JP3962486B2 - Turbine blade rotor mounting structure - Google Patents

Turbine blade rotor mounting structure Download PDF

Info

Publication number
JP3962486B2
JP3962486B2 JP20319098A JP20319098A JP3962486B2 JP 3962486 B2 JP3962486 B2 JP 3962486B2 JP 20319098 A JP20319098 A JP 20319098A JP 20319098 A JP20319098 A JP 20319098A JP 3962486 B2 JP3962486 B2 JP 3962486B2
Authority
JP
Japan
Prior art keywords
rotor
bearing surface
blade
arc
clearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20319098A
Other languages
Japanese (ja)
Other versions
JP2000034903A (en
Inventor
良之 近藤
優 菩提
慶一郎 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20319098A priority Critical patent/JP3962486B2/en
Publication of JP2000034903A publication Critical patent/JP2000034903A/en
Application granted granted Critical
Publication of JP3962486B2 publication Critical patent/JP3962486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気タービン等の動翼をロータの翼溝に埋め込んだ時、ロータに発生するフレッティング疲労を防止するようにしたタービン動翼のロータ取付け構造に関するものである。
【0002】
【従来の技術】
一般に接触結合を行っている部材は、その面圧作用部位に荷重変動に起因するすべりが発生すると、その移動境界部にはフレッティング疲労が発生し易く、蒸気タービン等のロータ翼溝と翼根との接触結合箇所においても、このフレッティング疲労による損傷が懸念される。
【0003】
図4に基づいて従来のロータ翼溝と動翼翼根との接触状況を示す。
翼2はその翼根をロータ1の溝部に挿入し、その状態で翼根の底部にシム3を打ち込んで固定しているので、ロータ1と翼2の接触するベアリング面4には、高い面圧6が作用することになる。
【0004】
この状態でタービンは起動・停止を繰り返すので、ロータ1と翼2にはそれぞれの材料の違いによる熱膨張差が生じ、それに伴って両者間に相対すべり7が発生する。
【0005】
【発明が解決しようとする課題】
従って前記のような従来のものでは、前記したベアリング面4となる境界部にフレッティング疲労の発生する必要条件が満たされることになり、ロータにき裂5が生じる可能性がある。
【0006】
この様なフレッティング疲労を防止するには、面圧6、相対すべり7を低減化するか、あるいは面圧6と相対すべり7によて引き起こされるベアリング面4の境界部である、き裂5の発生箇所の応力低減化を図ることが必要である。
【0007】
本発明は、この様な背景の下でなされたもので、従来のものにおいて懸念された前記したフレッティング疲労、それに伴うき裂の発生と成長を防止、抑制し、堅牢な構成を維持して、安全性の高い、信頼性に富んだタービン動翼のロータ取付け構造を提供することを課題とするものである。
【0008】
【課題を解決するための手段】
本発明は、前記した課題を解決すべくなされたもので、ロータと、同ロータに埋め込んだ動翼翼根とで形成するベアリング面の境界部において、ロータ側をぬすみ形状にし、同ぬすみ形状は、前記ベアリング面の端部とすき量を除いた前記ロータ側の面とに接する半径0.5〜2mmの円弧と、同円弧に連接し前記ベアリング面の延長線との間の間隔0.2〜0.3mmのすき量で形成したタービン動翼のロータ取付け構造を提供するものである。
【0009】
すなわち、本発明によれば、ロータと動翼翼根のベアリング面境界部におけるロータ側を所定半径の円弧と、同円弧に連接して所定すき量の間隔を有するぬすみ形状に構成し、この形状により境界部の応力を低減してフレッティング疲労及びそれに伴うき裂の発生と成長の防止、抑制を図るようにしたものである。
【0011】
より具体的に述べれば、本発明は上記ロータと動翼翼根のベアリング面境界部において、ロータ側に加工したぬすみ形状とそのぬすみ寸法として、前記ベアリング面の端部とすき量を除いた前記ロータ側の面とに接する円弧の半径を0.5〜2mmとし、同円弧に連接し前記ベアリング面の延長線との間のすき量を0.2〜0.3mmの間隔に特定したぬすみ形状とすることにより、この形状と数値で区分される範囲におけるフレッティング疲労と、これに伴うき裂の発生と成長の確実な防止、抑制を顕著にしたものである。
【0012】
【発明の実施の形態】
本発明の実施の一形態について図1に基づいて説明する。
なお、前記した従来のものと同一の部位については、図中同一の符号を付して示し、重複して冗長となる説明を省略して本実施の形態に特有の点に注力して説明する。
【0013】
図1に本実施の形態に係るフレッティング疲労防止のぬすみ形状を採用した蒸気タービンロータ翼溝部を示す。
また、図2に同フレッティング疲労防止の効果を検証した実験モデルを示し、図3には図2の実験モデルによる実験の結果を示す。
【0014】
すなわち本実施の形態においては、ロータ1と翼2のベアリング面4の境界部におけるロータ1側の形状を、従来の平面形状ではなしに、一定の半径の円弧と、これに連接する一定の間隔のすき量を持たせた、いわゆるぬすみ加工をしたものであり、この加工によるぬすみ形状の具体的なぬすみ寸法は、同ベアリング面4の境界部に半径0.5〜2mmの円弧と、間隔0.2〜0.3mmのすき量とすることにより、この位置においてフレッティング疲労に関与する境界部の応力を低減し、き裂発生を抑制するようにしたものである。
【0015】
前記の様に構成された本実施の形態における、前記ぬすみ形状によるフレッティング疲労防止について、図2の実験モデルにより検証した。
【0016】
すなわち、図2(a)に同実験モデルの全体の概要を、(b)に要部Bを拡大して示すように、この実験モデルではロータ試験片11を翼試験片12ではさみ込み、押付力23を負荷して面圧16を与えた。
【0017】
その状態でアクチュエータ22を上下させてベアリング面14に所定の相対すべり17与え、フレッティング疲労試験を実施した。
【0018】
なお、実験の諸元は、図3中にも示すように、試験速度:10cpm、面圧:40kgf/mm2 、相対すべり:40μm、試験回数104 回とし、ぬすみ形状を決める円弧の半径を0.9mm、0.5mm、2mm等々複数の値を選定して、各円弧の半径毎にすき量を無しに当たる0から0.1mm刻みづつ増しながらベアリング面14境界部のき裂15と、R部き裂15’の発生の有無およびその長さについて検証した。
【0019】
図3は円弧の半径を0.9mmとした場合の結果を代表としてプロットしたものであり、これによると、すき量:0mm,半径:0mmのいわゆるぬすみ加工無しの場合と、すき量:0.2mm,半径:0.9mmのぬすみ加工有りの場合を比較すると、き裂15は前者の約300μmに対して後者は約100μmであり、明らかに後者の方がき裂15が短くなり、フレッティング疲労き裂の抑制にぬすみ加工が有効であることがわかる。
【0020】
しかし、すき量19を0.4mm以上と大きくとると、低サイクル疲労を併発し、同すき量19を規制する加工面が前記円弧と連接するR部のき裂15’が大きくなるので、フレッティング疲労防止には、すき量19は0.1〜0.3mm程度、望ましくは0.2〜0.3mm、そして円弧の半径18は0.5〜2mmに設定することが重要である。
【0021】
なお、前記した様にここでは円弧の半径を0.9mmとした場合の結果に基づいて説明したが、同円弧の半径を0.5mm、2mm等々複数の値に変えても、結果は同一の傾向を示していた。
【0022】
この様に、本実施の形態によれば、ロータ1と翼2のベアリング面4の境界部において、ロータ1側の形状を適切なぬすみ加工とすることにより、ベアリング面4のき裂を防止し、または抑制できることが明らかとなった。
【0023】
以上、本発明を図示の実施の形態について説明したが、本発明はかかる実施の形態に限定されず、本発明の範囲内でその具体的構造に種々の変更を加えてよいことはいうまでもない。
【0024】
【発明の効果】
以上説明したように本発明によれば、ロータと、同ロータに埋め込んだ動翼翼根とで形成するベアリング面の境界部において、ロータ側をぬすみ形状にしたタービン動翼のロータ取付け構造としたので、ロータと動翼翼根のベアリング面境界部におけるロータ側を所定半径の円弧と、同円弧に連接して所定すき量の間隔を有するこのぬすみ形状により、境界部の応力を低減してフレッティング疲労及びそれに伴うき裂の発生と成長の防止、抑制を図り、安全性の高い、信頼性に富んだタービン動翼のロータ取付け構造を得ることが出来たものである。
【0025】
特に本発明では、前記したロータ側に加工したぬすみ形状を、前記ベアリング面の端部とすき量を除いた前記ロータ側の面とに接する半径0.5〜2mmの円弧と、同円弧に連接し前記ベアリング面の延長線との間の間隔0.2〜0.3mmのすき量のぬすみ形状及びぬすみ寸法に特定したので、ロータと動翼翼根のベアリング面境界部において、前記特定寸法外のものと比べて、フレッティング疲労と、これに伴うき裂の発生と成長の確実な防止、抑制を図り、以て安全性の高い、信頼性に富んだタービン動翼のロータ取付け構造を得ることが出来たものである。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係るタービン動翼のロータ取付け構造を示し、(a)は翼根部の全貌を示す部分断面図、(b)は(a)のB部拡大図、(c)は(b)のC部拡大図である。
【図2】本実施形態における効果を確認する実験モデルを示し、(a)は同実験モデル全体の関連構成図、(b)は(a)のB部拡大図である。
【図3】図2の実験モデルによる実験結果を示す説明図である。
【図4】従来のタービン動翼のロータ取付け構造を示し、(a)は翼根部の全貌を示す部分断面図、(b)は(a)のB部拡大図である。
【符号の説明】
1 ロータ
2 翼
3 シム
4 ベアリング面
5 き裂
6 面圧
7 相対すべり
8 半径
9 すき量
11 ロータ試験片
12 翼試験片
14 ベアリング面
15 き裂
16 面圧
17 相対すべり
18 半径
19 すき量
21 ロードセル
22 アクチュエータ
23 押付力
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotor mounting structure for a turbine rotor blade that prevents fretting fatigue generated in a rotor when a rotor blade such as a steam turbine is embedded in a blade groove of the rotor.
[0002]
[Prior art]
In general, a contact-bonded member is subject to fretting fatigue at its moving boundary when slippage due to load fluctuation occurs at the surface pressure acting site, and the rotor blade groove and blade root of a steam turbine, etc. There is also concern about damage due to this fretting fatigue even at the contact joint location.
[0003]
Based on FIG. 4, the contact state of the conventional rotor blade groove and the blade root is shown.
Since the blade root 2 is inserted into the groove portion of the rotor 1 and the shim 3 is driven into and fixed to the bottom of the blade root in this state, the bearing surface 4 where the rotor 1 and the blade 2 are in contact has a high surface. The pressure 6 will act.
[0004]
In this state, the turbine is repeatedly started and stopped, so that a difference in thermal expansion occurs between the rotor 1 and the blade 2 due to the difference in the materials, and accordingly, a relative slip 7 occurs between the two.
[0005]
[Problems to be solved by the invention]
Therefore, in the conventional one as described above, a necessary condition for generating fretting fatigue is satisfied at the boundary portion which becomes the bearing surface 4 described above, and there is a possibility that a crack 5 is generated in the rotor.
[0006]
In order to prevent such fretting fatigue, the surface pressure 6 and the relative slip 7 are reduced, or a crack 5 which is a boundary portion of the bearing surface 4 caused by the surface pressure 6 and the relative slip 7. Therefore, it is necessary to reduce the stress at the location where this occurs.
[0007]
The present invention has been made under such a background, and prevents and suppresses the above-mentioned fretting fatigue and the generation and growth of cracks associated therewith, which have been a concern in the prior art, and maintains a robust structure. It is an object of the present invention to provide a rotor mounting structure for a turbine blade having high safety and high reliability.
[0008]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and at the boundary portion of the bearing surface formed by the rotor and the blade root embedded in the rotor, the rotor side is formed in a sparse shape, A distance between an arc of 0.5 to 2 mm in radius contacting the end of the bearing surface and the rotor side surface excluding the clearance, and an interval between the bearing line and an extension line of the bearing surface of 0.2 to 0.2 mm. The present invention provides a rotor mounting structure for a turbine rotor blade formed with a clearance of 0.3 mm.
[0009]
That is, according to the present invention, the rotor side at the bearing surface boundary portion between the rotor and the blade root is configured to have a circular arc with a predetermined radius and a corner shape connected to the circular arc and having a predetermined gap amount. The stress at the boundary is reduced to prevent or suppress fretting fatigue and the accompanying crack growth and growth.
[0011]
Stated more specifically, the present invention bearing surface boundary of the rotor and the rotor blade root, as stealing dimensions of relief shape and its processed into the rotor side, except for the ends and plow of the bearing surface the The radius of the arc contacting the surface on the rotor side is 0.5 to 2 mm, and the fillet shape is connected to the arc and the clearance between the bearing surface and the extension line is specified as 0.2 to 0.3 mm. By doing so, the fretting fatigue in the range divided by this shape and numerical value, and the reliable prevention and suppression of crack generation and growth associated therewith are remarkable.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG.
Note that the same parts as those of the above-described conventional ones are denoted by the same reference numerals in the drawings, and redundant explanations are omitted, and explanations are made by focusing on points peculiar to the present embodiment. .
[0013]
FIG. 1 shows a steam turbine rotor blade groove portion adopting a thin shape for preventing fretting fatigue according to the present embodiment.
FIG. 2 shows an experimental model for verifying the effect of preventing fretting fatigue, and FIG. 3 shows a result of an experiment using the experimental model of FIG.
[0014]
That is, in the present embodiment, the shape of the rotor 1 side at the boundary portion between the bearing surface 4 of the rotor 1 and the blade 2 is not a conventional planar shape, but a circular arc with a constant radius and a constant interval connected to the arc. A so-called “thickening” process is performed, and a specific thinning dimension of the thinning shape resulting from this processing is as follows: an arc having a radius of 0.5 to 2 mm at the boundary portion of the bearing surface 4 and an interval of 0 By setting the clearance to 2 to 0.3 mm, the stress at the boundary part involved in fretting fatigue is reduced at this position, and crack generation is suppressed.
[0015]
In the present embodiment configured as described above, the fretting fatigue prevention by the thin shape was verified by the experimental model of FIG.
[0016]
That is, as shown in FIG. 2 (a), an outline of the same experimental model, and in FIG. 2 (b), an enlarged view of the main part B, the rotor test piece 11 is sandwiched between the blade test piece 12 and pressed. A surface pressure 16 was applied by applying a force 23.
[0017]
In this state, the actuator 22 was moved up and down to give a predetermined relative slip 17 to the bearing surface 14, and a fretting fatigue test was performed.
[0018]
As shown in FIG. 3, the test parameters are as follows: test speed: 10 cpm, surface pressure: 40 kgf / mm 2 , relative slip: 40 μm, number of tests 10 4 times, and the radius of the arc that determines the thinning shape. A plurality of values such as 0.9 mm, 0.5 mm, 2 mm, etc. are selected, and the crack 15 at the boundary portion of the bearing surface 14 is increased in increments of 0 to 0.1 mm, which corresponds to the amount of clearance for each arc radius, and R The presence or absence and the length of the partial crack 15 ′ were verified.
[0019]
FIG. 3 is a plot of the results obtained when the radius of the arc is 0.9 mm as a representative. According to this plot, there is no so-called thinning with a clearance of 0 mm and a radius of 0 mm, and a clearance of 0. Comparing the case of 2 mm with a radius of 0.9 mm, the crack 15 is about 300 μm compared to the former about 100 μm, and the latter is obviously shorter and the fretting fatigue is shorter in the latter. It can be seen that the thinning process is effective for suppressing cracks.
[0020]
However, if the clearance 19 is increased to 0.4 mm or more, low cycle fatigue is caused, and the crack 15 ′ in the R portion where the machining surface that regulates the clearance 19 is connected to the arc increases. In order to prevent ting fatigue, it is important to set the clearance 19 to about 0.1 to 0.3 mm, preferably 0.2 to 0.3 mm, and the arc radius 18 to 0.5 to 2 mm.
[0021]
In addition, as described above, the explanation is based on the result when the radius of the arc is 0.9 mm. However, even if the radius of the arc is changed to a plurality of values such as 0.5 mm and 2 mm, the result is the same. Showed a trend.
[0022]
As described above, according to the present embodiment, cracking of the bearing surface 4 is prevented by making the shape of the rotor 1 side appropriate thinning at the boundary between the bearing surface 4 of the rotor 1 and the blade 2. It became clear that it can be suppressed.
[0023]
Although the present invention has been described with reference to the illustrated embodiment, the present invention is not limited to such an embodiment, and it goes without saying that various modifications may be made to the specific structure within the scope of the present invention. Absent.
[0024]
【The invention's effect】
As described above, according to the present invention, since the rotor mounting structure of the turbine rotor blade is formed so that the rotor side is thin at the boundary portion of the bearing surface formed by the rotor and the rotor blade blade root embedded in the rotor, , The rotor side at the bearing surface boundary between the rotor and rotor blade root has a circular arc with a predetermined radius and this corner shape connected to the circular arc and spaced by a predetermined clearance to reduce the stress at the boundary and fretting fatigue In addition, it is possible to prevent and suppress the generation and growth of cracks associated therewith, and to obtain a highly safe and reliable rotor rotor blade mounting structure.
[0025]
In particular, according to the present invention, the above-described cut-out shape processed on the rotor side is connected to an arc having a radius of 0.5 to 2 mm contacting the end of the bearing surface and the surface on the rotor side excluding the clearance, and the arc. Since the gap between the bearing surface and the extension line of the bearing surface is specified as a clearance shape and a clearance dimension of 0.2 to 0.3 mm , the bearing surface boundary portion between the rotor and the blade root is outside the specified dimension. As a result, it is possible to reliably prevent and suppress fretting fatigue and the generation and growth of cracks associated therewith, and to obtain a highly safe and reliable rotor blade rotor mounting structure. Was made.
[Brief description of the drawings]
FIG. 1 shows a rotor mounting structure of a turbine rotor blade according to an embodiment of the present invention, (a) is a partial cross-sectional view showing the entire appearance of the blade root part, (b) is an enlarged view of part B of (a), (C) is the C section enlarged view of (b).
FIGS. 2A and 2B show an experimental model for confirming the effect in the present embodiment, in which FIG. 2A is a related configuration diagram of the entire experimental model, and FIG.
FIG. 3 is an explanatory diagram showing an experimental result based on the experimental model of FIG. 2;
4A and 4B show a conventional rotor mounting structure of a turbine rotor blade, wherein FIG. 4A is a partial cross-sectional view showing the entire blade root portion, and FIG. 4B is an enlarged view of portion B of FIG.
[Explanation of symbols]
1 Rotor 2 Blade 3 Shim 4 Bearing surface 5 Crack 6 Surface pressure 7 Relative slip 8 Radius 9 Clearance 11 Rotor test piece 12 Blade test piece 14 Bearing surface 15 Crack 16 Surface pressure 17 Relative slip 18 Radius 19 Clearance 21 Load cell 22 Actuator 23 Pushing force

Claims (1)

ロータと、同ロータに埋め込んだ動翼翼根とで形成するベアリング面の境界部において、ロータ側をぬすみ形状にし、同ぬすみ形状は、前記ベアリング面の端部とすき量を除いた前記ロータ側の面とに接する半径0.5〜2mmの円弧と、同円弧に連接し前記ベアリング面の延長線との間の間隔0.2〜0.3mmのすき量で形成したことを特徴とするタービン動翼のロータ取付け構造。At the boundary of the bearing surface formed by the rotor and the blade blade root embedded in the rotor, the rotor side is formed in a thin shape, and the thin shape is formed on the rotor side excluding the end of the bearing surface and the clearance amount. A turbine motion characterized in that it is formed with a clearance of 0.2 to 0.3 mm between an arc having a radius of 0.5 to 2 mm in contact with the surface and an extension line of the bearing surface connected to the arc. Wing rotor mounting structure.
JP20319098A 1998-07-17 1998-07-17 Turbine blade rotor mounting structure Expired - Lifetime JP3962486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20319098A JP3962486B2 (en) 1998-07-17 1998-07-17 Turbine blade rotor mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20319098A JP3962486B2 (en) 1998-07-17 1998-07-17 Turbine blade rotor mounting structure

Publications (2)

Publication Number Publication Date
JP2000034903A JP2000034903A (en) 2000-02-02
JP3962486B2 true JP3962486B2 (en) 2007-08-22

Family

ID=16469964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20319098A Expired - Lifetime JP3962486B2 (en) 1998-07-17 1998-07-17 Turbine blade rotor mounting structure

Country Status (1)

Country Link
JP (1) JP3962486B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6785555B2 (en) * 2016-01-15 2020-11-18 三菱パワー株式会社 How to assemble the rotor blade to the turbine rotor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167807A (en) * 1982-03-29 1983-10-04 Hitachi Ltd Blade installation structure of turbo-machinery
JPS60240805A (en) * 1984-05-14 1985-11-29 Toshiba Corp Moving blade of turbine
JPH01145901U (en) * 1988-03-30 1989-10-06
JPH0777008A (en) * 1993-09-09 1995-03-20 Mitsubishi Heavy Ind Ltd Blade groove structure of turbine

Also Published As

Publication number Publication date
JP2000034903A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
JP4049866B2 (en) Turbine blade platform seal
JP2961065B2 (en) Gas turbine blade
KR100733194B1 (en) Bucket and wheel dovetail design for turbine rotors
JP5634715B2 (en) Method for manufacturing compliant plate seal assembly
JP4974106B2 (en) Laser shock induced airfoil twist cancellation
US10190423B2 (en) Shrouded blade for a gas turbine engine
JP2001323803A (en) Stator vane, its handling method, and its detail for exchange
JP2002213205A (en) Gas turbine blade having platform with clearance groove
JP2896713B2 (en) How to repair turbine blades
JPS63227905A (en) Method of assembling steam turbine and rocking preventive device for blade root section thereof
CN100414075C (en) Turbine moving blade
US7114927B2 (en) Fixing method for the blading of a fluid-flow machine and fixing arrangement
JP3962486B2 (en) Turbine blade rotor mounting structure
US8718812B2 (en) Linear friction welding of an aerofoil blisk
JP2005220825A (en) Turbine moving blade
JP5380412B2 (en) Turbine blade
JP2002106302A (en) Turbine rotor
JP2005344527A (en) Steam turbine rotor and method for manufacturing the same
US20160084088A1 (en) Stress relieving feature in gas turbine blade platform
JP2004084604A (en) Platform repair method for turbine rotor blade and turbine rotor blade
JP5227241B2 (en) Turbine rotor, turbine rotor blade coupling structure, steam turbine and power generation equipment
JP2009219277A (en) Coil wedge of turbine generator, turbine generator, and method of repairing coil wedge of turbine generator
JPH06117201A (en) Assembly method for turbine moving blade
KR101928166B1 (en) bucket processing jig
JP2002349204A (en) Turbine rotor blade assembly body and method for assembling the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041221

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term