of monitoring by installing a TV camera is also partly performed. However, it is often difficult to distinguish the scale from the water film or water droplets existing on the steel sheet, and sufficient reliability has not been obtained.
[0005]
In order to improve the above-mentioned difficulty in the method of detecting a scale attached to the surface of a traveling steel plate using a TV camera, the inventors have measured the hot rolling measured with a thermal image measurement device using a TV camera. As a result of repeated experiments and examinations on the relationship between the surface temperature of the steel sheet and the presence or absence of the scale, the scale has a lower heat transfer coefficient than the steel sheet and has a low degree of adhesion to the steel sheet surface. Compared to the scale, the cooling water film and water droplets on the steel sheet surface cause a local temperature decrease, but in particular, a CCD camera having a specific wavelength sensitivity is used as a TV camera. It has been found that it becomes difficult to be affected by water film and water droplets.
[0006]
[Problems to be solved by the invention]
The present invention has been made on the basis of the above knowledge, and its purpose is to solve the conventional problems in a method of detecting a scale attached to the surface of a traveling steel plate using a TV camera, The presence or absence of a scale can be detected based on the brightness distribution or temperature distribution on the surface of a hot-rolled steel sheet by a thermal image measurement device using a CCD camera, and the scale can be detected accurately without the influence of water film or water droplets on the surface of the steel sheet. It is an object to provide a method and an apparatus for detecting a scale of a hot-rolled steel sheet that can be used.
[0007]
[Means for Solving the Problems]
The method for detecting the scale of a hot-rolled steel sheet according to the present invention for achieving the above object is a method for detecting the presence of a scale after the scale adhering to the surface of a traveling hot-rolled steel sheet is descaled by a water jet method. The thermal image of the surface of the hot-rolled steel sheet is measured with a CCD camera in the width direction of the steel sheet at regular intervals using a near infrared region having a wavelength of 0.8 to 2.0 μm, and the luminance distribution Alternatively, a histogram of the temperature distribution calculated from the brightness distribution is obtained, and the maximum and minimum values of the brightness or temperature of the steel sheet surface are detected from the histogram, and the difference between the maximum and minimum values is used as a scale signal, which is used as time. And when the scale signal is larger than a threshold value determined by experiment, the scale is detected as being present.
[0008]
Also, a method for detecting the presence of a scale after the scale adhering to the surface of a traveling hot-rolled steel sheet is descaled by a water jet method, wherein a thermal image of the surface of the hot-rolled steel sheet is obtained with a CCD camera. Using a near-infrared region having a wavelength of 0.8 to 2.0 μm, measurement is performed in the width direction of the steel sheet at regular intervals, a luminance distribution histogram is obtained, and the highest and lowest luminance values on the steel sheet surface are obtained from the histogram. This value is converted into temperature, the difference between the maximum temperature and the minimum temperature is calculated over time, and the scale adhering to the steel sheet surface is observed by observing the peak of the difference between the maximum temperature and the minimum temperature. It is characterized by detecting the presence of.
[0009]
A scale detection device for a hot-rolled steel sheet according to the present invention is an apparatus for detecting the presence of a scale after the scale adhering to the surface of a traveling hot-rolled steel sheet is descaled by a water jet method . A CCD camera that measures a thermal image of the surface at regular intervals, an image processing device that obtains a luminance distribution on the surface of the steel sheet from the measured thermal image or a temperature distribution histogram calculated from the luminance distribution, and a steel sheet surface from the histogram A signal processing / output device that detects the maximum and minimum values of brightness or temperature and calculates the difference between the maximum and minimum values over time, and the maximum value based on the output signal from the signal processing / output device. It is equipped with a display device that displays the difference from the minimum value as a scale signal over time, and the measurement of the thermal image of the surface of the hot-rolled steel sheet by the CCD camera has a wavelength Is the fact characterized configured to be performed using the near-infrared region of .8~2.0Myuemu.
[0010]
In the present invention, a CCD camera is applied as a television camera for measuring a thermal image of the surface of a hot-rolled steel sheet. It is preferable to use a CCD camera having a wavelength sensitivity in the near infrared region with a wavelength region of 0.8 to 2.0 μm. By using a CCD camera having a wavelength sensitivity only in this wavelength region, It becomes difficult to be affected by membranes and water droplets, and only the scale can be detected.
[0011]
Table 1 shows detection sensitivities when the surface of the steel sheet is observed with a CCD camera having various wavelength sensitivities. As seen in Table 1, the visible region can penetrate the water film and observe the surface of the steel sheet, and can measure the scale. However, it is easily affected by illumination and is not suitable for temperature measurement. In the infrared region, scales can be detected with high sensitivity and are not affected by illumination or stray light, but accurate scale detection cannot be expected because water films, water droplets, and scales cannot be distinguished. On the other hand, in the near infrared region (wavelength region: 0.8 to 2.0 μm), the surface temperature of the steel sheet can be directly measured through the water film without being affected by the water film or illumination. . Since the surface temperature of the scale attached on the steel plate is lower than the temperature of the steel plate surface, only the scale can be detected with high sensitivity by using the near infrared region.
[0012]
[Table 1]
Figure 0003963408
<< Table Note >> ○: High sensitivity △: Low sensitivity ×: No sensitivity [0013]
When a thermal image of a steel sheet surface is measured using a wavelength in the near infrared region with a CCD camera to obtain a temperature distribution, a histogram as shown in FIG. 1 is obtained. The horizontal axis of the histogram is temperature or luminance, and the vertical axis is the frequency indicating the number of pixels of the thermal image. As shown in FIG. 1, first, a peak corresponding to the steel sheet surface temperature appears. Although this peak depends on the type and thickness of the steel sheet, it is relatively stable and its fluctuation is slow.
[0014]
Furthermore, when a scale exists on the surface of the steel plate, a peak corresponding to the temperature of the scale portion appears, but the scale on the steel plate surface has low thermal conductivity and does not have high adhesion to the steel plate, and the temperature is lower than that of the steel plate. Therefore, this peak appears at a temperature level lower by about 50 to 200 ° C. than the steel sheet surface temperature, where the average temperature in the vicinity of the peak corresponding to the steel sheet surface temperature is the steel sheet surface temperature. The peak of the scale part temperature fluctuates violently depending on the state of scale adhesion.
[0015]
Although the water film and water droplets on the steel plate surface are low in temperature and have no detection sensitivity in the near infrared region and are transparent, they apparently show a temperature close to the steel plate surface temperature. The permeability of the water film and water droplets varies depending on the thickness and size, but since the scale on the steel plate and the steel plate can be observed through the water film and water droplets, there is no substantial effect on the histogram.
[0016]
When there is no scale or water film on the surface of the steel plate, only the steel plate surface temperature is observed. When the surface temperature of the traveling steel plate is detected at regular intervals at each measurement location, the maximum temperature and the minimum temperature in the field of view correspond to the maximum temperature and the minimum temperature of the steel plate surface, respectively. When a scale appears in the field of view, the temperature of the scale portion is detected, so the maximum temperature does not change, but the minimum temperature decreases rapidly.
[0017]
The maximum temperature and the minimum temperature of the surface of the hot-rolled steel sheet are detected from the thermal image of the steel sheet surface measured by the CCD camera using the wavelength in the near infrared region , and these are illustrated as time passes. Then, as shown in FIG . The maximum temperature (θmax (t)) indicates the temperature of the steel sheet surface itself, and the minimum temperature (θmin (t)) indicates a value slightly lower than the maximum temperature when there is no scale, but rapidly decreases when the scale appears. To do. The same applies to the case where the maximum luminance and the minimum luminance are detected from the histogram of the luminance distribution and these are illustrated.
[0018]
When a difference (s (t)) (hereinafter referred to as a scale signal) between the maximum temperature (θmax (t)) and the minimum temperature (θmin (t)) is calculated and illustrated, the scale is indicated by a dotted line in FIG. It is recognized that it rises rapidly with the appearance of. For example, when δ is set as a threshold value and is determined by experiment, and the scale signal (s (t)) is larger than the threshold value δ (s (t) = θmax (t) −θmin (t)> The scale can be detected assuming that a scale exists in δ).
[0019]
DETAILED DESCRIPTION OF THE INVENTION
When the preferable aspect of the scale detection in this invention is illustrated, as shown in FIG. 3, when the hot-rolled steel plate which finished hot rough rolling is descaled with a descaler before sending to the hot finishing rolling process of the next process. In addition, the CCD camera B is disposed after the descaler to detect the scale, and it is confirmed whether or not the scale has been sufficiently removed by the descaler.
[0020]
As shown in FIG. 4, the apparatus configuration of the present invention includes a CCD camera 1 that measures a thermal image of the surface of a hot-rolled steel sheet at regular intervals, an AD converter (not shown) that converts an image signal into a digital signal, Image processing device 2 for obtaining a brightness distribution on the surface of the steel sheet from the measured thermal image or a histogram of the temperature distribution calculated from the brightness distribution, and detecting the maximum value and the minimum value of the brightness or temperature of the steel sheet surface from this histogram to detect the maximum value The signal processing / output device 4 calculates the difference between the maximum value and the minimum value over time and outputs the difference, and the display device 3 such as a video monitor displays the difference between the maximum value and the minimum value over time. By monitoring the display screen of the display device 3, it is possible to determine where the scale remains on the hot-rolled steel sheet.
[0021]
The difference (s (t)) between the maximum value and the minimum value of luminance or temperature is displayed over time on a display device 3 such as a video monitor, and this difference is signal processing / output device as a scale detection signal 5. 4, the scale detection signal 5 is compared with a threshold value (δ) via an arithmetic unit, and if larger than the threshold value (δ), an alarm is given via an appropriate alarm device, Alternatively, a control device may be interposed between the steel plate traveling line and the line may be controlled to stop.
[0022]
A thermal image of the surface of the hot-rolled steel sheet is measured in the width direction of the steel sheet with a CCD camera at regular intervals, a brightness distribution histogram is obtained, and the maximum and minimum brightness values on the steel sheet surface are detected from the histogram. This value is converted into temperature, the difference between the maximum temperature and the minimum temperature is calculated over time, and the peak of the difference between the maximum temperature and the minimum temperature is observed, so that there is a scale attached to the steel sheet surface. It is also basically possible to detect this by the apparatus configuration shown in FIG. As described above, the CCD camera to be used is most preferably one having a wavelength sensitivity in the near infrared region of 0.8 to 2.0 μm, and is attached to the surface of the hot-rolled steel plate that travels effectively. Scale can be detected.
[0023]
【Example】
Examples of the present invention will be described below.
Example 1
In the hot rolling line sent to the finish rolling process after the scale generated on the surface of the hot rolled steel sheet rolled in the hot rough rolling process is descaled by the descaler, before and after the descaler as shown in FIG. A CCD camera A and a CCD camera B were installed, and a thermal image of the traveling hot-rolled steel sheet surface was measured every 1/30 seconds in the width direction of the steel sheet. As the CCD camera, a camera having wavelength sensitivity in the near infrared region of 0.8 to 2.0 μm was used. The descaler is of a water jet type in which high-pressure water is sprayed on the steel plate surface to peel off the scale.
[0024]
The measured thermal image is processed by digitally converting the thermal image through an AD converter using the apparatus configuration shown in FIG. 4, and then obtaining a histogram of the luminance distribution within the plate width by the image processing apparatus 2. 4, the maximum and minimum values of the brightness of the steel sheet surface are detected from this histogram, and these values are converted into temperatures, the difference between the maximum and minimum temperatures is calculated over time, and a video monitor is displayed as a temperature distribution image. To display.
[0025]
When a binarized image is created using a value lower than the maximum temperature by a certain value as a threshold, it is displayed on the video monitor as an image (scale signal) in which only the scale is emphasized. FIGS. 5 and 6 show temperature distribution images on the surface of the hot-rolled steel sheet obtained by the CCD camera A and the CCD camera B installed before and after the descaler, respectively.
[0026]
As shown in FIG. 5, on the surface of the hot-rolled steel sheet before descaling, the scale is attached to the beginning and the end of the elapsed time, that is, the front end and the rear end of the hot-rolled steel sheet passing through the descaler. I understand. After the descaling, as seen in FIG. 6, the scale signal is constant without any change, and it is recognized that the scale on the steel sheet surface has been removed by the descaler.
[0027]
【The invention's effect】
According to the present invention, the presence of a scale can be detected based on the luminance distribution or temperature distribution on the surface of a hot-rolled steel sheet by a thermal image measuring device using a CCD camera, and the influence of water film or water droplets on the surface of the steel sheet is eliminated. The scale can be accurately detected.
[Brief description of the drawings]
FIG. 1 is a histogram of a temperature distribution on a steel sheet surface obtained from a thermal image of the steel sheet surface measured with a CCD camera in the present invention.
FIG. 2 is a schematic diagram of a temperature distribution image in which the maximum temperature, the minimum temperature, and the scale signal of the steel sheet surface detected from the histogram of FIG. 1 are displayed over time.
FIG. 3 is a schematic side view showing an arrangement example of a CCD camera that measures a thermal image of a surface of a hot-rolled steel plate that is traveling.
FIG. 4 is a diagram showing an embodiment of the apparatus configuration of the present invention.
FIG. 5 is an example of a temperature distribution image in which the maximum temperature, the minimum temperature, and the scale signal on the steel sheet surface before descaling are displayed with time.
FIG. 6 is an example of a temperature distribution image in which the maximum temperature, the minimum temperature, and the scale signal on the steel sheet surface after descaling are displayed over time.
[Explanation of symbols]
1 CCD Camera 2 Image Processing Device 3 Display Device 4 Signal Processing / Output Device 5 Scale Detection Signal

Claims (3)

走行する熱延鋼板の表面に付着しているスケールを水ジェット方式により脱スケールした後のスケールの存在を検知する方法であって、該熱延鋼板の表面の熱画像を、CCDカメラで波長が0.8〜2.0μmの近赤外領域を用いて一定時間毎に鋼板の幅方向に測定して、輝度分布または輝度分布から算出される温度分布のヒストグラムを求め、該ヒストグラムから鋼板表面の輝度または温度の最高値および最低値を検出し、最高値と最低値との差をスケール信号として、これを時間経過とともに算出し、該スケール信号が実験により決定したしきい値よりも大きい場合にスケールが存在するものとしてスケールを検知することを特徴とする熱延鋼板のスケール検知方法。A method for detecting the presence of a scale after the scale adhering to the surface of a traveling hot-rolled steel sheet is descaled by a water jet method, wherein a thermal image of the surface of the hot-rolled steel sheet is measured with a CCD camera. Measured in the width direction of the steel sheet at regular intervals using a near infrared region of 0.8 to 2.0 μm to obtain a luminance distribution or a histogram of temperature distribution calculated from the luminance distribution. When the maximum and minimum values of brightness or temperature are detected and the difference between the maximum and minimum values is used as a scale signal, this is calculated over time, and the scale signal is greater than the threshold determined experimentally. A scale detection method for a hot-rolled steel sheet, wherein the scale is detected as being present. 走行する熱延鋼板の表面に付着しているスケールを水ジェット方式により脱スケールした後のスケールの存在を検知する方法であって、該熱延鋼板の表面の熱画像を、CCDカメラで波長が0.8〜2.0μmの近赤外領域を用いて一定時間毎に鋼板の幅方向に測定して、輝度分布のヒストグラムを求め、該ヒストグラムから鋼板表面の輝度の最高値および最低値を検出し、この値を温度に変換して最高温度と最低温度との差を時間経過とともに算出し、最高温度と最低温度との差のピークを観察することにより鋼板表面に付着しているスケールの存在を検知することを特徴とする熱延鋼板のスケール検知方法。A method for detecting the presence of a scale after the scale adhering to the surface of a traveling hot-rolled steel sheet is descaled by a water jet method, wherein a thermal image of the surface of the hot-rolled steel sheet is measured with a CCD camera. A brightness distribution histogram is obtained by measuring in the width direction of the steel sheet at regular intervals using the near infrared region of 0.8 to 2.0 μm, and the highest and lowest brightness values on the steel sheet surface are detected from the histogram. This value is converted into temperature, the difference between the maximum temperature and the minimum temperature is calculated over time, and the peak of the difference between the maximum temperature and the minimum temperature is observed, so that there is a scale attached to the steel sheet surface. A method for detecting the scale of a hot-rolled steel sheet, wherein 走行する熱延鋼板の表面に付着しているスケールを水ジェット方式により脱スケールした後のスケールの存在を検知する装置であって、熱延鋼板の表面の熱画像を一定時間毎に測定するCCDカメラと、測定された熱画像から鋼板表面の輝度分布または輝度分布から算出される温度分布のヒストグラムを求める画像処理装置と、該ヒストグラムから鋼板表面の輝度または温度の最高値および最低値を検出して最高値と最低値との差を時間経過とともに算出する信号処理・出力装置と、信号処理・出力装置からの出力信号に基づいて、最高値と最低値との差をスケール信号として、これを時間経過とともに表示する表示装置を備え、前記CCDカメラによる熱延鋼板の表面の熱画像の測定は波長が0.8〜2.0μmの近赤外領域を用いて行われるよう構成されることを特徴とする熱延鋼板のスケール検知装置。A device that detects the presence of a scale after the scale adhering to the surface of a hot-rolled steel sheet is descaled by a water jet method, and measures a thermal image of the surface of the hot-rolled steel sheet at regular intervals. A camera, an image processing device for obtaining a histogram of the brightness distribution on the surface of the steel sheet or a temperature distribution calculated from the brightness distribution from the measured thermal image, and detecting the maximum value and the minimum value of the brightness or temperature of the steel sheet surface from the histogram. Based on the output signal from the signal processing / output device that calculates the difference between the maximum and minimum values over time, and the output signal from the signal processing / output device, the difference between the maximum and minimum values is used as a scale signal. Provided with a display device that displays over time, measurement of the thermal image of the surface of the hot-rolled steel sheet by the CCD camera is performed using a near infrared region having a wavelength of 0.8 to 2.0 μm Scale detecting apparatus of hot rolled steel sheet characterized in that it is so that configuration.
JP34418597A 1997-11-28 1997-11-28 Method and apparatus for detecting scale of hot-rolled steel sheet Expired - Fee Related JP3963408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34418597A JP3963408B2 (en) 1997-11-28 1997-11-28 Method and apparatus for detecting scale of hot-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34418597A JP3963408B2 (en) 1997-11-28 1997-11-28 Method and apparatus for detecting scale of hot-rolled steel sheet

Publications (2)

Publication Number Publication Date
JPH11156424A JPH11156424A (en) 1999-06-15
JP3963408B2 true JP3963408B2 (en) 2007-08-22

Family

ID=18367293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34418597A Expired - Fee Related JP3963408B2 (en) 1997-11-28 1997-11-28 Method and apparatus for detecting scale of hot-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3963408B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424880B1 (en) * 2012-08-30 2014-08-01 현대제철 주식회사 Descaling apparatus for slab and descaling method
KR101443097B1 (en) * 2013-03-28 2014-09-22 현대제철 주식회사 Apparatus for detecting scale dent on hot rolled strip and control method thereof
US11650166B2 (en) * 2017-05-31 2023-05-16 Nipro Corporation Method for evaluation of glass container

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10028058A1 (en) * 2000-06-06 2001-12-13 Sms Demag Ag Method and device for pickling a rolled metal strand, in particular a steel strip
KR101043074B1 (en) * 2003-09-22 2011-06-21 주식회사 포스코 Device for removing swarf on strip in strip grinding line
JP4713165B2 (en) * 2005-01-19 2011-06-29 日新製鋼株式会社 Shot blasting method and apparatus
JP5217253B2 (en) * 2007-05-31 2013-06-19 Jfeスチール株式会社 Computer system for recording quality judgment result of hot-rolled metal strip, vidicon system for manufacturing / quality results management and passing process instruction / management, and method for removing defective portion of hot-rolled metal strip in the subsequent process using them
JP5430864B2 (en) * 2007-02-28 2014-03-05 Jfeスチール株式会社 Full width photographing method of hot rolled metal strip using near infrared camera in hot rolling, full width photographing result recording method
JP5322261B2 (en) * 2007-02-28 2013-10-23 Jfeスチール株式会社 Full width photographing method of hot rolled metal strip using near infrared camera in hot rolling, full width photographing result recording method
KR20140049072A (en) * 2007-02-28 2014-04-24 제이에프이 스틸 가부시키가이샤 Metal-band hot-rolling method and apparatus using near infrared camera
JP2008238272A (en) * 2007-02-28 2008-10-09 Jfe Steel Kk Hot-rolling line
JP2008296249A (en) * 2007-05-31 2008-12-11 Jfe Steel Kk Method for photographing overall width of hot-rolled metallic band using near infrared ray camera in hot rolling and method for recording overall width photographing result
JP5176596B2 (en) * 2007-02-28 2013-04-03 Jfeスチール株式会社 Method for determining quality of hot-rolled metal strip using near-infrared camera in hot rolling, manufacturing method of hot-rolled metal strip
JP2009078289A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk Method of detecting defect of hot-rolled metallic strip using near infrared camera in hot rolling and method of manufacturing hot-rolled metallic strip using it
JP5206156B2 (en) * 2008-06-30 2013-06-12 Jfeスチール株式会社 Method for controlling cooling of hot-rolled metal strip using near-infrared camera in hot rolling and manufacturing method of hot-rolled metal strip
JP5206155B2 (en) * 2008-06-30 2013-06-12 Jfeスチール株式会社 Method for controlling cooling of hot-rolled metal strip using near-infrared camera in hot rolling and manufacturing method of hot-rolled metal strip
JP5439008B2 (en) * 2009-03-31 2014-03-12 株式会社豊田中央研究所 High-temperature object shape measuring apparatus and shape measuring method
JP5428494B2 (en) * 2009-04-24 2014-02-26 Jfeスチール株式会社 Method for detecting slab seam in continuous casting
JP2013024761A (en) * 2011-07-22 2013-02-04 Hitachi Kokusai Electric Inc Imaging method and imaging apparatus
JP6666740B2 (en) * 2015-02-25 2020-03-18 株式会社神戸製鋼所 Grain boundary oxidation detector and grain boundary oxidation detection method
DE102016217562A1 (en) * 2016-03-18 2017-09-21 Sms Group Gmbh Apparatus and method for descaling a moving workpiece
JP7067321B2 (en) * 2018-06-29 2022-05-16 オムロン株式会社 Inspection result presentation device, inspection result presentation method and inspection result presentation program
KR102386733B1 (en) * 2020-10-13 2022-04-14 주식회사 포스코 System for detecting surface scale dent on steel plate and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424880B1 (en) * 2012-08-30 2014-08-01 현대제철 주식회사 Descaling apparatus for slab and descaling method
KR101443097B1 (en) * 2013-03-28 2014-09-22 현대제철 주식회사 Apparatus for detecting scale dent on hot rolled strip and control method thereof
US11650166B2 (en) * 2017-05-31 2023-05-16 Nipro Corporation Method for evaluation of glass container

Also Published As

Publication number Publication date
JPH11156424A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
JP3963408B2 (en) Method and apparatus for detecting scale of hot-rolled steel sheet
US8203606B2 (en) Gradient image processing
TW201020541A (en) Method for detecting defect in material and system for the method
KR100880952B1 (en) Rolling process control apparatus for improving material characteristic
KR100349170B1 (en) A method for detecting scale on hot rolled strip and the apparatus therefor
JP2003298949A (en) Method for detecting flicker defect, video correction method, and solid-state image pickup apparatus
US20110205360A1 (en) Supervising system for image
JP3797064B2 (en) Steel plate manufacturing equipment
EP1216946A2 (en) System and method for detecting debonding rubber coated rolls
JP2002139446A (en) Method and apparatus for detection of surface defect
JP2000018922A (en) Apparatus for thickness defect inspection and its inspection method
JPH1096696A (en) Method and apparatus for inspecting irregularity in object
JP5760462B2 (en) Tail-end crop detection device
KR20130120335A (en) Camber measurement device
JP5956411B2 (en) Shape measuring device
JP2001281154A (en) Defect detecting method and defect detector
JPH09174228A (en) Detection of flowing out of slag
JPH0694660A (en) Method and device for surface defect inspection
JPS61140384A (en) Welding state measuring method in electric seam welding
KR20030083969A (en) The system and method for measuring the warp of a hot-rolled Sheets using the vision system
JP2001272341A (en) Measuring method for uneven brightness of metal plate
JP2636557B2 (en) Method for detecting in-furnace tension of annealed material in horizontal continuous annealing furnace
JP2001242089A (en) Surface flaw detecting method
JPS6464625A (en) Endoscopic apparatus
JPH1071453A (en) Method for predicting breakout in horizontal continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees