JP3963340B2 - Gas measuring method and apparatus using the same - Google Patents

Gas measuring method and apparatus using the same Download PDF

Info

Publication number
JP3963340B2
JP3963340B2 JP2000148777A JP2000148777A JP3963340B2 JP 3963340 B2 JP3963340 B2 JP 3963340B2 JP 2000148777 A JP2000148777 A JP 2000148777A JP 2000148777 A JP2000148777 A JP 2000148777A JP 3963340 B2 JP3963340 B2 JP 3963340B2
Authority
JP
Japan
Prior art keywords
gas
cell
container
measuring
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000148777A
Other languages
Japanese (ja)
Other versions
JP2001332312A (en
Inventor
一馬 熊井
一 宮代
勝仁 竹井
陽 小林
徹 岩堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2000148777A priority Critical patent/JP3963340B2/en
Publication of JP2001332312A publication Critical patent/JP2001332312A/en
Application granted granted Critical
Publication of JP3963340B2 publication Critical patent/JP3963340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス量の計測とガス成分の分析を行うガス測定方法およびこれを利用する装置に関する。更に詳述すると、本発明は二次電池のセル内に発生したガスのガス量およびガス成分の測定に適したガス測定方法およびこれを利用する装置に関する。
【0002】
【従来の技術】
二次電池の充放電の繰り返しによる劣化の程度を検査するために、二次電池の電解液の劣化によりセル内に発生したガス量とその成分を測定する技術が知られている。このガスの測定は、アルゴンガスを封入したグローブバッグ(容積は約50リットル)中で使用により劣化した二次電池を解体し、セル中のガスをアルゴンガス中に混入させてアルゴンガスごとガス量およびガス成分を測定している。
【0003】
【発明が解決しようとする課題】
しかしながら、上述したガス測定の方法では、セル内で発生したガスは微量でありグローブバッグ内の多量のアルゴンガスに混合して希釈されてしまうので、ガス測定の感度が大幅に低減してしまい測定精度が悪くなってしまう。例えば、上述の例のように容積約50リットルのアルゴンガスにセルで発生した約1mlのガスを混合した場合は、希釈率が約1/50000になってしまい高精度な測定は期待できない。
【0004】
希釈による精度低下を防止するために濃縮操作を行うこともあるが、濃縮操作には多くの器具と時間を要し、場合によっては更に測定精度の低下を招くことになる。そして、このようにして希釈と濃縮を経て得られたデータは、希釈率や濃縮率を考慮して濃度計算をするため大きな誤差を含むことになってしまい、高精度の測定を行うことは極めて困難である。
【0005】
そこで、本発明は、二次電池のセル内に発生したガスの測定を高精度に行うことができるガス測定方法およびこれを利用する装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
かかる目的を達成するため、請求項1記載のガス測定方法は、既知の容積を有する密閉空間に二次電池のセルを収容したまま空間を真空雰囲気にする真空工程と、セルを解体して内部のガスを空間に噴出させる噴出工程と、空間に充填されたガスの圧力を測定して、そのガス圧と空間の容積とからガスの大気圧下での体積を算出するガス量測定工程と、ガスに希釈ガスを加えてからガス成分を測定する成分測定工程とを備えるようにしている。
【0007】
したがって、セル内の発生ガスを真空雰囲気の空間に噴出してその圧力を測定して該ガス圧に基づき発生ガスの大気圧下での体積を算出しているので、従来のように発生ガスを希釈してから測定する場合に比べて発生ガスの体積を高精度に測定することができる。
【0008】
また、発生ガスの噴出前に真空雰囲気にするので、配管中およびセルに付着した微量の不純ガスの脱気・洗浄が可能になる。よって、極微量の発生ガスでも量および成分共に高精度に測定することができるようになる。
【0009】
さらに、発生ガスに必要最小限の希釈ガスを加えて試料を作製して成分を測定することができるので、従来のようにセル内の発生ガスを大幅に希釈してから濃縮して測定する場合に比べて測定精度を大きく高めることができる。
【0010】
そして、請求項2記載の発明は、請求項1記載のガス測定方法において、噴出工程では、セルの安全弁に針部材を貫通させてガスを空間に解放するようにしている。したがって、従来のようにグローブバッグ内で電池解体や分析操作をするのに比べて針部材を突き刺すだけの容易な操作によってセルからガスを噴出させることができる。よって、測定作業を短時間で行うことができるようになる。
【0011】
また、請求項3記載の発明は、請求項1または2記載のガス測定方法において、成分測定工程では、ガスに希釈ガスを加えた混合ガスを、予め真空雰囲気にした試料採取容器に圧力差により移行させて、試料採取容器内の混合ガスをガスクロマトグラフにより測定するようにしている。
【0012】
したがって、試料採取容器に充填された希釈後のガスを利用してガスクロマトグラフにより成分を分析することができるので、発生ガス成分の測定を容易に行うことができる。
【0013】
一方、請求項4記載のガス測定装置は、二次電池のセルを収容するセル収容容器と、セル収容容器に収容されたセルを解体して内部のガスを噴出させる解体手段と、ガスを収容可能な試料採取容器と、セル収容容器と試料採取容器とを連結するガス管と、試料採取容器およびガス管の連結部分を開閉可能な開閉弁と、ガス管と試料採取容器とセル収容容器とを真空にできる吸引手段と、ガス管に希釈ガスを供給可能な希釈ガス供給手段と、ガス管内の圧力を測定する圧力計とを備えるようにしている。
【0014】
この場合、二次電池のセルをセル収容容器に収容してから試料採取容器の開閉弁を開いて吸引手段を作動させる。これにより、セル収容容器および試料採取容器とガス管とが真空にされる。そして、開閉弁を閉じて試料採取容器を真空のまま密封する。この状態で解体手段によりセルを解体するとセルの内部の発生ガスが真空雰囲気に吸い出されて、セル収容容器およびガス管内に移行して充填される。このとき、圧力計でガス管内の圧力を測定し、そのガス圧とセル収容容器およびガス管の容積とから発生ガスの大気圧下での体積を算出することができる。
【0015】
そして、開閉弁を開くと共に希釈ガス供給手段により希釈ガスを供給する。これにより、発生ガスと希釈ガスとが混合して真空の試料採取容器に移行して、これら試料採取容器とガス管とセル収容容器とに充填される。このとき、発生ガスに対する希釈ガスの混合により、ガス成分を測定するための試料として十分なガス圧を得ることができる。試料採取容器に充填された混合ガスは、そのままガスクロマトグラフ等の成分測定手段により測定される。
【0016】
また、請求項5記載の発明は、請求項4記載のガス測定装置において、セル収容容器は絶縁性樹脂から成るようにしている。したがって、二次電池がセル収容容器内で短絡することを防止できるので、解体作業を安全に行うことができる。
【0017】
さらに、請求項6記載の発明は、請求項4または5記載のガス測定装置において、解体手段はセルの安全弁を貫通する針部材を備えるようにしている。したがって、従来のようにグローブバッグ内で電池解体や分析操作等をするのに比べて簡易な機構でセルから発生ガスを容易に噴出させることができる。よって、測定作業を短時間で行うことができるようになる。
【0018】
【発明の実施の形態】
以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。図1および図2に本発明のガス測定装置1の実施形態を示す。このガス測定装置1は、二次電池のセル2を収容するセル収容容器3と、このセル2を解体して内部で発生したガス(以下、発生ガスという)を噴出させる解体手段4と、ガスを収容可能な試料採取容器5と、セル収容容器3および試料採取容器5を連結するガス管6とを備えている。ガス管6には、圧力計7と吸引手段8と希釈ガス供給手段9とが取り付けられている。また、試料採取容器5のガス管6を取り付けた部分には、流路を開閉可能な開閉弁(バルブ)10が設けられている。
【0019】
このガス測定装置1では、二次電池のセル2をセル収容容器3に収容してから試料採取容器5の開閉弁10を開いて吸引手段8を作動させる。これにより、セル収容容器3および試料採取容器5とガス管6とが真空にされる。試料採取容器5が真空になってから開閉弁10を閉じる。そして、解体手段4によりセル2を解体するとセル2の発生ガスが吸い出されて、セル収容容器3およびガス管6に移行して充填される。このとき、圧力計7でガス管6のガス圧を測定し、そのガス圧とセル収容容器3およびガス管6の容積とから発生ガスの大気圧下での体積を算出することができる。このため、発生ガスに希釈ガスを混合する必要が無いので、発生ガスの大気圧下での体積を高精度に算出することができる。
【0020】
また、開閉弁10を開いて希釈ガス供給手段9により希釈ガスを供給する。これにより、発生ガスと希釈ガスとが混合して試料採取容器5に移行して充填される。試料採取容器5に充填された混合ガスは、そのままガスクロマトグラフ等の成分測定手段により測定される。このため、最小限の希釈ガスを混合して成分測定を行うことができるので、成分測定を高精度に行うことができる。
【0021】
セル収容容器3はデルリン等の絶縁性樹脂から成る。このため、二次電池がセル収容容器3により短絡することを防止できるので、解体作業を安全に行うことができる。そして、セル収容容器3は収容されるセル2より僅かに大きい収容空間を有している。このように収容空間を収容されるセル2より僅かに大きい程度に抑えているので、気密性を高めることができる。また、セル収容容器3の内部にはセル2に密着して支持する突部11が形成されている。このため、セル2のぐらつきを防止して安全に解体を行うことができる。
【0022】
解体手段4はセル2の安全弁を貫通する針部材12を備えている。この針部材12が安全弁に突き刺さることによりセル2の内外が連通されるので、発生ガスが真空雰囲気に噴き出される。このため、簡単な機構でセル2から発生ガスを容易に移行させることができる。
【0023】
針部材12は例えば直径4mmで、セル収容容器3の内部に出没可能に設けられている。また、針部材12はねじ部13aを有するハンドル13が一体化されて、ハンドル13の回転により針部材12の先端がセル収容容器3の内部に出没するように設けられている。さらに、セル収容容器3の針部材12が貫通する孔14には、ガス管6に連通するガス路15が形成されている。また、針部材12とセル収容容器3との間にはOリング16が設けられており、これらの間の気密性を高めている。
【0024】
そして、セル2の安全弁の周囲はOリング17により囲われてセル収容容器3の内壁に密着されている。このため、針部材12をセル2に突き刺して内部の発生ガスが漏れ出たときに、該発生ガスがセル2の外面に沿って拡散してしまうことを防止できる。さらに、Oリング17は針部材12を中心に二重に設けられている。よって、気密性を更に高くすることができる。
【0025】
圧力計7としては、計量用圧力計18と希釈用圧力計19とがそれぞれガス管6に取り付けられている。計量用圧力計18は、0〜300Torr(0〜約40kPa、0〜約0.39気圧)程度の圧力を測定可能なものとして、また希釈用圧力計19は、0〜2000Torr(0〜約266.6kPa、0〜約2.63気圧、)程度の圧力を測定可能なものとしている。このように圧力計7を気圧ごとに分けているので、それぞれの範囲での測定精度を高めることができる。本実施形態では圧力計7を計量用圧力計18と希釈用圧力計19とに分けているが、これには限られず一つの圧力計のみを使用するようにしても良い。
【0026】
試料採取容器5は、ガスクロマトグラフ等の成分測定に使用する試料を採取するための容器である。
【0027】
吸引手段8はガス管6を真空にするものであり、例えば真空ポンプやオイルレスポンプを使用することができる。ここでの真空とは、完全な真空には限られず約70Pa(約0.5Torr)以下の状態を意味する。例えば70Paとした場合は、30〜40分ごとで真空雰囲気を生成できるので、ガス測定のサイクルを早めることができる。また、真空の圧力をもっと低くすれば測定の精度を更に高めることができる。図1中符号28は、密封系のガスの解放を図るリークバルブを示す。
【0028】
希釈ガス供給手段9としては、アルゴンガスあるいはヘリウムガス、その他の標準ガス等の希釈ガスをガス管6内に吐出するボンベやポンプ等を使用することができる。
【0029】
本実施形態では、セル収容容器3と各圧力計18,19と試料採取容器5と吸引手段8と希釈ガス供給手段9との他に検量タンク27がガス管6に連結されて、密封系が形成されている。そして、各要素とガス管6との間には、それぞれバルブ21〜25が設けられている。また、吸引手段8および希釈ガス供給手段9と、セル収容容器3・各圧力計7・試料採取容器5・検量タンク27との間には、流量調整バルブ26が設けられている。検量タンク27は既知の容積を有するもので、例えば公共事業者検定の容器を用いる。
【0030】
ところで、発生ガスの測定に先立ってガス測定装置1の密封系の各部の容積を測定しておく必要がある。この測定は、ある量のガスを被測定部分のみに封入してガス圧を計測してから該ガスを被測定部分と検量タンク27に移行して再びガス圧を計測し、ガス圧と容積の積を一定と仮定して被測定部の容積を算出して行うようにしている。
【0031】
まず、ガス管6の主要部、即ち各バルブ10,20〜26の間の管路の容量V1を測定する際は、検量タンク27として容量V0=10mlを取り付ける。そして、吸引手段8と検量タンク27と計量用圧力計18との各バルブ23,25,21と流量調整バルブ26とを開にして他のバルブ10,22,24,25は全て閉じる。吸引手段8を起動させ、配管系を真空にする。次いで、流量調整バルブ26と検量タンク27のバルブ25を閉にし、吸引手段8を止める。この時の圧力値P0を計量用圧力計18で読み取る。そして、流量調整バルブ26を徐々に開き、計量用圧力計18による値が例えば40kPa程度に上がったら流量調整バルブ26を閉じる。この時の圧力値P1を計量用圧力計18で読み取る。また、検量タンク27のバルブ25を開き、この時の圧力値P2を計量用圧力計18で読み取る。
【0032】
これらの測定値から数式1によってガス管6の主要部の容量V1を算出することができる。
【数1】
(P1−P0)×V1=(P2−P0)×(V0+V1)
∴V1=((P2−P0)/(P1−P0))×V0
次に、セル収容容器3の容量、即ちバルブ20よりセル収容容器3側の空間の容量V2を測定する際は、検量タンク27として容量V0=25mlを取り付ける。そして、吸引手段8とセル収容容器3と検量タンク27と計量用圧力計18との各バルブ23,20,25,21と流量調整バルブ26とを開にして他のバルブ10,22,24は全て閉じる。吸引手段8を起動させ、配管系を真空にする。そして、流量調整バルブ26と検量タンク27のバルブ25を閉にして、吸引手段8を止める。この時の圧力値P0を計量用圧力計18で読み取る。流量調整バルブ26を徐々に開き、計量用圧力計18による値が例えば40kPa程度に上がったら流量調整バルブ26を閉じる。この時の圧力値P1を計量用圧力計18で読み取る。さらに、検量タンク27のバルブ25を開き、この時の圧力値P2を計量用圧力計18で読み取る。
【0033】
これらの測定値から数式2によってセル収容容器3の容量V2を算出することができる。
【数2】
(P1−P0)×(V1+V2)=(P2−P0)×(V0+V1+V2)
∴V2=((P2−P0)/(P1−P2))×V0−V1
次に、試料採取容器5の容量、即ち開閉弁10より試料採取容器5側の空間の容量V3を測定する際は、検量タンク27として容量V0=25mlを取り付ける。そして、吸引手段8と試料採取容器5と検量タンク27と計量用圧力計18との各バルブ23,10,25,21と流量調整バルブ26とを開にして他のバルブ20,22,24は全て閉じる。吸引手段8を起動させ、配管系を真空にする。そして、流量調整バルブ26と検量タンク27のバルブ25とを閉にして、吸引手段8を止める。この時の圧力値P0を計量用圧力計18で読み取る。流量調整バルブ26を徐々に開き、計量用圧力計18による値が例えば40kPa程度に上がったら流量調整バルブ26を閉じる。この時の圧力値P1を計量用圧力計18で読み取る。さらに、検量タンク27のバルブ25を開き、この時の圧力値P2を計量用圧力計18で読み取る。
【0034】
これらの測定値から数式3によって試料採取容器5の容量V3を算出することができる。
【数3】
(P1−P0)×(V1+V3)=(P2−P0)×(V0+V1+V3)
∴V3=((P2−P0)/(P1−P2))×V0−V1
次に、希釈用圧力計19の接続管、即ちバルブ22より希釈用圧力計19側の空間の容量V4を測定する際は、吸引手段8と計量用圧力計18と希釈用圧力計19との各バルブ23,21,22と流量調整バルブ26とを開にして他のバルブ10,20,24,25は全て閉じる。吸引手段8を起動させ、配管系を真空にする。そして、流量調整バルブ26と希釈用圧力計19のバルブ22とを閉にして、吸引手段8を止める。この時の圧力値P0を計量用圧力計18で読み取る。流量調整バルブ26を徐々に開き、計量用圧力計18による値が例えば40kPa程度に上がったら流量調整バルブ26を閉じる。この時の圧力値P1を計量用圧力計18で読み取る。さらに、希釈用圧力計19のバルブ22を開き、この時の圧力値P2を計量用圧力計18で読み取る。
【0035】
これらの測定値から数式4によって希釈用圧力計19の接続管の容量V4を算出することができる。
【数4】
(P1−P0)×V1=(P2−P0)×(V1+V4)
∴V4=((P1−P2)/(P2−P0))×V1
以上によりガス測定装置1の密封系の各部の容積を算出できたので、以後は検量タンク27を設ける必要は無い。
【0036】
上述したガス測定装置1を利用して二次電池のセル2内で発生したガスの測定を行う手順を以下に説明する。
【0037】
セル収容容器3にセル2を入れてガス管6に連結する。希釈ガス供給手段9のバルブ24を閉じて、他のバルブ10,20〜23,25,26を開く。そして、吸引手段8を作動させて、系の全体を約70Pa以下に減圧する。さらに、セル収容容器3と計量用圧力計18のバルブ20,21を除いて各バルブ10,22,23,25,26を閉じる。
【0038】
そして、セル収容容器3のハンドル13を回転させて針部材12により電池ベント部分に孔を空ける。これにより、電池内の発生ガスが真空雰囲気に噴き出して、ガス管6内に充填される。さらに、この発生ガスの圧力を計量用圧力計18で読み取る。
【0039】
ここで、ガス管6およびセル収容容器3の容積は既知であるので、その容積値と計量用圧力計18での測定値とに基づいて発生ガスの大気圧での容積を算出する。
【0040】
次に、セル収容容器3と計量用圧力計18の各バルブ20,21を閉めて、試料採取容器5と希釈用圧力計19の各バルブ10,22を開ける。ここで、試料採取容器5は既に真空雰囲気にされていることから、発生ガスが試料採取容器5に移行される。さらに、希釈ガス供給手段9のバルブ24と流量調整バルブ26を開けて、内圧約106.7kPa(約800Torr)になるまで希釈ガスを加える。この時の圧力を希釈用圧力計19で読み取る。希釈した後のガス圧と試料採取容器5の容積とから希釈率が求められる。そして、試料採取容器5に移行されたガスの成分は、ガスクロマトグラフィやガスクロマトグラフィ/質量分析計などで測定する。
【0041】
その後、セル収容容器3のバルブ20を除く全てのバルブを開き真空にすることにより、系全体の洗浄を行い次の試験に向けて準備することができる。
【0042】
また、1回の試験終了後にセル収容容器3の各部分を分解して、容器内の汚れ(電解液などの付着)をアルコールやアセトンで洗浄・乾燥する。乾燥後、セル収容容器3を再組立てする。
【0043】
本実施形態によれば、ガス管6を使用しているのでセル収容容器3と計量用圧力計18との間の容積を小さく抑えることができる。このため、従来行ってきたグローブバッグ内での電池解体や分析操作等に比べ、測定における感度の向上(数千〜万倍以上)と測定精度の向上を図ることができる。また、従来のグローブバッグ使用の場合に比べて、安全で数段の作業性・操作性の容易化と時間短縮も図ることができる。
【0044】
なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば本実施形態では解体手段4において針部材12がセル2に突き刺さって発生ガスが噴出するようにしているが、これには限られず他の解体方法を採用しても良い。例えば、電動式カッターを利用することにより解体して発生ガスが噴出するようにしても良い。この場合も、セル収容容器3内でセル2を安全に解体することができる。
【0045】
また、本実施形態ではセル収容容器3を絶縁性樹脂から成るものにしているが、これには限られず例えば導電性の容器であってもセル2に接触する部分のみを絶縁性材料により絶縁するようにしても良い。この場合も二次電池がセル収容容器3内で短絡することを防止できるので、解体作業を安全に行うことができる。
【0046】
さらに、本実施形態では検量タンク27を用いてガス測定装置1の密封系の各部の容積を算出しているが、これには限られずガス測定装置1の各部の容積が予め分かっていれば検量タンク27を設けなくても良い。
【0047】
ところで、本実施形態では密封系の各要素をガス管6で接続しているが、これには限られず例えばセル収容容器3の側面に圧力計や吸引手段8等の各要素を直接取り付けたものとしても良い。この場合もガス測定を安全かつ高精度に行うことができる。
【0048】
【実施例】
図1に示すガス測定装置1の各部分の容積を算出した。その結果、ガス管6の主要部の容量V1=11.88ml、セル収容容器3の容量V2=29.81ml、試料採取容器5の容量V3=52.21ml、希釈用圧力計19の接続管の容量V4=2.66mlとなった。
【0049】
そして、このガス測定装置1を利用して、実際の試験電池内のガス量およびガス成分を求めた。ここでは、二次電池を充放電サイクルしたものを複数パターン用意し、電池内に発生したガス量とその成分を測定した。その結果を表1に示す。同図から明らかなように、発生したガスの量および成分を高精度に検出することができた。また、ガス測定装置1におけるガス量測定の精度は0.01mlであった。よって、二次電池のガス量測定と成分分析とが安全かつ短時間でできることが判明した。
【表1】

Figure 0003963340
【0050】
【発明の効果】
以上の説明より明らかなように、請求項1記載のガス測定方法によれば、セル内の発生ガスを真空雰囲気の空間に噴出してその圧力を測定して該ガス圧に基づき発生ガスの大気圧下での体積を算出しているので、発生ガスの体積を高精度に測定することができる。また、発生ガスの噴出前に真空雰囲気にするので、配管中およびセルに付着した微量の不純ガスの脱気・洗浄が可能になる。よって、極微量の発生ガスでも量および成分共に高精度に測定することができるようになる。さらに、発生ガスに必要最小限の希釈ガスを加えて試料を作製して成分を測定することができるので、測定精度を大きく高めることができる。
【0051】
よって、二次電池の劣化機構を解明する上で必要な電池解体試験を安全に、かつ短時間・高感度・高精度で行うことが可能となる。
【0052】
そして、請求項2記載のガス測定方法によれば、針部材を突き刺すだけの容易な操作によってセルからガスを噴出させることができる。よって、測定作業の作業性が良くなり容易に短時間で行うことができるようになる。
【0053】
また、請求項3記載のガス測定方法によれば、試料採取容器に充填された希釈後のガスを利用してガスクロマトグラフにより成分を分析することができるので、発生ガス成分の測定を容易に行うことができる。
【0054】
一方、請求項4記載のガス測定装置によれば、極微量の発生ガスでも量および成分共に高精度に測定することができるので、二次電池の劣化機構を解明する上で必要な電池解体試験を安全に、かつ短時間・高感度・高精度で行うことが可能となる。
【0055】
また、請求項5記載のガス測定装置によれば、二次電池がセル収容容器内で短絡することを防止できるので、解体作業を安全に行うことができる。
【0056】
さらに、請求項6記載のガス測定装置によれば、簡易な機構でセルから発生ガスを容易に噴出させることができる。よって、測定作業を短時間で行うことができるようになる。
【図面の簡単な説明】
【図1】本発明のガス測定装置の構成を示すブロック図である。
【図2】セル収容容器を示す概略の縦断面側面図である。
【符号の説明】
1 ガス測定装置
2 セル
3 セル収容容器
4 解体手段
5 試料採取容器
6 ガス管
7 圧力計
8 吸引手段
9 希釈ガス供給手段
10 開閉弁
12 針部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas measurement method for measuring a gas amount and analyzing a gas component, and an apparatus using the same. More specifically, the present invention relates to a gas measuring method suitable for measuring a gas amount and a gas component of a gas generated in a cell of a secondary battery, and an apparatus using the same.
[0002]
[Prior art]
In order to inspect the degree of deterioration due to repeated charge and discharge of a secondary battery, a technique for measuring the amount of gas generated in the cell due to deterioration of the electrolyte of the secondary battery and its components is known. This gas is measured by disassembling a secondary battery that has deteriorated due to use in a glove bag filled with argon gas (volume is about 50 liters), mixing the gas in the cell into the argon gas, and the amount of gas together with the argon gas. And the gas component is measured.
[0003]
[Problems to be solved by the invention]
However, in the gas measurement method described above, the amount of gas generated in the cell is so small that it is mixed with a large amount of argon gas in the glove bag and diluted, which greatly reduces the sensitivity of gas measurement. Accuracy will deteriorate. For example, when about 1 ml of gas generated in a cell is mixed with argon gas having a volume of about 50 liters as in the above example, the dilution rate becomes about 1/50000 and high-precision measurement cannot be expected.
[0004]
A concentration operation may be performed to prevent a decrease in accuracy due to dilution, but the concentration operation requires a lot of equipment and time, and in some cases, the measurement accuracy is further decreased. The data obtained through dilution and concentration in this way contains a large error because the concentration is calculated in consideration of the dilution rate and concentration rate, and it is extremely difficult to perform highly accurate measurement. Have difficulty.
[0005]
Therefore, an object of the present invention is to provide a gas measuring method and an apparatus using the same, which can measure a gas generated in a cell of a secondary battery with high accuracy.
[0006]
[Means for Solving the Problems]
In order to achieve such an object, the gas measuring method according to claim 1 includes a vacuum step of making a space in a vacuum atmosphere while the cells of the secondary battery are accommodated in a sealed space having a known volume, and disassembling the cells to the inside. An ejection process for ejecting the gas into the space, a gas amount measurement process for measuring the pressure of the gas filled in the space, and calculating the volume of the gas under atmospheric pressure from the gas pressure and the volume of the space; And a component measuring step of measuring a gas component after adding a dilution gas to the gas.
[0007]
Therefore, the generated gas in the cell is ejected into the space of the vacuum atmosphere, the pressure is measured, and the volume of the generated gas under the atmospheric pressure is calculated based on the gas pressure. Compared with the case of measuring after dilution, the volume of the generated gas can be measured with high accuracy.
[0008]
In addition, since the vacuum atmosphere is set before the generated gas is jetted, a small amount of impure gas adhering to the pipe and the cell can be degassed and cleaned. Therefore, even a very small amount of generated gas can be measured with high accuracy both in quantity and component.
[0009]
In addition, the sample can be prepared by adding the minimum necessary dilution gas to the generated gas, and the components can be measured. Therefore, when the generated gas in the cell is greatly diluted and then concentrated as before, the measurement is performed. Compared to the measurement accuracy can be greatly increased.
[0010]
According to a second aspect of the present invention, in the gas measuring method according to the first aspect, in the ejection step, the needle member is passed through the safety valve of the cell to release the gas to the space. Therefore, the gas can be ejected from the cell by an easy operation of just piercing the needle member as compared with the conventional battery disassembly or analysis operation in the glove bag. Therefore, the measurement work can be performed in a short time.
[0011]
In the gas measuring method according to claim 1 or 2, in the gas measuring method according to claim 1 or 2, in the component measuring step, a mixed gas obtained by adding a diluent gas to the gas is applied to a sampling container previously in a vacuum atmosphere by a pressure difference. The mixed gas in the sampling container is measured by a gas chromatograph.
[0012]
Therefore, since the components can be analyzed by gas chromatography using the diluted gas filled in the sampling container, the generated gas component can be easily measured.
[0013]
On the other hand, the gas measuring device according to claim 4 includes a cell storage container for storing the cells of the secondary battery, a disassembling means for disassembling the cells stored in the cell storage container and ejecting an internal gas, and for storing the gas A possible sampling container, a gas pipe that connects the cell container and the sampling container, an on-off valve that can open and close a connection part of the sampling container and the gas pipe, a gas pipe, the sampling container, and the cell container Is provided with a suction means capable of evacuating, a dilution gas supply means capable of supplying a dilution gas to the gas pipe, and a pressure gauge for measuring the pressure in the gas pipe.
[0014]
In this case, after the cells of the secondary battery are stored in the cell storage container, the opening / closing valve of the sample collection container is opened to operate the suction means. As a result, the cell storage container, the sampling container, and the gas pipe are evacuated. Then, the open / close valve is closed and the sample collection container is sealed in a vacuum. When the cell is disassembled by the disassembling means in this state, the generated gas inside the cell is sucked into the vacuum atmosphere, and is transferred and filled into the cell storage container and the gas pipe. At this time, the pressure in the gas pipe can be measured with a pressure gauge, and the volume of the generated gas under atmospheric pressure can be calculated from the gas pressure and the volume of the cell container and the gas pipe.
[0015]
Then, the opening / closing valve is opened and the dilution gas is supplied by the dilution gas supply means. As a result, the generated gas and the dilution gas are mixed and transferred to a vacuum sampling container, and the sampling container, the gas pipe, and the cell storage container are filled. At this time, a gas pressure sufficient as a sample for measuring a gas component can be obtained by mixing the dilution gas with the generated gas. The mixed gas filled in the sampling container is directly measured by a component measuring means such as a gas chromatograph.
[0016]
According to a fifth aspect of the present invention, in the gas measuring device according to the fourth aspect, the cell container is made of an insulating resin. Therefore, the secondary battery can be prevented from being short-circuited in the cell storage container, so that the disassembly work can be performed safely.
[0017]
Further, in the gas measuring apparatus according to claim 4 or 5, the disassembling means includes a needle member that penetrates the safety valve of the cell. Therefore, the generated gas can be easily ejected from the cell with a simple mechanism as compared with the conventional case where the battery is disassembled or analyzed in the glove bag. Therefore, the measurement work can be performed in a short time.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings. 1 and 2 show an embodiment of a gas measuring device 1 of the present invention. The gas measuring apparatus 1 includes a cell storage container 3 for storing a cell 2 of a secondary battery, a disassembling means 4 for disassembling the cell 2 and ejecting a gas generated inside (hereinafter referred to as generated gas), a gas And a gas pipe 6 for connecting the cell storage container 3 and the sample collection container 5 to each other. A pressure gauge 7, suction means 8, and dilution gas supply means 9 are attached to the gas pipe 6. Further, an opening / closing valve (valve) 10 capable of opening and closing the flow path is provided at a portion where the gas pipe 6 of the sampling container 5 is attached.
[0019]
In this gas measuring apparatus 1, the secondary battery cell 2 is accommodated in the cell accommodating container 3, and then the opening / closing valve 10 of the sampling container 5 is opened to operate the suction means 8. As a result, the cell storage container 3, the sampling container 5 and the gas pipe 6 are evacuated. The on-off valve 10 is closed after the sampling container 5 is evacuated. When the cell 2 is disassembled by the disassembling means 4, the gas generated in the cell 2 is sucked out and transferred to the cell storage container 3 and the gas pipe 6 to be filled. At this time, the pressure of the gas pipe 6 can be measured with the pressure gauge 7, and the volume of the generated gas under atmospheric pressure can be calculated from the gas pressure and the volumes of the cell container 3 and the gas pipe 6. For this reason, since it is not necessary to mix dilution gas with generated gas, the volume of generated gas under atmospheric pressure can be calculated with high accuracy.
[0020]
Also, the opening / closing valve 10 is opened and the dilution gas is supplied by the dilution gas supply means 9. Thereby, the generated gas and the dilution gas are mixed and transferred to the sampling container 5 and filled. The mixed gas filled in the sampling container 5 is directly measured by a component measuring means such as a gas chromatograph. For this reason, since the component measurement can be performed by mixing the minimum dilution gas, the component measurement can be performed with high accuracy.
[0021]
The cell container 3 is made of an insulating resin such as delrin. For this reason, since it can prevent that a secondary battery short-circuits by the cell storage container 3, a disassembly operation | work can be performed safely. The cell storage container 3 has a storage space slightly larger than the cell 2 to be stored. As described above, since the accommodation space is suppressed to be slightly larger than the cell 2 to be accommodated, the airtightness can be improved. Further, a protrusion 11 is formed inside the cell storage container 3 so as to be in close contact with and support the cell 2. For this reason, the cell 2 can be prevented from wobbling and can be safely disassembled.
[0022]
The disassembling means 4 includes a needle member 12 that penetrates the safety valve of the cell 2. Since the needle member 12 pierces the safety valve, the inside and outside of the cell 2 communicate with each other, so that the generated gas is ejected into a vacuum atmosphere. For this reason, the generated gas can be easily transferred from the cell 2 by a simple mechanism.
[0023]
The needle member 12 has a diameter of 4 mm, for example, and is provided inside the cell storage container 3 so as to appear and retract. The needle member 12 is integrated with a handle 13 having a threaded portion 13 a so that the tip of the needle member 12 protrudes and appears inside the cell storage container 3 by the rotation of the handle 13. Further, a gas passage 15 communicating with the gas pipe 6 is formed in the hole 14 through which the needle member 12 of the cell container 3 passes. Further, an O-ring 16 is provided between the needle member 12 and the cell storage container 3 to enhance the airtightness between them.
[0024]
The periphery of the safety valve of the cell 2 is surrounded by an O-ring 17 and is in close contact with the inner wall of the cell container 3. For this reason, when the needle member 12 is pierced into the cell 2 and the generated gas leaks out, the generated gas can be prevented from diffusing along the outer surface of the cell 2. Further, the O-ring 17 is doubled with the needle member 12 as the center. Therefore, the airtightness can be further increased.
[0025]
As the pressure gauge 7, a metering pressure gauge 18 and a dilution pressure gauge 19 are respectively attached to the gas pipe 6. The metering pressure gauge 18 can measure a pressure of about 0 to 300 Torr (0 to about 40 kPa, 0 to about 0.39 atm), and the dilution pressure gauge 19 is 0 to 2000 Torr (0 to about 266). .6 kPa, 0 to about 2.63 atmospheres)). Thus, since the pressure gauge 7 is divided for each atmospheric pressure, the measurement accuracy in each range can be improved. In the present embodiment, the pressure gauge 7 is divided into the measurement pressure gauge 18 and the dilution pressure gauge 19, but the present invention is not limited to this, and only one pressure gauge may be used.
[0026]
The sample collection container 5 is a container for collecting a sample used for component measurement such as a gas chromatograph.
[0027]
The suction means 8 is for evacuating the gas pipe 6, and for example, a vacuum pump or an oilless pump can be used. Here, the vacuum is not limited to a complete vacuum, but means a state of about 70 Pa (about 0.5 Torr) or less. For example, in the case of 70 Pa, a vacuum atmosphere can be generated every 30 to 40 minutes, so that the gas measurement cycle can be accelerated. Further, if the vacuum pressure is further reduced, the measurement accuracy can be further increased. Reference numeral 28 in FIG. 1 indicates a leak valve for releasing the gas in the sealing system.
[0028]
As the dilution gas supply means 9, a cylinder, a pump, or the like that discharges dilution gas such as argon gas, helium gas, or other standard gas into the gas pipe 6 can be used.
[0029]
In the present embodiment, a calibration tank 27 is connected to the gas pipe 6 in addition to the cell container 3, the pressure gauges 18, 19, the sampling container 5, the suction means 8, and the dilution gas supply means 9, and the sealed system is Is formed. Valves 21 to 25 are provided between the elements and the gas pipe 6, respectively. A flow rate adjustment valve 26 is provided between the suction means 8 and the dilution gas supply means 9 and the cell storage container 3, each pressure gauge 7, the sampling container 5, and the calibration tank 27. The calibration tank 27 has a known volume, and uses, for example, a public operator verification container.
[0030]
By the way, it is necessary to measure the volume of each part of the sealing system of the gas measuring device 1 prior to the measurement of the generated gas. In this measurement, a certain amount of gas is sealed only in the portion to be measured, the gas pressure is measured, the gas is transferred to the portion to be measured and the calibration tank 27, and the gas pressure is measured again. The volume of the part to be measured is calculated on the assumption that the product is constant.
[0031]
First, when measuring the volume V1 of the main part of the gas pipe 6, that is, the pipe line between the valves 10, 20 to 26, the capacity V0 = 10 ml is attached as the calibration tank 27. Then, the valves 23, 25, 21 and the flow rate adjusting valve 26 of the suction means 8, the calibration tank 27, and the metering pressure gauge 18 are opened, and the other valves 10, 22, 24, 25 are all closed. The suction means 8 is activated and the piping system is evacuated. Next, the flow rate adjusting valve 26 and the valve 25 of the calibration tank 27 are closed, and the suction means 8 is stopped. The pressure value P0 at this time is read by the metering pressure gauge 18. Then, the flow rate adjusting valve 26 is gradually opened, and the flow rate adjusting valve 26 is closed when the value by the metering pressure gauge 18 rises to, for example, about 40 kPa. The pressure value P1 at this time is read by the metering pressure gauge 18. Further, the valve 25 of the calibration tank 27 is opened, and the pressure value P2 at this time is read by the measuring pressure gauge 18.
[0032]
From these measured values, the capacity V1 of the main part of the gas pipe 6 can be calculated by Equation 1.
[Expression 1]
(P1-P0) * V1 = (P2-P0) * (V0 + V1)
∴V1 = ((P2-P0) / (P1-P0)) × V0
Next, when measuring the capacity of the cell container 3, that is, the capacity V2 of the space on the cell container 3 side from the valve 20, a capacity V0 = 25 ml is attached as the calibration tank 27. The valves 23, 20, 25, 21 and the flow rate adjusting valve 26 of the suction means 8, the cell storage container 3, the calibration tank 27, the metering pressure gauge 18 and the flow rate adjusting valve 26 are opened, and the other valves 10, 22, 24 are Close all. The suction means 8 is activated and the piping system is evacuated. Then, the flow rate adjusting valve 26 and the valve 25 of the calibration tank 27 are closed, and the suction means 8 is stopped. The pressure value P0 at this time is read by the metering pressure gauge 18. The flow rate adjustment valve 26 is gradually opened, and the flow rate adjustment valve 26 is closed when the value by the metering pressure gauge 18 rises to, for example, about 40 kPa. The pressure value P1 at this time is read by the metering pressure gauge 18. Further, the valve 25 of the calibration tank 27 is opened, and the pressure value P2 at this time is read by the measuring pressure gauge 18.
[0033]
From these measured values, the capacity V2 of the cell container 3 can be calculated by Equation 2.
[Expression 2]
(P1-P0) * (V1 + V2) = (P2-P0) * (V0 + V1 + V2)
∴V2 = ((P2−P0) / (P1−P2)) × V0−V1
Next, when measuring the capacity of the sampling container 5, that is, the capacity V3 of the space on the side of the sampling container 5 from the on-off valve 10, a capacity V0 = 25 ml is attached as the calibration tank 27. Then, the valves 23, 10, 25, 21 and the flow rate adjusting valve 26 of the suction means 8, the sampling container 5, the calibration tank 27, and the metering pressure gauge 18 are opened, and the other valves 20, 22, 24 are opened. Close all. The suction means 8 is activated and the piping system is evacuated. Then, the flow rate adjusting valve 26 and the valve 25 of the calibration tank 27 are closed, and the suction means 8 is stopped. The pressure value P0 at this time is read by the metering pressure gauge 18. The flow rate adjustment valve 26 is gradually opened, and the flow rate adjustment valve 26 is closed when the value by the metering pressure gauge 18 rises to, for example, about 40 kPa. The pressure value P1 at this time is read by the metering pressure gauge 18. Further, the valve 25 of the calibration tank 27 is opened, and the pressure value P2 at this time is read by the measuring pressure gauge 18.
[0034]
From these measured values, the volume V3 of the sampling container 5 can be calculated by Equation 3.
[Equation 3]
(P1-P0) * (V1 + V3) = (P2-P0) * (V0 + V1 + V3)
∴V3 = ((P2−P0) / (P1−P2)) × V0−V1
Next, when measuring the capacity V4 of the connection pipe of the dilution pressure gauge 19, that is, the space on the dilution pressure gauge 19 side from the valve 22, the suction means 8, the measurement pressure gauge 18, and the dilution pressure gauge 19 are connected. The valves 23, 21, 22 and the flow rate adjusting valve 26 are opened, and the other valves 10, 20, 24, 25 are all closed. The suction means 8 is activated and the piping system is evacuated. Then, the flow rate adjusting valve 26 and the valve 22 of the dilution pressure gauge 19 are closed, and the suction means 8 is stopped. The pressure value P0 at this time is read by the metering pressure gauge 18. The flow rate adjustment valve 26 is gradually opened, and the flow rate adjustment valve 26 is closed when the value by the metering pressure gauge 18 rises to, for example, about 40 kPa. The pressure value P1 at this time is read by the metering pressure gauge 18. Further, the valve 22 of the dilution pressure gauge 19 is opened, and the pressure value P2 at this time is read by the measurement pressure gauge 18.
[0035]
From these measured values, the capacity V4 of the connecting pipe of the dilution pressure gauge 19 can be calculated by Equation 4.
[Expression 4]
(P1-P0) * V1 = (P2-P0) * (V1 + V4)
∴V4 = ((P1-P2) / (P2-P0)) × V1
Since the volume of each part of the sealing system of the gas measuring device 1 can be calculated as described above, it is not necessary to provide the calibration tank 27 thereafter.
[0036]
A procedure for measuring the gas generated in the cell 2 of the secondary battery using the gas measuring device 1 described above will be described below.
[0037]
The cell 2 is placed in the cell container 3 and connected to the gas pipe 6. The valve 24 of the dilution gas supply means 9 is closed, and the other valves 10, 20 to 23, 25, and 26 are opened. And the suction means 8 is operated and the whole system is pressure-reduced to about 70 Pa or less. Further, the valves 10, 22, 23, 25 and 26 are closed except for the cells 20 and 21 of the cell container 3 and the metering pressure gauge 18.
[0038]
Then, the handle 13 of the cell container 3 is rotated to make a hole in the battery vent portion by the needle member 12. Thereby, the generated gas in the battery is ejected into the vacuum atmosphere and filled in the gas pipe 6. Further, the pressure of the generated gas is read by the metering pressure gauge 18.
[0039]
Here, since the volumes of the gas pipe 6 and the cell storage container 3 are known, the volume of the generated gas at the atmospheric pressure is calculated based on the volume value and the measured value by the measuring pressure gauge 18.
[0040]
Next, the valves 20 and 21 of the cell container 3 and the measurement pressure gauge 18 are closed, and the valves 10 and 22 of the sample collection container 5 and the dilution pressure gauge 19 are opened. Here, since the sampling container 5 is already in a vacuum atmosphere, the generated gas is transferred to the sampling container 5. Further, the valve 24 and the flow rate adjusting valve 26 of the dilution gas supply means 9 are opened, and the dilution gas is added until the internal pressure becomes about 106.7 kPa (about 800 Torr). The pressure at this time is read with a diluting pressure gauge 19. The dilution rate is obtained from the gas pressure after dilution and the volume of the sampling container 5. And the component of the gas transferred to the sampling container 5 is measured by a gas chromatography, a gas chromatography / mass spectrometer or the like.
[0041]
Thereafter, all the valves except for the valve 20 of the cell container 3 are opened and evacuated, whereby the entire system can be cleaned and prepared for the next test.
[0042]
Further, after the completion of one test, each part of the cell storage container 3 is disassembled, and dirt (adhesion of an electrolytic solution, etc.) in the container is washed and dried with alcohol or acetone. After drying, the cell container 3 is reassembled.
[0043]
According to this embodiment, since the gas pipe 6 is used, the volume between the cell container 3 and the metering pressure gauge 18 can be kept small. For this reason, compared with the battery disassembly and analysis operation etc. which were performed conventionally, the improvement in the sensitivity in measurement (thousand to 10,000 times or more) and the improvement of measurement accuracy can be aimed at. In addition, compared to the case of using a conventional glove bag, it is safer and several steps of workability and operability can be facilitated and the time can be shortened.
[0044]
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in this embodiment, the needle member 12 pierces the cell 2 in the disassembly means 4 and the generated gas is ejected. However, the present invention is not limited to this, and other disassembly methods may be adopted. For example, the generated gas may be ejected by disassembling by using an electric cutter. Also in this case, the cell 2 can be safely disassembled in the cell container 3.
[0045]
In this embodiment, the cell container 3 is made of an insulating resin. However, the present invention is not limited to this. For example, even a conductive container insulates only the portion in contact with the cell 2 with an insulating material. You may do it. Also in this case, since the secondary battery can be prevented from being short-circuited in the cell container 3, the disassembly work can be performed safely.
[0046]
Furthermore, in this embodiment, the volume of each part of the sealing system of the gas measuring device 1 is calculated using the calibration tank 27. However, the present invention is not limited to this, and if the volume of each part of the gas measuring device 1 is known in advance, the calibration is performed. The tank 27 may not be provided.
[0047]
By the way, in this embodiment, each element of the sealing system is connected by the gas pipe 6. However, the present invention is not limited to this. For example, each element such as a pressure gauge and a suction means 8 is directly attached to the side surface of the cell container 3. It is also good. In this case as well, gas measurement can be performed safely and with high accuracy.
[0048]
【Example】
The volume of each part of the gas measuring device 1 shown in FIG. 1 was calculated. As a result, the volume V1 of the main portion of the gas pipe 6 = 11.88 ml, the volume V2 of the cell container 3 = 29.81 ml, the volume V3 of the sampling container 5 = 52.21 ml, the connection pipe of the dilution pressure gauge 19 The volume V4 = 2.66 ml.
[0049]
And the gas amount and gas component in an actual test battery were calculated | required using this gas measuring apparatus 1. FIG. Here, a plurality of patterns obtained by charging and discharging the secondary battery were prepared, and the amount of gas generated in the battery and its components were measured. The results are shown in Table 1. As apparent from the figure, the amount and components of the generated gas could be detected with high accuracy. Further, the accuracy of gas amount measurement in the gas measuring device 1 was 0.01 ml. Therefore, it was found that the gas amount measurement and the component analysis of the secondary battery can be performed safely and in a short time.
[Table 1]
Figure 0003963340
[0050]
【The invention's effect】
As is apparent from the above description, according to the gas measuring method of claim 1, the generated gas in the cell is ejected into the space of the vacuum atmosphere, the pressure is measured, and the amount of generated gas is increased based on the gas pressure. Since the volume under atmospheric pressure is calculated, the volume of the generated gas can be measured with high accuracy. In addition, since the vacuum atmosphere is set before the generated gas is jetted, a small amount of impure gas adhering to the pipe and the cell can be degassed and cleaned. Therefore, even a very small amount of generated gas can be measured with high accuracy both in quantity and component. Furthermore, since the sample can be prepared by adding the necessary minimum dilution gas to the generated gas and the components can be measured, the measurement accuracy can be greatly increased.
[0051]
Therefore, the battery disassembly test necessary for elucidating the deterioration mechanism of the secondary battery can be performed safely, in a short time, with high sensitivity and high accuracy.
[0052]
And according to the gas measuring method of Claim 2, gas can be ejected from a cell by easy operation which only stabs a needle member. Therefore, the workability of the measurement work is improved and it can be easily performed in a short time.
[0053]
In addition, according to the gas measuring method of claim 3, since the components can be analyzed by the gas chromatograph using the diluted gas filled in the sampling container, the generated gas components are easily measured. be able to.
[0054]
On the other hand, according to the gas measuring apparatus of claim 4, since both the quantity and the component can be measured with high accuracy even with a very small amount of generated gas, the battery disassembly test necessary for elucidating the deterioration mechanism of the secondary battery is possible. Can be performed safely, in a short time, with high sensitivity and high accuracy.
[0055]
Moreover, according to the gas measuring apparatus of Claim 5, since a secondary battery can be prevented from being short-circuited within a cell storage container, disassembly work can be performed safely.
[0056]
Furthermore, according to the gas measuring apparatus of the sixth aspect, the generated gas can be easily ejected from the cell with a simple mechanism. Therefore, the measurement work can be performed in a short time.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a gas measuring apparatus according to the present invention.
FIG. 2 is a schematic vertical sectional side view showing a cell storage container.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas measuring apparatus 2 Cell 3 Cell storage container 4 Dismantling means 5 Sampling container 6 Gas pipe 7 Pressure gauge 8 Suction means 9 Dilution gas supply means 10 On-off valve 12 Needle member

Claims (6)

既知の容積を有する密閉空間に二次電池のセルを収容したまま前記空間を真空雰囲気にする真空工程と、前記セルを解体して内部のガスを前記空間に噴出させる噴出工程と、前記空間に充填された前記ガスの圧力を測定して、そのガス圧と前記空間の容積とから前記ガスの大気圧下での体積を算出するガス量測定工程と、前記ガスに希釈ガスを加えてからガス成分を測定する成分測定工程とを備えることを特徴とするガス測定方法。A vacuum process for placing the secondary battery cell in a sealed space having a known volume while making the space into a vacuum atmosphere, an ejection process for disassembling the cell and ejecting an internal gas into the space, and A gas amount measuring step of measuring the pressure of the filled gas and calculating the volume of the gas under atmospheric pressure from the gas pressure and the volume of the space; and after adding a dilution gas to the gas, the gas A gas measuring method comprising: a component measuring step for measuring a component. 前記噴出工程では、前記セルの安全弁に針部材を貫通させて前記ガスを前記空間に解放することを特徴とする請求項1記載のガス測定方法。The gas measurement method according to claim 1, wherein in the ejection step, a needle member is passed through the safety valve of the cell to release the gas into the space. 前記成分測定工程では、前記ガスに前記希釈ガスを加えた混合ガスを、予め真空雰囲気にした試料採取容器に圧力差により移行させて、前記試料採取容器内の前記混合ガスをガスクロマトグラフにより測定することを特徴とする請求項1または2記載のガス測定方法。In the component measurement step, a mixed gas obtained by adding the dilution gas to the gas is transferred to a sampling container that has been previously in a vacuum atmosphere by a pressure difference, and the mixed gas in the sampling container is measured by a gas chromatograph. The gas measuring method according to claim 1 or 2, wherein 二次電池のセルを収容するセル収容容器と、前記セル収容容器に収容された前記セルを解体して内部のガスを噴出させる解体手段と、前記ガスを収容可能な試料採取容器と、前記セル収容容器と前記試料採取容器とを連結するガス管と、前記試料採取容器および前記ガス管の連結部分を開閉可能な開閉弁と、前記ガス管と試料採取容器とセル収容容器とを真空にできる吸引手段と、前記ガス管に希釈ガスを供給可能な希釈ガス供給手段と、前記ガス管内の圧力を測定する圧力計とを備えることを特徴とするガス測定装置。A cell storage container for storing a cell of a secondary battery, a disassembly means for disassembling the cell stored in the cell storage container and ejecting an internal gas, a sample collection container capable of storing the gas, and the cell A gas pipe that connects the storage container and the sampling container, an on-off valve that can open and close the connection part of the sampling container and the gas pipe, and the gas pipe, the sampling container, and the cell storage container can be evacuated. A gas measuring apparatus comprising: suction means; dilution gas supply means capable of supplying dilution gas to the gas pipe; and a pressure gauge for measuring pressure in the gas pipe. 前記セル収容容器は絶縁性樹脂から成ることを特徴とする請求項4記載のガス測定装置。The gas measuring device according to claim 4, wherein the cell container is made of an insulating resin. 前記解体手段は、前記セルの安全弁を貫通する針部材を備えることを特徴とする請求項4または5記載のガス測定装置。6. The gas measuring device according to claim 4, wherein the disassembling means includes a needle member that penetrates the safety valve of the cell.
JP2000148777A 2000-05-19 2000-05-19 Gas measuring method and apparatus using the same Expired - Fee Related JP3963340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000148777A JP3963340B2 (en) 2000-05-19 2000-05-19 Gas measuring method and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000148777A JP3963340B2 (en) 2000-05-19 2000-05-19 Gas measuring method and apparatus using the same

Publications (2)

Publication Number Publication Date
JP2001332312A JP2001332312A (en) 2001-11-30
JP3963340B2 true JP3963340B2 (en) 2007-08-22

Family

ID=18654750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000148777A Expired - Fee Related JP3963340B2 (en) 2000-05-19 2000-05-19 Gas measuring method and apparatus using the same

Country Status (1)

Country Link
JP (1) JP3963340B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101393223B1 (en) 2008-12-19 2014-05-08 주식회사 엘지화학 Method of manufacturing lithium second battery and the lithium second battery
KR101583373B1 (en) * 2010-11-11 2016-01-07 주식회사 엘지화학 Apparatus for real time analyzing inner gas in secondary electric cell
KR101590395B1 (en) * 2015-05-26 2016-02-18 이현철 Gas extraction system of medium and large secondary battery
KR101634310B1 (en) * 2015-05-26 2016-07-08 이현철 Gas extraction system of small secondary battery
JP2017009539A (en) * 2015-06-25 2017-01-12 株式会社住化分析センター Gas analysis device and gas analysis method
KR101955288B1 (en) * 2015-10-06 2019-03-08 주식회사 엘지화학 A device for high speed analyzing of gas sample using gas-chromatograph and a method thereof
JP6652815B2 (en) * 2015-11-09 2020-02-26 株式会社島津製作所 Gas analysis cell and gas analysis system
KR102207519B1 (en) * 2016-10-26 2021-01-25 주식회사 엘지화학 The gas analysis device in secondary battery and analysis method by using the same
KR102268398B1 (en) * 2016-10-31 2021-06-24 주식회사 엘지에너지솔루션 Gas analyzing apparatus for rechargeable battery
EP3703176A4 (en) 2017-10-26 2020-11-04 LG Chem, Ltd. Apparatus, system, and method for collecting gas generated in secondary battery
JP6409940B2 (en) * 2017-10-31 2018-10-24 住友金属鉱山株式会社 Evaluating gas generated from non-aqueous electrolyte secondary batteries
WO2020009451A1 (en) * 2018-07-04 2020-01-09 주식회사 엘지화학 Apparatus and method for collecting gas
KR20200004745A (en) 2018-07-04 2020-01-14 주식회사 엘지화학 An automated apparatus for collecting gas generated inside secondary battery and a method thereof
KR102455848B1 (en) 2018-12-03 2022-10-18 주식회사 엘지에너지솔루션 Jig for measuring internal pressure of cylindrical battery cell
KR102397294B1 (en) 2019-04-26 2022-05-11 주식회사 엘지에너지솔루션 Apparatus for collecting secondary cell internal gas
US20230178816A1 (en) * 2021-12-07 2023-06-08 GM Global Technology Operations LLC High throughput extraction of battery cell formation gas
CN118010233A (en) * 2024-04-08 2024-05-10 宁德时代新能源科技股份有限公司 Air pressure detection structure, system, method, device, apparatus and storage medium

Also Published As

Publication number Publication date
JP2001332312A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
JP3963340B2 (en) Gas measuring method and apparatus using the same
CN110160714B (en) Soft package battery airtightness inspection system and method
CA2680180A1 (en) Method and device for determining the quality of seal of a test object
US8806919B2 (en) Leak detection apparatus and method
CN107543664A (en) More sealing system leakage rate measurement method and apparatus
US8347689B2 (en) Tool for assisting leak testing of an enclosed volume and method incorporating the tool
CN111551476B (en) Gas permeability testing system and method based on differential pressure method
US8201438B1 (en) Detection of gas leakage
JP6534627B2 (en) Leakage inspection method of inspected container, and leakage inspection device
CA2500617C (en) Automatic sample loader for use with a mass spectrometer
CN113340765A (en) Molecular sieve material adsorption performance detection device and method
CN110187011B (en) Simulation experiment device and simulation method for dynamic adsorption and desorption research
JP7329884B2 (en) Battery pack leakage detection system and detection method based on tracer gas accumulation test
US20020069691A1 (en) Low volume vacuum source for leak test fixture
JP3577391B2 (en) Negative pressure can headspace gas analysis method
CN209803094U (en) A calibrating device for diffusion formula formaldehyde detector
CN106706816A (en) Vacuum sampling device for gas chromatograph
CN110988266A (en) Testing method for calibration gas
CN110501257B (en) Device and method for measuring material outgassing rate by double test chambers
JP2002168854A (en) Device and method for measuring quantity of gas dissolved in liquid
CN204730990U (en) A kind of detection self-con-tained unit
CN218994507U (en) Metering sample loading device for gas of adiabatic acceleration calorimeter
CN218573313U (en) Gas mixing diluter
CN218035544U (en) Tightness testing device and tightness testing system
CN221198833U (en) Automatic leak hunting device in batches of spare part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees