JP3962909B2 - Photocurable coating agent for forming hard protective film and article formed with the film - Google Patents
Photocurable coating agent for forming hard protective film and article formed with the film Download PDFInfo
- Publication number
- JP3962909B2 JP3962909B2 JP2002098734A JP2002098734A JP3962909B2 JP 3962909 B2 JP3962909 B2 JP 3962909B2 JP 2002098734 A JP2002098734 A JP 2002098734A JP 2002098734 A JP2002098734 A JP 2002098734A JP 3962909 B2 JP3962909 B2 JP 3962909B2
- Authority
- JP
- Japan
- Prior art keywords
- sio
- coating agent
- group
- component
- agent according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Paints Or Removers (AREA)
- Silicon Polymers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、反りがなく高硬度の被膜が得られる、硬質保護被膜形成用光硬化性コーティング剤に関し、特にはプラスチック基材等への硬質保護被膜形成用光硬化性コーティング剤及び該硬質保護被膜を形成した物品に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
光硬化型シリコーンコーティング剤は、硬化時間が短くてすみ、熱エネルギーによって損傷を受けるような基材でも、塗工後に加熱することなく光照射により硬化させることができるという利点を有し、このため様々な分野で各種の光硬化型シリコーンコーティング剤が開発されている。
【0003】
光硬化型、特に紫外線硬化型シリコーンの硬化形態は、主に次の3種類である。
(1)アクリル官能性シリコーンをラジカル開裂型光触媒の存在下に紫外線で硬化させるタイプ。
(2)Si−Vi(ビニル)基とS−H基をラジカル開裂型光触媒の存在下に紫外線で硬化させるタイプ。
(3)エポキシ官能性シリコーンをカチオン発生型触媒の存在下に紫外線で硬化させるタイプ。
【0004】
ここで、(1)のタイプは、硬化は速いが、酸素による硬化阻害があるため、不活性ガス雰囲気下で反応を行う必要があり、装置上の工夫を要し、不活性ガスのランニングコストがかかるという欠点がある。
また、(2)のタイプは、酸素による硬化阻害が少なく硬化性に優れているが、メルカプト基を含有するため、不快臭が強くて作業者にとって好ましくなく、しかも組成物の安定性が悪く、シェルフライフが短いという欠点を有する。
更に、(3)のタイプは、紫外線により硬化し、酸素による硬化阻害もなく、不快臭もなく、基材に対する密着性がよいため、非常に優れているが、反面、硬化時の雰囲気中の湿度により硬化が阻害されるという欠点を有している。
【0005】
(3)のタイプの上記した欠点を克服するため、ラジカル重合性物質と光ラジカル開始剤を添加することにより、カチオン重合とラジカル重合を同時に行わせる手法が、従来より検討されてきている。
【0006】
一方、カチオン重合系へのシリコーン化合物を導入する方法として、特開昭56−38350号公報ではエポキシ基を有するシロキサン化合物とビスアリールヨードニウム塩からなる紫外線硬化性組成物が、特開昭58−213024号公報ではエポキシ基を有するシロキサン化合物又はアクリル基を有するシロキサン化合物、更には両方の官能基を有するシロキサン化合物を紫外線硬化させることが、特開平11−104166号公報ではエポキシ変性シリコーンと光カチオン重合開始剤からなる離型フィルムが、特公平6−89109号公報、特開平7−156267号公報では脂環式エポキシ官能性シロキサン、有機脂環式ポリエポキシド、光カチオン重合開始剤からなる組成物が、特開平8−269293号公報では脂環式エポキシ基含有シリコーングラフト重合体とオニウム塩系光硬化触媒からなる組成物が開示されている。ここで挙げられているエポキシ基を有するシロキサン化合物は直鎖状ジメチルポリシロキサンの官能基の一部をエポキシ基で置換したもので、離型性を重視したものであり、いずれも柔らかい被膜を形成するコーティング剤である。
【0007】
特開2001−158851号公報では、エポキシ基を有する分子量500〜50万のシロキサン化合物と、光カチオン重合開始剤からなる組成物を開示している。ここで使用されるシロキサン化合物はアルコキシシランの加水分解縮合物であり、低分子量に制御することは困難であり、実施例中で合成したシロキサン化合物の分子量もいずれも2500以上であり、高硬度な被膜を得ることは困難である。
【0008】
特開平9−143248号公報では、エポキシ化合物、脂環式エポキシ基を有するポリオルガノシロキサン、光カチオン重合開始剤からなる組成物を開示している。このなかでエポキシ化合物として、脂環式エポキシ基を有する環状シロキサン化合物が例示されているが、オルガノシロキサンは直鎖状ジメチルポリシロキサンの末端をエポキシ基で置換したものであり、先に述べたものと同様の効果を期待するものである。
【0009】
特開2001−40066号公報においては、脂環式エポキシ基含有シリコーングラフト重合体、脂環式エポキシ基を有するポリオルガノシロキサン、光カチオン重合開始剤からなる組成物が開示されている。このなかで脂環式エポキシ基を有するポリオルガノシロキサンとして、脂環式エポキシ基を有する環状シロキサン化合物や、側鎖に複数個の脂環式エポキシ基を有する環状シロキサン化合物が例示されているが、硬化膨張についての検討はなされていない。
【0010】
更に、特開2001−187812号公報では、酸化物粒子、ラジカル重合性不飽和基、エポキシ基で修飾した粒子がカール性に優れることを開示している。しかし、一般にカチオン硬化系が、ラジカル硬化系に比べて、硬化収縮がないことに着目して、ラジカル硬化系の硬化収縮を抑制したものにすぎない。
【0011】
本発明は、上記事情に鑑みてなされたものであり、反りが殆どなく、高硬度の被膜を形成する硬質保護被膜形成用光硬化性コーティング剤及び該硬質保護被膜を形成した物品を提供することを目的とする。
【0012】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するために鋭意検討した結果、比較的低分子で、エポキシ基を多く含有する特定の脂環式エポキシ基変性シリコーンと、無機酸化物微粒子と、それらに溶解可能な光酸発生剤を含有する組成物によって、反りが殆どない高硬度な被膜を形成することを見出した。具体的には、脂環式エポキシ基による硬化膨張と無機酸化物微粒子による硬化収縮により反りが殆どない被膜を形成するとともに、無機酸化物微粒子を含有するので高硬度な被膜を形成する光硬化性コーテイング剤が得られることを知見し、本発明をなすに至った。
【0013】
ここで、(A)成分の硬化膨張のメカニズムについては、エポキシ基が光照射によって発生した酸によって反応し、エポキシ環の開環と、架橋密度の高い架橋によって硬化歪みがかかり、(C)成分中のシラノールや空気中の水分等によってシロキサン結合が加水分解され、シロキサン解裂・再配列が起こることによって歪みが解消され、膨張が起こると推定している。実際に、(A)成分は水分を含まない系では硬化膨張は起こりにくいことが確認され、一般的な空気中の環境下のわずかな水分で、本発明で見出された硬化膨張は起こる。
また、本発明は、(A)成分の架橋構造内に(B)成分が挿入された構造を有するので、透明性が高い均一な被膜となり、硬度も高くなるものと考えられる。
【0014】
従って、本発明は、
(A)下記一般式(2)
【化9】
(式中、Rは水素原子又は一価炭化水素基、R1はエポキシシクロヘキシル基を有する有機基を示す。R 2 はR又はR 1 を示し、aは1〜10(但し、a=1の場合は両末端のR 2 はR 1 であり、a=2の場合はR 2 の少なくとも一つはR 1 である。)、bは0〜8、a+b=2〜10の整数であり、各R、R 1 、R 2 は互いに同一であっても異なっていてもよい。)
で表され、1分子中に少なくとも3個のR1を有し、分子量が500〜2100、R1当量(R11mol当たりの重量)が180〜220で、アルコキシ基を含有しないシリコーン化合物 100重量部
(B)平均粒径1〜500nmの無機酸化物微粒子 30〜400重量部
(C)(A)成分に溶解可能な光酸発生剤 0.1〜5重量部
を含有することを特徴とする硬質保護被膜形成用光硬化性コーティング剤、及び該コーティング剤を塗装・硬化してなる硬質保護被膜を形成した物品を提供する。
【0015】
以下、本発明につき更に詳しく説明する。
本発明の(A)成分は、下記一般式(1)
−R1RSiO2/2− (1)
(式中、Rは水素原子又は一価炭化水素基、R1はエポキシシクロヘキシル基を有する有機基を示す。)
で示される単位を有し、1分子中に少なくとも3個のR1を有し、分子量が500〜2100、R1当量(R11mol当たりの重量)が180〜220で、アルコキシ基を含有しないシリコーン化合物である。
【0016】
上記シリコーン化合物と、後述する(B)成分の無機酸化物微粒子及び(C)成分の光酸発生剤を光照射することにより硬化させることで、反りのない高硬度の被膜が得られる。
【0017】
(A)成分のシリコーン化合物は、硬化膨張を効果的に起こすという点から、脂環式エポキシ基を豊富に含有することが好ましく、1分子中に少なくとも3個、特に4〜8個のR1を有するがことが好ましい。
【0018】
(A)成分のシリコーン化合物は、分子量が500〜2100、特に700〜1900が好ましい。分子量が500未満だと、硬化歪みが起こりにくく、2100を超え、R1当量が180〜220の化合物は、合成が困難であることがあり、工業的に好ましくない。また、R1当量(R11mol当たりの重量)は、180〜220、特に184〜216が好ましい。R1当量が180未満だと、合成するのは工業的には困難であることがあり、220を超えると、R1の含有量が少なくなり、硬化膨張が起りにくくなる。
【0019】
更に、(A)成分のシリコーン化合物は、脱アルコール反応によって、硬化収縮が起こることを防ぐ点から、アルコキシ基を含有しないシリコーン化合物である。
【0020】
(A)成分のシリコーン化合物は、硬化膨張が起こりやすい直鎖構造が好ましい。直鎖構造体としては、下記一般式(2)
【化4】
(式中、R、R1は上記と同じ、R2はR又はR1を示し、aは1〜10(但し、a=1の場合は両末端のR2はR1であり、a=2の場合はR2の少なくとも一つはR1である。)、bは0〜8、a+b=2〜10の整数であり、特に、aは4〜8、bは0〜4、a+b=4〜8が好ましい。各R、R1、R2は互いに同一であっても異なっていてもよい。)
で表される直鎖状シリコーン化合物が好ましく、特に下記一般式(2’)
【化5】
(式中、R、R1、R2、a、bは上記と同じ。)
で表されるシリコーン化合物が好ましく、とりわけ下記一般式(3)
(CH3)3SiO(R1CH3SiO)mSi(CH3)3 (3)
(式中、R1は上記と同じ、mは3〜10の整数、特に4〜8が好ましい。)
で表される直鎖状シリコーン化合物が好ましい。
【0021】
ここで、R1は、エポキシシクロヘキシル基を有する有機基であり、具体的には3,4−エポキシシクロヘキシルエチル基等の3,4−エポキシシクロヘキシルアルキル基が挙げられる。Rは水素原子又は置換もしくは非置換の一価炭化水素基であり、一価炭化水素基としては炭素数1〜20、特に1〜8のものが好ましい。具体的には、水素原子、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基等のアルキル基、フェニル基、トリル基等のアリール基、ビニル基、アリル基等のアルケニル基等の一価炭化水素基や、これらの基の水素原子の一部又は全部がグリシジル基(但し、エポキシシクロヘキシル基は除く)、メタクリル基、アクリル基、メルカプト基、アミノ基等で置換された基が挙げられる。好ましくはメチル基、エチル基、水素原子であり、特に好ましくはメチル基である。
【0022】
(A)成分のシリコーン化合物は、オルガノハイドロジェンポリシロキサンに4−ビニルシクロヘキセンオキシドを白金化合物等の触媒を用い、付加反応(ヒドロシリル化)させることによって得ることができる。
【0024】
具体的な化合物としては、下記に示すものが挙げられる。
(CH3)3SiO(R1CH3SiO)5Si(CH3)3、
(CH3)3SiO(R1CH3SiO)6Si(CH3)3、
(CH3)3SiO(R1CH3SiO)7Si(CH3)3、
(CH3)3SiO(R1CH3SiO)8Si(CH3)3、
(CH3)3SiO(R1CH3SiO)9Si(CH3)3、
(CH3)3SiO(R1CH3SiO)10Si(CH3)3、
R1(CH3)2SiO(R1CH3SiO)Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)2Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)3Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)4Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)5Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)6Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)7Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)8Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)9Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)2((CH3)2SiO)2Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)3((CH3)2SiO)Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)3((CH3)2SiO)2Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)4((CH3)2SiO)Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)4((CH3)2SiO)2Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)5((CH3)2SiO)Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)5((CH3)2SiO)2Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)5((CH3)2SiO)3Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)6((CH3)2SiO)Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)6((CH3)2SiO)2Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)6((CH3)2SiO)3Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)7((CH3)2SiO)Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)7((CH3)2SiO)2Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)7((CH3)2SiO)3Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)7((CH3)2SiO)4Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)8((CH3)2SiO)Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)8((CH3)2SiO)2Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)8((CH3)2SiO)3Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)4(R6CH3SiO)Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)5(R6CH3SiO)Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)6(R6CH3SiO)Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)7(R6CH3SiO)Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)8(R6CH3SiO)Si(CH3)2R1、
R1(CH3)2SiO(R1CH3SiO)9(R6CH3SiO)Si(CH3)2R1
(R1は上記と同じ、R6はメタクリロキシプロピル基を示す。)
【0025】
(B)成分は、平均粒径1〜500nmの無機酸化物微粒子であり、被膜の硬度を向上させる目的以外に高屈折率化、低屈折率化、導電化、反射防止性を付与する等被膜に機能を付与する目的で添加される。
【0026】
本発明の無機酸化物微粒子としては、ケイ素、アルミニウム、ジルコニウム、チタニウム、亜鉛、ゲルマニウム、インジウム、スズ、アンチモン及びセリウムよりなる群から選ばれる少なくとも一つの元素を含有する酸化物粒子が好ましい。これらの酸化物としては、例えば、シリカ、アルミナ、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物(ITO)、酸化アンチモン、酸化セリウム及びこれらの複合酸化物を挙げることができる。中でも、高硬度の観点から、シリカ、アルミナ(酸化アルミニウム)、酸化ジルコニウム、酸化チタン、酸化アンチモンが好ましい。これらは1種単独で又は2種以上を組合わせて用いることができる。
【0027】
無機酸化物微粒子は、粉体状又は溶剤分散ゾルであることが好ましい。溶剤分散ゾルである場合、他の成分との相溶性、分散性の観点から、分散媒は、有機溶剤が好ましい。このような有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール、オクタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、γ−ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類、エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジメチルフォルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド類を挙げることができる。中でも、メタノール、イソプロパノール、ブタノール、メチルエチルケトン、メチルイソブチルケトンが好ましく、その中でも特にメチルエチルケトンが好ましい。
【0028】
無機酸化物微粒子の平均粒径は1〜500nm、好ましくは5〜200nm、特に好ましくは10〜100nmである。平均粒径が500nmを超えると、硬化物としたときの透明性が低下したり、被膜としたときの表面状態が悪化する。
【0029】
なお、無機酸化物微粒子としては市販品を用いることができる。ケイ素酸化物微粒子(例えば、シリカ粒子)として市販されている商品としては、例えば、コロイダルシリカとして、日産化学工業製のメタノールシリカゾル、IPA−ST、MEK−ST、NBA−ST、XBA−ST、DMAC−ST、ST−UP、ST−OUP、ST−20、ST−40、ST−C、ST−N、ST−O、ST−50、ST−OL等を挙げることができる。また粉体シリカとしては、日本アエロジル製のアエロジル130、アエロジル300、アエロジル380、アエロジルTT600、アエロジルOX50、旭硝子製のシルデックスH31、H32、H51、H52、H121、H122、日本シリカ工業製のE220A、E220、富士シリシア製のSYLYSIA470、日本板硝子製のSGGフレ−ク等を挙げることができる。
【0030】
また、アルミナの水分散品としては、日産化学工業製のアルミナゾル−100、−200、−520、イソプロパノール分散品としては、住友大阪セメント製AS−150I、トルエン分散品としては、住友大阪セメント製のAS−150T、ジルコニアのトルエン分散品としては、住友大阪セメント製のHXU−110JC、アンチモン酸亜鉛粉末の水分散品としては、日産化学工業製のセルナックス、アルミナ、酸化チタン、酸化スズ、酸化インジウム、酸化亜鉛等の粉末及び溶剤分散品としては、シーアイ化成製のナノテック、アンチモンドープ酸化スズの水分散ゾルとしては、石原産業製のSN−100D、ITO粉末としては、三菱マテリアル製の製品、酸化セリウム水分散液としては、多木化学製のニードラール等を挙げることができる。
【0031】
無機酸化物微粒子の形状は球状、粒子の内部に空隙を有する中空状、多孔質状、棒状、板状、繊維状、又は不定形状であり、好ましくは、球状もしくは中空状である。特に、中空状のものは、高硬度で低屈折率な被膜が得られることから、反射防止膜等への応用も可能である。また、これらの無機酸化物微粒子は、エポキシ基、(メタ)アクリル基で修飾されたものでもよい。
【0032】
(B)成分の無機酸化物微粒子の添加量は、(A)成分100重量部に対して30〜400重量部、特に50〜150重量部である。30重量部未満だと、硬度が不十分で硬化膨張してしまい、400重量部を超えると、クラックが発生する等の問題が出てくる。
【0033】
(C)成分は、(A)成分に溶解可能な光酸発生剤であり、光によってエポキシ環を開かせる能力のある開始剤であるならば、特に使用は限定されない。光酸発生剤としては、オニウム塩系光開始剤が好ましく、下記一般式で表されるジアリールヨードニウム塩、トリアリールスルホニウム塩、モノアリールジアルキルスルホニウム塩、トリアリールセレノニウム塩、テトラアリールホスホニウム塩、アリールジアゾニウム塩等が挙げられる。
R7 2I+X-
R7 3S+X-
R7 2R8S+X-
R7R8 2S+X-
R7 3Se+X-
R7 4P+X-
R7N2 +X-
(式中、R7は炭素数6〜30のアリール基、R8は炭素数1〜30のアルキル基、X-はSbF6 -、AsF6 -、PF6 -、BF4 -、HSO4 -、ClO4 -、Cl-又はCF3SO3 -等の陰イオンを示す。)
【0034】
特に、(A)成分との相溶性の観点から、下記一般式(6)で示されるものが好ましい。
R4 2I+X- (6)
(式中、R4は−C6H4−R5で示され、R5は炭素数6以上、好ましくは6〜24、特に6〜18のアルキル基、XはSbF6 -、AsF6 -、PF6 -、BF4 -、HSO4 -、ClO4 -、Cl-又はCF3SO3 -を示す。)
【0035】
ここで、R5の炭素数6以上のアルキル基としては、C6H13、C7H15、C8H17、C9H19、C10H21、C11H23、C12H25、C13H27、C14H29、C15H31、C16H33、C17H35、C18H37等が挙げられ、特にC12H25が好ましい。
【0036】
(C)成分の光酸発生剤の添加量は、(A)成分100重量部に対して0.1〜5重量部である。0.1重量部未満だと、硬化性が不十分で硬化膨張が起こらなくなり、5重量部を超えても、効果はなくコスト的に問題が出てくる。
【0037】
本発明の上記(A)、(B)及び(C)成分を含有する硬質保護被膜形成用光硬化性コーティング剤に、本発明の目的を損なわない範囲で有機溶剤、有機又は無機顔料、体質顔料、消泡剤、レベリング剤、滑り剤等の塗料用添加剤を配合してもよい。
【0038】
本発明の硬質保護被膜形成用光硬化性コーティング剤は、ポリカーボネート、ポリエチレンテレフタレート、アクリル樹脂、TAC等のプラスチックフィルム等の表面に、通常の塗装法、例えばロールコート、グラビアコート、グラビアオフセットコート、カーテンフローコート、リバースコート、スクリーン印刷、スプレー及び浸漬法で塗装することができる。硬化塗膜の膜厚は用途により異なるが、0.5〜500μm程度、特に5〜50μm程度の範囲が好ましい。
【0039】
硬化させるための光源としては、通常、200〜450nmの範囲の波長の光を含む光源、例えば高圧水銀灯、超高圧水銀灯、キセノン灯、カーボンアーク灯等を使用することができる。照射量は特に制限されないが10〜5000mJ/cm2、特に20〜1000mJ/cm2であることが好ましい。硬化時間は通常0.5秒〜2分、好ましくは1秒〜1分である。
【0040】
【実施例】
以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例で部は重量部を示す。
【0041】
[実施例1]
一般式(CH3)3SiO(ReCH3SiO)8Si(CH3)3
(式中、Reは、3,4−エポキシシクロヘキシルエチル基を示す。)
で表されるシリコーン化合物30部に、MEK分散コロイダルシリカゾルMEK−ST(日産化学工業製、固形分30重量%)100部、(C12H25C6H4)2I+・SbF6 -1.2部を混合して塗工液を作製した。この塗工液を0.1mm厚のポリカーボネート(100×100×0.1mm)、3mm厚のポリカーボネート(100×100×3.0mm)にバーコーターNo.20で塗工した。直ちに紫外線を200mJ/cm2照射して硬化させた。
【0042】
硬化後、0.1mm厚のポリカーボネートの中心に対しての4つの角の浮き沈みを測定して、その平均値によって膜の伸縮を判定した。塗布面を上にして置いた場合に収縮して凹となる場合を+として、塗布面を下にして置いた場合に膨張して凹となる場合を−とした。その結果0mmであった。
【0043】
また、3mm厚のポリカーボネートのテーバー摩耗試験(摩耗輪:CS−10F、500g荷重、500回転)を行い、試験前後のHaze(曇り価)の変化によって、硬度を測定した。その結果ΔHazeは13(%)であった。Haze(曇り価)の測定方法を下記に、結果を表1に示す。
Haze(曇り価)の測定法
Haze Meter NDH2000(日本電色工業社製)にて測定した。
【0045】
[実施例2]
実施例1のMEK分散コロイダルシリカゾルMEK−ST(日産化学工業製、固形分30重量%)100部を、MEK分散中空コロイダルシリカゾルOSCAL(触媒化成製、固形分20重量%)150部に変えた以外は実施例1と同様に行った。結果を表1に示す。
【0046】
[実施例3]
実施例1のMEK分散コロイダルシリカゾルMEK−ST(日産化学工業製、固形分30重量%)100部を、メタノール分散複合酸化チタンゾルオプトレイク(触媒化成製)のMEK溶剤置換品(固形分20重量%)150部に変えた以外は実施例1と同様に行った。結果を表1に示す。
【0047】
【表1】
【0048】
[比較例1]
実施例1のMEK分散コロイダルシリカゾルMEK−ST(日産化学社製、固形分30重量%)100部を25部に変えた以外は、実施例1と同様に行った。収縮は−20mm、ΔHazeは>50であった。結果を表2に示す。
【0049】
[比較例2]
実施例1のMEK分散コロイダルシリカゾルMEK−ST(日産化学社製、固形分30重量%)100部を450部に変えた以外は、実施例1と同様に行った。硬化後クラックが発生した。結果を表2に示す。
【0050】
[比較例3]
実施例1の(CH3)3SiO(ReCH3SiO)8Si(CH3)3を(3’,4’−エポキシシクロヘキシル)メチル−3,4−エポキシシクロヘキシルカルボキシレートに変えた以外は実施例1と同様に行った。収縮は10mm、ΔHazeは>50であった。結果を表2に示す。
【0051】
[比較例4]
実施例1の(CH3)3SiO(ReCH3SiO)8Si(CH3)3をβ−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシランに変えた以外は実施例1と同様に行った。円筒状に収縮し、ΔHazeは>50であった。結果を表2に示す。
【0052】
[比較例5]
実施例1の(CH3)3SiO(ReCH3SiO)8Si(CH3)3をβ−(3’,4’−エポキシシクロヘキシル)エチルトリメトキシシランの加水分解縮合物(重量平均分子量900)に変えた以外は実施例1と同様に行った。収縮は20mm、ΔHazeは>50であった。結果を表2に示す。
【0053】
[比較例6]
実施例1の(CH3)3SiO(ReCH3SiO)8Si(CH3)3をRe(CH3)2SiOSi(CH3)2Reに変えた以外は実施例1と同様に行った。収縮は12mm、ΔHazeは>50であった。結果を表2に示す。
【0054】
[比較例7]
実施例1の(CH3)3SiO(ReCH3SiO)8Si(CH3)3を(CH3)3SiO(ReCH3SiO)4Si(CH3)3に変えた以外は実施例1と同様に行った。収縮は10mm、ΔHazeは30であった。結果を表2に示す。
【0055】
[比較例8]
実施例1の(CH3)3SiO(ReCH3SiO)8Si(CH3)3を(Re(CH3)2SiO)3CH3Siに変えた以外は実施例1と同様に行った。収縮は12mm、ΔHazeは42であった。結果を表2に示す。
【0056】
[比較例9]
実施例1の(CH3)3SiO(ReCH3SiO)8Si(CH3)3を(Re(CH3)2SiO)4Siに変えた以外は実施例1と同様に行った。収縮は10mm、ΔHazeは36であった。結果を表2に示す。
【0057】
[比較例10]
実施例1の(CH3)3SiO(ReCH3SiO)8Si(CH3)3をRe(CH3)2SiO((CH3)2SiO)20Si(CH3)2Reに変えた以外は実施例1と同様に行った。収縮は13mm、テーバー摩耗試験では膜が消失してしまった。結果を表2に示す。
【0058】
[比較例11]
実施例1の(CH3)3SiO(ReCH3SiO)8Si(CH3)3をRe(CH3)2SiO((CH3)2SiO)50Si(CH3)2Reに変えた以外は実施例1と同様に行った。収縮は11mm、テーバー摩耗試験では膜が消失してしまった。結果を表2に示す。
【0059】
【表2】
【0060】
以上のように−R1RSiO2/2−単位を有し、1分子中に少なくとも3個のR1を有し、分子量が500〜2100、R1当量が180〜220で、アルコキシ基を含有しないシリコーン化合物と無機酸化物微粒子及び光酸発生剤を含有するコーティング剤は、反りがなく、高硬度な被膜が得られた。
無機酸化物微粒子が少ない比較例1では膨張が起こり、また硬度も不十分であった。無機酸化物微粒子が多い比較例2ではクラックが発生した。
非シリコーン系の比較例3や1分子中のR1が2個で、分子量が500未満の比較例6やR1当量が220を超える比較例7や−R1RSiO2/2−単位を有さない比較例5、8、9では硬化収縮が見られ、硬度も不十分であった。また、アルコキシ基を有する比較例4では大きな収縮が見られた。更に、剥離紙用途等に利用されている分子量が大きく、R1当量が大きい比較例10、11ではテーバー摩耗試験において、被膜が消失してしまうくらい、柔らかい被膜であった。
【0061】
【発明の効果】
本発明の硬質保護被膜形成用光硬化性コーティング剤によれば、反りがなく、高硬度の被膜が得られる。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a photocurable coating agent for forming a hard protective film, in which a high-hardness film can be obtained without warping. In particular, the photocurable coating agent for forming a hard protective film on a plastic substrate or the like and the hard protective film It relates to the article which formed.
[0002]
[Prior art and problems to be solved by the invention]
The photo-curing silicone coating agent has the advantage that it can be cured by light irradiation without heating after coating even for substrates that require a short curing time and are damaged by thermal energy. Various photo-curing silicone coating agents have been developed in various fields.
[0003]
There are mainly the following three types of curing forms of photo-curing type, particularly ultraviolet curing type silicone.
(1) A type in which acrylic functional silicone is cured with ultraviolet light in the presence of a radical-cleavage photocatalyst.
(2) A type in which an Si—Vi (vinyl) group and an S—H group are cured with ultraviolet light in the presence of a radical cleavage photocatalyst.
(3) A type in which an epoxy functional silicone is cured with ultraviolet light in the presence of a cation-generating catalyst.
[0004]
Here, the type (1) cures quickly, but because of the inhibition of curing by oxygen, it is necessary to carry out the reaction in an inert gas atmosphere, necessitating a device, and the running cost of the inert gas. There is a disadvantage that it takes.
In addition, the type (2) is less curable by oxygen and excellent in curability, but contains a mercapto group, so it has a strong unpleasant odor and is unfavorable for the operator, and the composition has poor stability. It has the disadvantage of a short shelf life.
Furthermore, the type (3) is very excellent because it is cured by ultraviolet rays, has no inhibition of curing by oxygen, has no unpleasant odor, and has good adhesion to the base material. It has a drawback that curing is inhibited by humidity.
[0005]
In order to overcome the above-mentioned drawbacks of the type (3), a technique for simultaneously performing cationic polymerization and radical polymerization by adding a radical polymerizable substance and a photo radical initiator has been studied.
[0006]
On the other hand, as a method for introducing a silicone compound into a cationic polymerization system, JP-A 56-38350 discloses an ultraviolet curable composition comprising an epoxy group-containing siloxane compound and a bisaryliodonium salt. In Japanese Patent Application Laid-Open No. 11-104166, siloxane compounds having an epoxy group or siloxane compounds having an acrylic group, and further, siloxane compounds having both functional groups are cured with ultraviolet light. In Japanese Patent Publication No. 6-89109 and Japanese Patent Laid-Open No. 7-156267, a release film comprising an agent is a composition comprising an alicyclic epoxy functional siloxane, an organic alicyclic polyepoxide, and a photocationic polymerization initiator. In Kaihei 8-269293, an alicyclic epoxy is used. Composition comprising a containing silicone graft polymer and an onium salt based photocurable catalyst. The siloxane compounds having an epoxy group mentioned here are those in which a part of the functional group of the linear dimethylpolysiloxane is substituted with an epoxy group, which emphasizes releasability and all form a soft film. Coating agent.
[0007]
JP 2001-158851 A discloses a composition comprising an epoxy group-containing siloxane compound having a molecular weight of 500 to 500,000 and a photocationic polymerization initiator. The siloxane compound used here is a hydrolysis-condensation product of alkoxysilane, and it is difficult to control it to a low molecular weight, and the molecular weights of the siloxane compounds synthesized in the examples are all 2500 or more and have high hardness. It is difficult to obtain a coating.
[0008]
Japanese Patent Application Laid-Open No. 9-143248 discloses a composition comprising an epoxy compound, a polyorganosiloxane having an alicyclic epoxy group, and a photocationic polymerization initiator. Among them, cyclic siloxane compounds having alicyclic epoxy groups are exemplified as epoxy compounds, but organosiloxanes are those in which the ends of linear dimethylpolysiloxane are substituted with epoxy groups, as described above. The same effect is expected.
[0009]
Japanese Patent Application Laid-Open No. 2001-40066 discloses a composition comprising an alicyclic epoxy group-containing silicone graft polymer, a polyorganosiloxane having an alicyclic epoxy group, and a photocationic polymerization initiator. Among them, as the polyorganosiloxane having an alicyclic epoxy group, a cyclic siloxane compound having an alicyclic epoxy group and a cyclic siloxane compound having a plurality of alicyclic epoxy groups in the side chain are exemplified. There has been no study on cure expansion.
[0010]
Furthermore, JP-A-2001-187812 discloses that oxide particles, radically polymerizable unsaturated groups, and particles modified with epoxy groups are excellent in curling properties. However, in general, the cationic curing system is merely a suppression of the curing shrinkage of the radical curing system, focusing on the fact that there is no curing shrinkage compared to the radical curing system.
[0011]
The present invention has been made in view of the above circumstances, and provides a photocurable coating agent for forming a hard protective film that forms a high-hardness film with little warping, and an article on which the hard protective film is formed. With the goal.
[0012]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the present inventor has found that it is a relatively low molecular weight, specific alicyclic epoxy group-modified silicone containing many epoxy groups, inorganic oxide fine particles, and soluble in them. It was found that a highly hard film with almost no warp was formed by a composition containing a suitable photoacid generator. Specifically, it forms a film with almost no warping due to curing expansion due to alicyclic epoxy groups and curing shrinkage due to inorganic oxide fine particles, and also includes photocurability that forms a high hardness film because it contains inorganic oxide fine particles The inventors have found that a coating agent can be obtained, and have made the present invention.
[0013]
Here, regarding the mechanism of cure expansion of the component (A), the epoxy group reacts with an acid generated by light irradiation, and curing strain is applied due to the ring opening of the epoxy ring and the crosslinking having a high crosslinking density. It is presumed that the siloxane bond is hydrolyzed by silanol in the inside, moisture in the air, etc., and the siloxane is cleaved / rearranged so that distortion is eliminated and expansion occurs. Actually, it is confirmed that the component (A) is hard to undergo cure expansion in a system that does not contain moisture, and the cure expansion found in the present invention occurs with a slight amount of moisture in a general air environment.
In addition, since the present invention has a structure in which the component (B) is inserted into the crosslinked structure of the component (A), it is considered that a uniform coating with high transparency is obtained and the hardness is increased.
[0014]
Therefore, the present invention
(A) The following general formula ( 2 )
[Chemical 9]
(In the formula, R represents a hydrogen atom or a monovalent hydrocarbon group, R 1 represents an organic group having an epoxycyclohexyl group. R 2 represents R or R 1 , and a represents 1 to 10 (provided that a = 1) In this case, R 2 at both ends is R 1 , and when a = 2 , at least one of R 2 is R 1 ), b is an integer of 0-8, a + b = 2-10, R, R 1 and R 2 may be the same or different.
In expressed has at least three of R 1 in a molecule, the molecular weight of 500 to 2,100, with R 1 equivalent (weight per R 1 1 mol) is 180 to 220, silicone compounds 100 weight containing no alkoxy group Part (B) 30 to 400 parts by weight of inorganic oxide fine particles having an average particle diameter of 1 to 500 nm (C) 0.1 to 5 parts by weight of a photoacid generator soluble in the component (A) Provided are a photocurable coating agent for forming a hard protective film and an article having a hard protective film formed by painting and curing the coating agent.
[0015]
Hereinafter, the present invention will be described in more detail.
The component (A) of the present invention has the following general formula (1)
-R 1 RSiO 2/2- (1)
(In the formula, R represents a hydrogen atom or a monovalent hydrocarbon group, and R 1 represents an organic group having an epoxycyclohexyl group.)
Having at least 3 R 1 in one molecule, a molecular weight of 500-2100, R 1 equivalent (weight per mol of R 1 ) of 180-220, and no alkoxy group It is a silicone compound.
[0016]
The above-mentioned silicone compound, inorganic oxide fine particles of the component (B) and a photoacid generator of the component (C) described later are cured by light irradiation to obtain a high hardness coating without warping.
[0017]
The silicone compound as the component (A) preferably contains abundant alicyclic epoxy groups from the viewpoint of effectively causing curing expansion, and at least 3, particularly 4 to 8 R 1 in one molecule. Preferably it has.
[0018]
The silicone compound as component (A) has a molecular weight of 500-2100, particularly 700-1900. When the molecular weight is less than 500, curing distortion hardly occurs, and a compound having a molecular weight exceeding 2100 and R 1 equivalent of 180 to 220 may be difficult to synthesize and is not industrially preferable. The R 1 equivalent (weight per 1 mol of R 1 ) is preferably 180 to 220, particularly 184 to 216. When the R 1 equivalent is less than 180, it may be difficult to synthesize industrially, and when it exceeds 220, the content of R 1 is reduced, and curing expansion hardly occurs.
[0019]
Furthermore, the silicone compound as component (A) is a silicone compound that does not contain an alkoxy group from the viewpoint of preventing curing shrinkage from occurring due to dealcoholization reaction.
[0020]
The silicone compound as the component (A) preferably has a linear structure in which curing expansion is likely to occur. As the linear structure, the following general formula (2)
[Formula 4]
(In the formula, R and R 1 are the same as above, R 2 represents R or R 1 , a is 1 to 10 (provided that when a = 1, R 2 at both ends is R 1 , a = In the case of 2 , at least one of R 2 is R 1 ), b is an integer of 0-8, a + b = 2-10, in particular, a is 4-8, b is 0-4, a + b = 4 to 8. Each R, R 1 and R 2 may be the same or different from each other.
Is preferably a linear silicone compound represented by the following general formula (2 ′)
[Chemical formula 5]
(In the formula, R, R 1 , R 2 , a and b are the same as above.)
Is preferable, and in particular, the following general formula (3)
(CH 3 ) 3 SiO (R 1 CH 3 SiO) m Si (CH 3 ) 3 (3)
(In the formula, R 1 is the same as above, and m is an integer of 3 to 10, particularly 4 to 8.)
The linear silicone compound represented by these is preferable .
[0021]
Here, R 1 is an organic group having an epoxycyclohexyl group, and specifically includes a 3,4-epoxycyclohexylalkyl group such as a 3,4-epoxycyclohexylethyl group. R is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group, and the monovalent hydrocarbon group preferably has 1 to 20 carbon atoms, particularly 1 to 8 carbon atoms. Specifically, alkyl groups such as hydrogen atom, methyl group, ethyl group, propyl group, butyl group, hexyl group and octyl group, aryl groups such as phenyl group and tolyl group, alkenyl groups such as vinyl group and allyl group, etc. Monovalent hydrocarbon groups and groups in which some or all of the hydrogen atoms of these groups are substituted with glycidyl groups (excluding epoxycyclohexyl groups), methacryl groups, acrylic groups, mercapto groups, amino groups, etc. Can be mentioned. A methyl group, an ethyl group and a hydrogen atom are preferred, and a methyl group is particularly preferred.
[0022]
The (A) component silicone compound can be obtained by subjecting organohydrogenpolysiloxane to addition reaction (hydrosilylation) of 4-vinylcyclohexene oxide with a catalyst such as a platinum compound.
[0024]
Specific examples of the compound include those shown below.
(CH 3 ) 3 SiO (R 1 CH 3 SiO) 5 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO (R 1 CH 3 SiO) 6 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO (R 1 CH 3 SiO) 7 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO (R 1 CH 3 SiO) 8 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO (R 1 CH 3 SiO) 9 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO (R 1 CH 3 SiO) 10 Si (CH 3 ) 3 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 2 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 3 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 4 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 5 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 6 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 7 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 8 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 9 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 2 ((CH 3 ) 2 SiO) 2 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 3 ((CH 3 ) 2 SiO) Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 3 ((CH 3 ) 2 SiO) 2 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 4 ((CH 3 ) 2 SiO) Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 4 ((CH 3 ) 2 SiO) 2 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 5 ((CH 3 ) 2 SiO) Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 5 ((CH 3 ) 2 SiO) 2 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 5 ((CH 3 ) 2 SiO) 3 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 6 ((CH 3 ) 2 SiO) Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 6 ((CH 3 ) 2 SiO) 2 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 6 ((CH 3 ) 2 SiO) 3 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 7 ((CH 3 ) 2 SiO) Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 7 ((CH 3 ) 2 SiO) 2 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 7 ((CH 3 ) 2 SiO) 3 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 7 ((CH 3 ) 2 SiO) 4 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 8 ((CH 3 ) 2 SiO) Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 8 ((CH 3 ) 2 SiO) 2 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 8 ((CH 3 ) 2 SiO) 3 Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 4 (R 6 CH 3 SiO) Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 5 (R 6 CH 3 SiO) Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 6 (R 6 CH 3 SiO) Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 7 (R 6 CH 3 SiO) Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 8 (R 6 CH 3 SiO) Si (CH 3 ) 2 R 1 ,
R 1 (CH 3 ) 2 SiO (R 1 CH 3 SiO) 9 (R 6 CH 3 SiO) Si (CH 3 ) 2 R 1
( R 1 is the same as above, and R 6 is a methacryloxypropyl group.)
[0025]
Component (B) is an inorganic oxide fine particle having an average particle diameter of 1 to 500 nm, and other than the purpose of improving the hardness of the coating, it is a coating that provides high refractive index, low refractive index, electrical conductivity, antireflection properties, etc. It is added for the purpose of imparting a function.
[0026]
The inorganic oxide fine particles of the present invention are preferably oxide particles containing at least one element selected from the group consisting of silicon, aluminum, zirconium, titanium, zinc, germanium, indium, tin, antimony and cerium. Examples of these oxides include silica, alumina, zirconium oxide, titanium oxide, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, cerium oxide, and composite oxides thereof. Can be mentioned. Among these, silica, alumina (aluminum oxide), zirconium oxide, titanium oxide, and antimony oxide are preferable from the viewpoint of high hardness. These can be used singly or in combination of two or more.
[0027]
The inorganic oxide fine particles are preferably powdery or solvent-dispersed sol. In the case of a solvent dispersion sol, the dispersion medium is preferably an organic solvent from the viewpoint of compatibility with other components and dispersibility. Examples of such organic solvents include alcohols such as methanol, ethanol, isopropanol, butanol, and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ethyl acetate, butyl acetate, ethyl lactate, and γ-butyrolactone. , Esters such as propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether, aromatic hydrocarbons such as benzene, toluene and xylene, dimethylformamide, dimethylacetamide And amides such as N-methylpyrrolidone. Of these, methanol, isopropanol, butanol, methyl ethyl ketone, and methyl isobutyl ketone are preferable, and methyl ethyl ketone is particularly preferable.
[0028]
The average particle diameter of the inorganic oxide fine particles is 1 to 500 nm, preferably 5 to 200 nm, particularly preferably 10 to 100 nm. If the average particle size exceeds 500 nm, the transparency when cured is reduced, or the surface state when a coating is deteriorated.
[0029]
A commercially available product can be used as the inorganic oxide fine particles. Commercially available products as silicon oxide fine particles (for example, silica particles) include, for example, colloidal silica, methanol silica sol, IPA-ST, MEK-ST, NBA-ST, XBA-ST, DMAC manufactured by Nissan Chemical Industries, Ltd. -ST, ST-UP, ST-OUP, ST-20, ST-40, ST-C, ST-N, ST-O, ST-50, ST-OL, etc. can be mentioned. As the powder silica, Aerosil 130, Aerosil 300, Aerosil 380, Aerosil TT600, Aerosil OX50, Silex H31, H32, H51, H52, H121, and H122 manufactured by Asahi Glass, E220A manufactured by Nippon Silica Industry, Examples include E220, SYLYSIA470 manufactured by Fuji Silysia, and SGG flake manufactured by Nippon Sheet Glass.
[0030]
Moreover, as an aqueous dispersion of alumina, alumina sol-100, -200, -520 made by Nissan Chemical Industries, as an isopropanol dispersion, AS-150I made by Sumitomo Osaka Cement, and as a toluene dispersion, made by Sumitomo Osaka Cement AS-150T, zirconia as a toluene dispersion, HXU-110JC manufactured by Sumitomo Osaka Cement, and zinc antimonate powder as an aqueous dispersion, Cellulax, alumina, titanium oxide, tin oxide, indium oxide manufactured by Nissan Chemical Industries, Ltd. As a powder and solvent dispersion such as zinc oxide, nanotech made by C.I. Kasei, as an aqueous dispersion sol of antimony-doped tin oxide, SN-100D made by Ishihara Sangyo, as an ITO powder, product made by Mitsubishi Materials, oxidation Examples of cerium aqueous dispersions include Nidral manufactured by Taki Chemical. It can be.
[0031]
The inorganic oxide fine particles have a spherical shape, a hollow shape having voids inside the particles, a porous shape, a rod shape, a plate shape, a fiber shape, or an indefinite shape, and preferably a spherical shape or a hollow shape. In particular, the hollow type can be applied to an antireflection film or the like because a film having a high hardness and a low refractive index can be obtained. These inorganic oxide fine particles may be modified with an epoxy group or a (meth) acryl group.
[0032]
The amount of the inorganic oxide fine particles as the component (B) is 30 to 400 parts by weight, particularly 50 to 150 parts by weight with respect to 100 parts by weight of the component (A). When the amount is less than 30 parts by weight, the hardness is insufficient and the resin expands and expands. When the amount exceeds 400 parts by weight, problems such as cracks appear.
[0033]
The component (C) is a photoacid generator that is soluble in the component (A) and is not particularly limited as long as it is an initiator capable of opening an epoxy ring by light. As the photoacid generator, an onium salt photoinitiator is preferable, and a diaryliodonium salt, triarylsulfonium salt, monoaryldialkylsulfonium salt, triarylselenonium salt, tetraarylphosphonium salt, aryl represented by the following general formula: And diazonium salts.
R 7 2 I + X -
R 7 3 S + X -
R 7 2 R 8 S + X −
R 7 R 8 2 S + X −
R 7 3 Se + X -
R 7 4 P + X −
R 7 N 2 + X −
(Wherein R 7 is an aryl group having 6 to 30 carbon atoms, R 8 is an alkyl group having 1 to 30 carbon atoms, X − is SbF 6 − , AsF 6 − , PF 6 − , BF 4 − , HSO 4 − , ClO 4 − , Cl − or CF 3 SO 3 − and the like.
[0034]
In particular, from the viewpoint of compatibility with the component (A), those represented by the following general formula (6) are preferable.
R 4 2 I + X - ( 6)
(In the formula, R 4 is represented by —C 6 H 4 —R 5 , R 5 is an alkyl group having 6 or more carbon atoms, preferably 6 to 24, particularly 6 to 18, and X is SbF 6 − , AsF 6 −. , PF 6 -, BF 4 - , HSO 4 -, ClO 4 -, Cl - or CF 3 SO 3 - shows a).
[0035]
Here, the alkyl group having 6 or more carbon atoms of R 5 includes C 6 H 13 , C 7 H 15 , C 8 H 17 , C 9 H 19 , C 10 H 21 , C 11 H 23 , C 12 H 25. C 13 H 27 , C 14 H 29 , C 15 H 31 , C 16 H 33 , C 17 H 35 , C 18 H 37 and the like, and C 12 H 25 is particularly preferable.
[0036]
(C) The addition amount of the photo-acid generator of a component is 0.1-5 weight part with respect to 100 weight part of (A) component. If it is less than 0.1 parts by weight, the curability is insufficient and curing expansion does not occur, and if it exceeds 5 parts by weight, there is no effect and a problem arises in cost.
[0037]
To the photo-curable coating agent for forming a hard protective film containing the components (A), (B) and (C) of the present invention, an organic solvent, an organic or inorganic pigment, and an extender pigment as long as the object of the present invention is not impaired. Further, paint additives such as an antifoaming agent, a leveling agent, and a slipping agent may be blended.
[0038]
The photocurable coating agent for forming a hard protective film of the present invention is applied to the surface of a plastic film such as polycarbonate, polyethylene terephthalate, acrylic resin, TAC, or the like by a usual coating method such as roll coating, gravure coating, gravure offset coating, curtain It can be applied by flow coating, reverse coating, screen printing, spraying and dipping methods. Although the film thickness of a cured coating film changes with uses, the range of about 0.5-500 micrometers, especially about 5-50 micrometers is preferable.
[0039]
As the light source for curing, a light source containing light having a wavelength in the range of 200 to 450 nm, for example, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a carbon arc lamp, or the like can be used. Irradiation dose is not particularly limited 10~5000mJ / cm 2, it is preferred that particularly 20~1000mJ / cm 2. The curing time is usually 0.5 seconds to 2 minutes, preferably 1 second to 1 minute.
[0040]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following examples, parts indicate parts by weight.
[0041]
[Example 1]
General formula (CH 3 ) 3 SiO (R e CH 3 SiO) 8 Si (CH 3 ) 3
(Wherein, R e represents a 3,4-epoxycyclohexyl ethyl group.)
30 parts of a silicone compound represented in, MEK-dispersed colloidal silica sol MEK-ST (manufactured by Nissan Chemical Industries, solids content 30 wt%) 100 parts, (C 12 H 25 C 6 H 4) 2 I + · SbF 6 - 1 .2 parts were mixed to prepare a coating solution. This coating solution was applied to a 0.1 mm thick polycarbonate (100 × 100 × 0.1 mm), a 3 mm thick polycarbonate (100 × 100 × 3.0 mm) and a bar coater no. 20 was applied. Immediately, ultraviolet rays were irradiated at 200 mJ / cm 2 for curing.
[0042]
After curing, the ups and downs of four corners with respect to the center of a 0.1 mm thick polycarbonate were measured, and the expansion and contraction of the film was determined by the average value. When the coated surface was placed up, it shrunk and became concave, and when it was placed with the coated surface down, it expanded and became concave. As a result, it was 0 mm.
[0043]
Further, a Taber abrasion test (wear wheel: CS-10F, 500 g load, 500 rotations) of a polycarbonate having a thickness of 3 mm was performed, and the hardness was measured by a change in haze (cloudiness value) before and after the test. As a result, ΔHaze was 13 (%). The measurement method of Haze (cloudiness value) is shown below, and the results are shown in Table 1.
Measuring method of Haze (cloudiness value) It was measured with Haze Meter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
[0045]
[Example 2 ]
Except for changing 100 parts of MEK-dispersed colloidal silica sol MEK-ST (manufactured by Nissan Chemical Industries, solid content 30% by weight) of Example 1 to 150 parts of MEK-dispersed hollow colloidal silica sol OSCAL (catalyst conversion, solid content 20% by weight). Was carried out in the same manner as in Example 1. The results are shown in Table 1.
[0046]
[Example 3 ]
100 parts of MEK-dispersed colloidal silica sol MEK-ST (manufactured by Nissan Chemical Industries, solid content: 30% by weight) of Example 1 was replaced with an MEK solvent-substituted product (solid content: 20% by weight) of methanol-dispersed composite titanium oxide sol-op-tray (manufactured by catalytic conversion). ) Performed in the same manner as in Example 1 except that the amount was changed to 150 parts. The results are shown in Table 1.
[0047]
[Table 1]
[0048]
[Comparative Example 1]
The same operation as in Example 1 was performed except that 100 parts of MEK-dispersed colloidal silica sol MEK-ST (manufactured by Nissan Chemical Co., Ltd., solid content: 30% by weight) of Example 1 was changed to 25 parts. Shrinkage was −20 mm and ΔHaze was> 50. The results are shown in Table 2.
[0049]
[Comparative Example 2]
The same operation as in Example 1 was performed except that 100 parts of MEK-dispersed colloidal silica sol MEK-ST (manufactured by Nissan Chemical Co., Ltd., solid content 30% by weight) of Example 1 was changed to 450 parts. Cracks occurred after curing. The results are shown in Table 2.
[0050]
[Comparative Example 3]
Except for changing (CH 3 ) 3 SiO (R e CH 3 SiO) 8 Si (CH 3 ) 3 in Example 1 to (3 ′, 4′-epoxycyclohexyl) methyl-3,4-epoxycyclohexylcarboxylate. The same operation as in Example 1 was performed. Shrinkage was 10 mm and ΔHaze was> 50. The results are shown in Table 2.
[0051]
[Comparative Example 4]
Example 1 is the same as Example 1 except that (CH 3 ) 3 SiO (R e CH 3 SiO) 8 Si (CH 3 ) 3 in Example 1 is replaced with β- (3 ′, 4′-epoxycyclohexyl) ethyltrimethoxysilane. The same was done. Shrink cylindrically and ΔHaze was> 50. The results are shown in Table 2.
[0052]
[Comparative Example 5]
Hydrolysis condensate (weight average molecular weight) of (CH 3 ) 3 SiO (R e CH 3 SiO) 8 Si (CH 3 ) 3 of Example 1 with β- (3 ′, 4′-epoxycyclohexyl) ethyltrimethoxysilane 900), except that it was changed to 900). Shrinkage was 20 mm and ΔHaze was> 50. The results are shown in Table 2.
[0053]
[Comparative Example 6]
Similarly, except for changing in Example 1 the (CH 3) 3 SiO (R e CH 3 SiO) 8 Si (CH 3) 3 to R e (CH 3) 2 SiOSi (CH 3) 2 R e Example 1 Went to. Shrinkage was 12 mm and ΔHaze was> 50. The results are shown in Table 2.
[0054]
[Comparative Example 7]
Except for changing (CH 3 ) 3 SiO (R e CH 3 SiO) 8 Si (CH 3 ) 3 in Example 1 to (CH 3 ) 3 SiO (R e CH 3 SiO) 4 Si (CH 3 ) 3 The same operation as in Example 1 was performed. Shrinkage was 10 mm and ΔHaze was 30. The results are shown in Table 2.
[0055]
[Comparative Example 8]
Similar to Example 1, except that (CH 3 ) 3 SiO (R e CH 3 SiO) 8 Si (CH 3 ) 3 in Example 1 was changed to (R e (CH 3 ) 2 SiO) 3 CH 3 Si. went. Shrinkage was 12 mm and ΔHaze was 42. The results are shown in Table 2.
[0056]
[Comparative Example 9]
The same procedure as in Example 1 was conducted except that (CH 3 ) 3 SiO (R e CH 3 SiO) 8 Si (CH 3 ) 3 in Example 1 was changed to (R e (CH 3 ) 2 SiO) 4 Si. . Shrinkage was 10 mm and ΔHaze was 36. The results are shown in Table 2.
[0057]
[Comparative Example 10]
(CH 3 ) 3 SiO (R e CH 3 SiO) 8 Si (CH 3 ) 3 of Example 1 is replaced with Re (CH 3 ) 2 SiO ((CH 3 ) 2 SiO) 20 Si (CH 3 ) 2 R e The procedure was the same as in Example 1 except that. Shrinkage was 13 mm, and the film disappeared in the Taber abrasion test. The results are shown in Table 2.
[0058]
[Comparative Example 11]
The (CH 3 ) 3 SiO (R e CH 3 SiO) 8 Si (CH 3 ) 3 of Example 1 was replaced with Re (CH 3 ) 2 SiO ((CH 3 ) 2 SiO) 50 Si (CH 3 ) 2 R e The procedure was the same as in Example 1 except that. Shrinkage was 11 mm, and the film disappeared in the Taber abrasion test. The results are shown in Table 2.
[0059]
[Table 2]
[0060]
As described above, having -R 1 RSiO 2/2 -unit, having at least 3 R 1 in one molecule, molecular weight of 500-2100, R 1 equivalent of 180-220, and containing an alkoxy group The coating agent containing the silicone compound, the inorganic oxide fine particles, and the photoacid generator that did not warp had no warpage, and a high hardness film was obtained.
In Comparative Example 1 with few inorganic oxide fine particles, expansion occurred and the hardness was insufficient. In Comparative Example 2 where there are many inorganic oxide fine particles, cracks occurred.
Non-silicone Comparative Example 3 or Comparative Example 6 having 2 R 1 in one molecule and a molecular weight of less than 500, Comparative Example 7 having R 1 equivalent exceeding 220, or —R 1 RSiO 2/2 — units In Comparative Examples 5, 8, and 9, curing shrinkage was observed and the hardness was insufficient. In Comparative Example 4 having an alkoxy group, large shrinkage was observed. Furthermore, in Comparative Examples 10 and 11 having a large molecular weight and a large R 1 equivalent used for release paper, etc., the film was so soft that the film disappeared in the Taber abrasion test.
[0061]
【The invention's effect】
According to the photocurable coating agent for forming a hard protective film of the present invention, a high-hardness film can be obtained without warping.
Claims (8)
で表され、1分子中に少なくとも3個のR1を有し、分子量が500〜2100、R1当量(R11mol当たりの重量)が180〜220で、アルコキシ基を含有しないシリコーン化合物 100重量部
(B)平均粒径1〜500nmの無機酸化物微粒子 30〜400重量部
(C)(A)成分に溶解可能な光酸発生剤 0.1〜5重量部
を含有することを特徴とする硬質保護被膜形成用光硬化性コーティング剤。(A) The following general formula ( 2 )
In expressed has at least three of R 1 in a molecule, the molecular weight of 500 to 2,100, with R 1 equivalent (weight per R 1 1 mol) is 180 to 220, silicone compounds 100 weight containing no alkoxy group Part (B) 30 to 400 parts by weight of inorganic oxide fine particles having an average particle diameter of 1 to 500 nm (C) 0.1 to 5 parts by weight of a photoacid generator soluble in the component (A) Photo-curable coating agent for hard protective film formation.
(CH3)3SiO(R1CH3SiO)mSi(CH3)3 (3)
(式中、R1は上記と同じ、mは3〜10の整数である。)
で表されるシリコーン化合物である請求項1記載のコーティング剤。(A) component is the following general formula (3)
(CH 3 ) 3 SiO (R 1 CH 3 SiO) m Si (CH 3 ) 3 (3)
(In the formula, R 1 is the same as above, and m is an integer of 3 to 10.)
The coating agent according to claim 1, wherein the silicone compound represented in.
R4 2I+X- (6)
(式中、R4は−C6H4−R5で示され、R5は炭素数6以上のアルキル基、XはSbF6 -、AsF6 -、PF6 -、BF4 -、HSO4 -、ClO4 -、Cl-又はCF3SO3 -を示す。)
で表される光酸発生剤である請求項1乃至6のいずれか1項記載のコーティング剤。(C) component is the following general formula (6)
R 4 2 I + X - ( 6)
(In the formula, R 4 is represented by —C 6 H 4 —R 5 , R 5 is an alkyl group having 6 or more carbon atoms, X is SbF 6 − , AsF 6 − , PF 6 − , BF 4 − , HSO 4. -, ClO 4 -, Cl - or CF 3 SO 3 - shows a).
Coating agent according to any one of claims 1 to 6 is a photoacid generator represented in.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002098734A JP3962909B2 (en) | 2002-04-01 | 2002-04-01 | Photocurable coating agent for forming hard protective film and article formed with the film |
US10/401,737 US20030187088A1 (en) | 2002-04-01 | 2003-03-31 | Photo-curable coating compostion for hard protective coat and coated article |
EP03252058A EP1357160B1 (en) | 2002-04-01 | 2003-04-01 | Photo-curable coating composition for hard protective coat and coated article |
DE60303885T DE60303885T2 (en) | 2002-04-01 | 2003-04-01 | A photocurable coating composition for hard protective layer and coated article |
US11/289,275 US20060079592A1 (en) | 2002-04-01 | 2005-11-30 | Photo-curable coating composition for hard protective coat and coated article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002098734A JP3962909B2 (en) | 2002-04-01 | 2002-04-01 | Photocurable coating agent for forming hard protective film and article formed with the film |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007090536A Division JP2007211249A (en) | 2007-03-30 | 2007-03-30 | Photocurable coating material for forming hard protective film and article having the film formed |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003292893A JP2003292893A (en) | 2003-10-15 |
JP3962909B2 true JP3962909B2 (en) | 2007-08-22 |
Family
ID=29240605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002098734A Expired - Fee Related JP3962909B2 (en) | 2002-04-01 | 2002-04-01 | Photocurable coating agent for forming hard protective film and article formed with the film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3962909B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7205685B2 (en) * | 2018-09-27 | 2023-01-17 | 日産化学株式会社 | Coating composition containing cycloaliphatic epoxy compound |
-
2002
- 2002-04-01 JP JP2002098734A patent/JP3962909B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003292893A (en) | 2003-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060079592A1 (en) | Photo-curable coating composition for hard protective coat and coated article | |
KR101478928B1 (en) | Photosensitive silicone resin composition | |
US8492450B2 (en) | Siloxane resin composition and protective film for touch panel using the same | |
JP5525152B2 (en) | UV-curable coating composition, method for producing the same, and resin-coated article coated therewith | |
WO2016098596A1 (en) | Photocurable and thermosetting resin composition, cured product and laminate | |
JP6545482B2 (en) | Photo- or thermosetting resin composition, cured product and laminate | |
JP2007217704A (en) | Photocurable curing-expansible coating material to form hard protective coating film, and article having the coating film formed thereon | |
JP2016193956A (en) | Laminate formed of photocurable or thermosetting resin composition | |
JP4415855B2 (en) | Cationic polymerization composition containing metal oxide fine particles | |
JP2009012317A (en) | Release film and its producing method | |
JPWO2008126902A1 (en) | Composition, protective film forming method, laminate and production method thereof | |
JP2007211249A (en) | Photocurable coating material for forming hard protective film and article having the film formed | |
JP3962909B2 (en) | Photocurable coating agent for forming hard protective film and article formed with the film | |
JP3928708B2 (en) | Photocurable coating agent for forming hard protective film and article formed with the film | |
US20150225577A1 (en) | Silicone mist inhibitor | |
JP6639898B2 (en) | Transfer film | |
JP4840564B2 (en) | Photo-curable coating agent and article for forming hard protective film | |
JP2008038086A (en) | Active energy ray-curable composition and laminate | |
JP5882079B2 (en) | Resin stamper | |
JP5590374B2 (en) | Active energy ray-curable composition, cured film forming method and laminate | |
JP3962908B2 (en) | Photo-curable curable and expandable coating agent for forming a hard protective film and article formed with the film | |
JP4942356B2 (en) | Active energy ray-curable composition and cured product | |
JP2013163789A (en) | Photosensitive silicone resin composition | |
JP2014046240A (en) | Method for manufacturing laminate | |
JP2010235795A (en) | Active energy ray-curable composition and cured product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070425 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070508 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3962909 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100601 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130601 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |