JP3961891B2 - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
JP3961891B2
JP3961891B2 JP2002181097A JP2002181097A JP3961891B2 JP 3961891 B2 JP3961891 B2 JP 3961891B2 JP 2002181097 A JP2002181097 A JP 2002181097A JP 2002181097 A JP2002181097 A JP 2002181097A JP 3961891 B2 JP3961891 B2 JP 3961891B2
Authority
JP
Japan
Prior art keywords
component
resin composition
thermoplastic resin
weight
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002181097A
Other languages
Japanese (ja)
Other versions
JP2004026869A (en
Inventor
光吉 嶌野
悟 森冨
隆 眞田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002181097A priority Critical patent/JP3961891B2/en
Publication of JP2004026869A publication Critical patent/JP2004026869A/en
Application granted granted Critical
Publication of JP3961891B2 publication Critical patent/JP3961891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Closures For Containers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱可塑性樹脂組成物、その製造方法およびその熱可塑性樹脂組成物を用いて得られる燃料タンク用キャップに関するものである。さらに詳しくは、導電性を有し、吸水による寸法変化が小さく、流動性、耐衝撃性のバランスに優れる熱可塑性樹脂組成物、その製造方法および燃料タンク用キャップに関するものである。
【0002】
【従来の技術】
ポリアミド樹脂は、ガソリン等の有機溶剤やアルカリ液に対して優れた耐薬品性を示すとともに、流動性が高く、耐熱性、耐クリープ性に優れるため、自動車の外装材やエンジンルーム内部品として用いられ、また、カーボンブラックを溶融混練して導電性を付与し、静電気の発生・帯電を抑制し、比較的短時間で放電可能な機能を持たせて、燃料タンク用キャップなどの自動車部品の給油系統部品として用いられている。しかしながらポリアミド樹脂は、吸水により寸法変化が大きくなる欠点や、カーボンブラックの添加により衝撃強度が著しく低下する問題がある。これらを解決するために、変性ポリエチレン共重合体を配合して吸水による寸法変化を抑制し、耐衝撃性を向上させる方法は公知であるが、燃料タンク用キャップとしての要求性能である導電性と衝撃強度を両立するには至っていなかった。
【0003】
これらの導電性と耐衝撃性を両立する方法として、特開平11−180171にカーボンブラックの分散剤を配合することが記載されている。しかし、流動性や吸水時の寸法変化の抑制という点では不十分であり、またカーボンブラックの分散剤が成形加工時に金型を汚染する問題もあった。
【0004】
また、ポリアミド樹脂の改質材として、変性ポリプロピレンを用いることが知られている。変性ポリプロピレンを用いた場合、流動性や導電性は確保されるものの、やはり吸水による寸法変化については不十分であり、流動性、耐衝撃性、導電性、吸水時の寸法安定性の全てを満足する樹脂は得られていなかった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、導電性を有し、吸水による寸法変化が小さく、流動性、耐衝撃性のバランスに優れる熱可塑性樹脂組成物、その製造方法およびその熱可塑性樹脂組成物を用いて得られる燃料タンク用キャップを提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、上記の課題を解決すべく鋭意検討したところ、ポリオレフィン樹脂(成分(A))、ポリアミド樹脂(成分(B))、導電性カーボンブラック(成分(C))およびテルペンフェノール樹脂(成分(D))を含む熱可塑性樹脂組成物であって、成分(A)と成分(B)の重量比((A)/(B))が一定の範囲にあり、成分(C)の量が成分(A)および成分(B)の合計量に対して一定の範囲にあり、成分(D)の量が成分(A)および成分(B)の合計量に対して一定の範囲にある熱可塑性樹脂組成物が、上記課題を解決できることを見出し、本発明を完成させるに至った。
【0007】
すなわち、本発明は、
下記の成分(A)〜(D)を含む熱可塑性樹脂組成物であって、成分(A)と成分(B)の重量比((A)/(B))が5/95〜70/30であり、成分(C)の量が成分(A)および成分(B)の合計量100重量部に対して1〜20重量部であり、成分(D)の量が成分(A)および成分(B)の合計量100重量部に対して1〜5重量部である熱可塑性樹脂組成物に係るものである。
成分(A):ポリオレフィン樹脂
成分(B):ポリアミド樹脂
成分(C):導電性カーボンブラック
成分(D):テルペンフェノール樹脂
また、本発明は、上記の熱可塑性樹脂組成物の製造方法、および、その熱可塑性樹脂組成物を用いて得られる燃料タンク用キャップに係るものである。
【0008】
【発明の実施の形態】
本発明の熱可塑性樹脂組成物に用いられる成分(A)は、ポリオレフィン樹脂である。
ポリオレフィン樹脂としては、オレフィン類の単独重合体又は共重合体である。オレフィン類としては、α−オレフィンや環状オレフィン等が挙げられる。α−オレフィンとしては、エチレン、プロピレン、ブテン−1、ペンテン−1、ヘキセン−1、3−メチルブテン−1、4−メチルペンテン−1、オクテン−1、デセン−1、ドデセン−1、テトラデセン−1、ヘキサデセン−1、オクタデセン−1、エイコセン−1等が挙げられ、環状オレフィンとしては、特開平2−115248号公報に記載の環状オレフィン等が挙げられる。
ポリオレフィン類の中でも、最終組成物の流動性や製品としたときの外観、剛性、耐熱性および経済性の観点からポリプロピレン樹脂が好ましい。
【0009】
ポリプロピレンン樹脂としては、結晶性ポリプロピレンホモポリマー、及び重合の少なくとも一つの工程で得られる結晶性プロピレンホモポリマー部分と他の重合工程でプロピレンとエチレンおよび/または少なくとも1つの他のα−オレフィン(例えば、ブテン−1、ヘキセン−1等)を共重合して得られるプロピレン−エチレンランダム共重合体部分を有する結晶性プロピレン−エチレンブロック共重合体が挙げられ、さらに上記結晶性プロピレンホモポリマーと結晶性プロピレン−エチレンブロック共重合体との混合物であってもよい。上記のポリプロピレン樹脂の製造方法としては、チタン系触媒、担持型触媒、またメタロセンのような均一系触媒を用いて重合する方法が挙げられる。
【0010】
本発明の熱可塑性樹脂組成物に用いられる成分(B)は、ポリアミド樹脂である。
本発明で用いられる「ポリアミド樹脂」とは、ラクタム類から誘導される構造単位を含む脂肪族ポリアミド樹脂、アミノカルボン酸の重合によって得られる脂肪族ポリアミド樹脂、炭素原子数4〜12の飽和脂肪族ジカルボン酸と炭素原子数2〜12の脂肪族ジアミンとの重縮合によって得られる脂肪族ポリアミド樹脂、熱可塑性の芳香族ポリアミドを意味する。これらのポリアミド樹脂は、それぞれ単独で用いてもよく、2種以上を任意の割合で併用してもよい。これらのポリアミド樹脂は結晶性であっても非晶性であってもよい。
【0011】
ポリアミド樹脂としては、アミン末端基の量とカルボキシル末端基の量とが実質上等量のポリアミド樹脂を用いてもよく、アミン末端基の量がカルボキシル末端基の量より多いポリアミド樹脂を用いてもよく、カルボキシル末端基の量がアミン末端基の量より多いポリアミド樹脂を用いてもよく、また、これらのポリアミド樹脂を任意の割合で混合した混合物を用いてもよい。
【0012】
上記のラクタム類から誘導される構造単位を含む脂肪族ポリアミド樹脂に用いられるラクタム類としては、ε−カプロラクタムやω−ラウロラクタムを例示することができる。
【0013】
上記のアミノカルボン酸の重合によって得られる脂肪族ポリアミド樹脂に用いられるアミノカルボン酸としては、7−アミノフヘプタン酸、9−アミノノナン酸、11−アミノウンデカン酸や12−アミノドデカン酸を例示することができる。
【0014】
上記の炭素原子数4〜12の飽和脂肪族ジカルボン酸と炭素原子数2〜12の脂肪族ジアミンとの重縮合によって得られる脂肪族ポリアミド樹脂に用いられる飽和脂肪族ジカルボン酸としては、アジピン酸、ピメリン酸、アゼライン酸、スベリン酸、セバシン酸やドデカンジオン酸を例示することができ、脂肪族ジアミンとしては、ヘキサメチレンジアミンやオクタメチレンジアミンを例示することができる。
【0015】
そして、飽和脂肪族ジカルボン酸と脂肪族ジアミンとの重縮合においては、一般に、等モル量のジカルボン酸とジアミンとを用いることができる。また、ジアミンを過剰に用いることによって、得られるポリアミド樹脂中のアミン末端基の量をカルボキシル末端基の量より多くすることができ、逆に、ジカルボン酸を過剰に用いることによって、得られるポリアミド樹脂中のカルボキシル末端基の量をアミン末端基の量より多くすることができる。
【0016】
また、飽和脂肪族ジカルボン酸に替えて、飽和脂肪族ジカルボン酸のエステルや酸塩化物や酸無水物を用いてもよく、飽和脂肪族ジカルボン酸と飽和脂肪族ジカルボン酸のエステルや酸無水物との混合物を用いてもよい。同様に、脂肪族ジアミンに替えて、脂肪族ジアミンの塩を用いてもよく、脂肪族ジアミンと脂肪族ジアミンの塩との混合物を用いてもよい。
【0017】
上記の熱可塑性の芳香族ポリアミドにおける「芳香族ポリアミド」とは、主鎖骨格に芳香核とアミド結合とを有するポリアミドを意味する。本発明で用いられる芳香族ポリアミドとしては、ポリヘキサメチレンイソフタルアミド(ナイロン6I)を例示することができる。
【0018】
本発明で用いられる芳香族ポリアミドは、以下に例示する方法によって製造することができる。
(1)芳香族アミノ酸を重縮合する方法
(2)芳香族ジカルボン酸とジアミンとを重縮合する方法
(3)芳香族アミノ酸と芳香族ジカルボン酸とジアミンとを重縮合する方法
(4)芳香族ジカルボン酸とジイソシアネートとの重縮合する方法
上記の芳香族ポリアミドの製造において用いられる芳香族アミノ酸としては、パラアミノメチル安息香酸やパラアミノエチル安息香酸を例示することができ、芳香族ジカルボン酸としては、テレフタル酸やイソフタル酸を例示することができ、ジイソシアネートとしては、4,4−ジフェニルメタンジイソシアネートやトリレンジイソシアネートを例示することができる。
【0019】
そして、上記の芳香族ポリアミドの製造において用いられるジアミンとしては、ヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−/2,4,4−トリメチルヘキサメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、ビス(p−アミノシクロヘキシル)メタン、ビス(p−アミノシクロヘキシル)プロパン、ビス(3−メチル、4−アミノシクロヘキシル)メタン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサンを例示することができる。
【0020】
脂肪族ポリアミド樹脂としては、ナイロン66、ナイロン69、ナイロン610、ナイロン612、ナイロン46、ナイロン6、ナイロン11やナイロン12を例示することができる。芳香族ポリアミドとしては、ナイロン6I、ナイロン6Tやナイロン6I6Tを例示することができる。上記のポリアミド樹脂のうち、ナイロン6、ナイロン66、または、ナイロン6とナイロン66を任意の割合で混合した混合物が好ましい。
【0021】
本発明の熱可塑性樹脂組成物で用いられる成分(C)は導電性カーボンブラックである。
導電性カーボンブラックとしては、アセチレンブラックやファーネストブラックなどが挙げられる。このカーボンブラックは、少量の添加量で組成物に必要な導電性を付与できるものが望ましいことから、アセチレンブラック及びオイルファーネスブラック、特に不純物が少なく、また導電性が優れているオイルファーネスブラックが好ましい。その中でも、特に、XCF(Extra Conductive Black)、SCF(Super Conductive Furnace Black)、CF(Conductive Furnace Black)または SAF(Super Abrasion Furnace Black)が好適に使用できる。
【0022】
中でも、得られた樹脂組成物の導電性や、粘度の増加と混練時の顕著な発熱を抑え、樹脂の劣化を防止するという観点から、N2吸着によるBET式比表面積が750m2/g以上、特に好ましくは1000m2/g以上であり、かつ、導電性の観点から、DBP吸油量が300ml/100g以上、特に好ましくは400ml/100g以上の導電性カーボンブラックが好ましい。
【0023】
本発明で用いられる導電性カーボンブラック(成分(C))は、粉状、粒状等、そのままの形状で添加してもよい。また、本発明で用いられる樹脂、例えばポリアミド樹脂(成分(B))に予め溶融混練し、マスターバッチ化してから用いてもよい。導電性カーボンブラック(成分(C))の分散の問題から、マスターバッチ化して用いる方が好ましい。
【0024】
本発明の熱可塑性樹脂組成物で用いられる成分(D)はテルペンフェノール樹脂である。
テルペンフェノール樹脂は、テルペン類とフェノール類との共重合体である。テルペン類は、(C58)nで示される炭化水素化合物またはこれから導かれる含酸素化合物であり、例えばモノテルペン類(n=2の場合、ミルセン、オシメン、ピネン、リモネン、シトロネオール、ボルネオール、メントール、ショウノウ等)、セスキテルペン類(n=3の場合、クルクメン等)、ジテルペン類(n=4の場合、カンホレン、ヒノキオール等)、テトラテルペン類(n=8の場合、カロチノイド等)、ポリテルペン(天然ゴム)などを挙げることができる。好ましいテルペン類は、モノテルペン類であり、特にピネン、リモネン等である。
【0025】
フェノール類は、ベンゼン環、ナフタレン環等の芳香環にヒドロキシル基を少なくとも1個有する化合物であり、芳香環に置換基(例えばハロゲン原子、アルキル基等)を有していても良い。例えばフェノール、クレゾール、キシレノール、ナフトール、カテコール、レゾルシン、ヒドロキノン、ピロガロール等が挙げられる。好ましいフェノール類はフェノールである。
【0026】
好ましいテルペンフェノール樹脂は、モノテルペン類とフェノールの共重合体である。さらに好ましくは工業的に製造が容易なα-ピネンやリモネンなどのモノテルペン類とフェノールとの共重合体である。本発明で用いられるテルペンフェノール樹脂の水酸基価は、通常、150以上であり、吸水による寸法変化の抑制効果の観点から、好ましくは200以上である。
【0027】
本発明の熱可塑性樹脂組成物で用いられる成分の(E)は、相溶化剤である。
本発明で用いられる相容化剤としては、ポリプロピレン樹脂とポリアミド樹脂の相容性を改良する目的で使用できる化合物である。ポリプロピレン樹脂とポリアミド樹脂の反応効率や経済的観点から、無水マレイン酸、フマル酸、マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、アコニット酸、無水アコニット酸、クエン酸およびリンゴ酸からなる群から選ばれる少なくとも一種が好ましい。
【0028】
本発明の熱可塑性樹脂組成物で用いられる成分(F)は、有機過酸化物である。
本発明で用いられる有機過酸化物としては、分解してラジカルを発生した後、ポリプロピレン樹脂からプロトンを引き抜く作用を有するものであることが好ましく、具体的には、ジ−3−メトキシ ブチル パーオキシジカルボネート、ジ−2−エチルヘキシル パーオキシジカルボネート、ビス(4−t−ブチル シクロヘキシル)パーオキシジカルボネート、ジイソプロピル パーオキシジカルボネート、t−ブチル パーオキシイソプロピルカーボネート、ジミリスチル パーオキシカルボネート、1,1,3,3−テトラメチル ブチル ネオデカノエート、α−クミル パーオキシ ネオデカノエート、t−ブチル パーオキシネオデカノエート、1ビス(t−ブチルパーオキシ)シクロヘキサン、2,2ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、1,1−ビス(t−ブチルパーオキシ)シクロドデカン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、2,5ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、2,2−ビス(t−ブチルパーオキシ)ブテン、t−ブチルパーオキシベンゾエート、n−ブチル−4,4−ビス(t−ベルオキシ)バレラート、ジ−t−ブチルベルオキシイソフタレート、ジクミルパーオキサイド、α−α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、1,3−ビス(t−ブチルパーオキシジイソプロピル)ベンゼン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、p−メンタンハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3等が挙げられる。
【0029】
有機過酸化物としては、半減期が1分になる温度が50〜230℃であるものが、成分(A)の変性工程上、反応温度を制御する上で好ましい。有機過酸化物は、単独で用いてもよく、2種以上併用しても良い。
【0030】
本発明の熱可塑性樹脂組成物における各成分の含有割合は、成分(A)と成分(B)の重量比(成分(A)/成分(B))が5/95〜70/30であり、成分(C)の量は成分(A)および成分(B)の合計量100重量部に対して1〜20重量部であり、成分(D)の量は成分(A)および成分(B)の合計量100重量部に対して1〜5重量部である。
【0031】
成分(A)と成分(B)の重量比(成分(A)/成分(B))において、成分(A)が過多であると、熱可塑性樹脂組成物がポリプロピレン樹脂に近い特性を示し、強度やクリープ特性が低下したり、また耐ガソリン性が低下することがある。一方、成分(B)が過多であると、吸水時の寸法変化が大きくなることがある。また、成分(C)の量が、1重量部未満であると目的とする導電性が得られないことがあり、逆に20重量部を超えると、耐衝撃性が低下したり、溶融粘度が上昇して成形加工性の低下が起こる場合がある。成分(D)については、1重量部未満では吸水による寸法変化を抑制する効果が低くなる場合があり、逆に5重量部を超えると耐衝撃性が低下する場合がある。
【0032】
また、成分(E)の量は、ポリプロピレン樹脂とポリアミド樹脂の相容性、耐衝撃性や強度の観点から、成分(A)および成分(B)の合計量100重量部に対して0.05〜2重量部である。
【0033】
そして、成分(F)の量は、ポリプロピレン樹脂を十分に酸変性し、ポリプロピレン樹脂とポリアミド樹脂の十分な相容性を得、十分な衝撃強度を得るという観点、変性されるポリプロピレン樹脂を適切な分子量にして、十分な衝撃強度を得るという観点や、成形品の良好な外観を得るという観点から、成分(A)および成分(B)の合計量100重量部に対して0.01〜3重量部である。
【0034】
本発明の熱可塑性樹脂組成物には、上記の成分(A)〜(F)の他に、任意成分としてゴム様物質を添加することが出来る。
ゴム様物質としては、室温で弾性体である天然および合成の重合体を含む。その具体例としては、天然ゴム、ブタジエン共重合体、スチレン−イソプレン共重合体、ブタジエン−スチレン共重合体(ランダム共重合体、ブロック共重合体、グラフト共重合体等のすべてを含む。)、イソプレン重合体、クロロブタジエン重合体、ブタジエン−アクリロニトリル共重合体、イソブチレン重合体、イソブチレン−ブタジエン共重合体、イソブチレン−イソプレン共重合体、アクリル酸エステル重合体、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、エチレン−ブテン共重合体、エチレン−ヘキセン共重合体、エチレン−オクテン共重合体、更に第三成分を加えたEPDM等のオレフィン系ゴム、チオコールゴム、多硫化ゴム、ポリウレタンゴム、ポリエーテルゴム(例えば、ポリプロピレンオキシド等)、エピクロロヒドリンゴム等が挙げられる。
【0035】
これらのゴム様物質の製造方法としては、一般的な重合触媒(例えば、過酸化物、トリアルキルアルミニウム、ハロゲン化リチウム、ニッケル系触媒、バナジウム系触媒等)を用いる一般的な重合法(例えば、乳化重合、溶液重合等)による製造方法が挙げられる。
【0036】
さらに各種の架橋度を有するもの、各種の割合のミクロ構造を有するもの(例えばシス構造、トランス構造、ビニル基など)あるいは、各種の平均ゴム粒径を有するものも使用できる。また、これらのゴム様物質が共重合体の場合、ランダム共重合体、ブロック共重合体、グラフト共重合体等の各種の共重合体のいずれをも使用することができる。
【0037】
さらには、これらのゴム様物質を製造するに際し、他のオレフィン類、ジエン類、芳香族ビニル化合物アクリル酸、アクリル酸エステル、メタアクリル酸エステル等の単量体との共重合を行うことも可能である。これらの共重合の方法としては、ランダム共重合、ブロック共重合、グラフト共重合等のいずれの方法をも用いることが可能である。これらの単量体の具体例としては、他のオレフィン類としてはエチレン、プロピレン、ブテン、スチレン、クロロスチレン、α−メチルスチレン等が挙げられ、ジエン類としてはブタジエン、イソブチレン、クロロブタジエン等が挙げられ、アクリル酸エステルとしてはアクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等が挙げられ、メタアクリル酸エステルとしてはメタアクリル酸メチル等が挙げられ、アクリル酸、アクリロニトリルや無水マレイン酸等の極性基を有する単量体も挙げられる。
【0038】
ゴム様物質としては、なかでもエチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、エチレン−ブテン共重合体、エチレン−ヘキセン共重合体、エチレン−オクテン共重合体、更にEPDM等のオレフィン系ゴムが、ポリプロピレン樹脂との相容性の観点から好適にもちいられる。さらに、無水マレイン酸等の酸をグラフトしたエチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、エチレン−ブテン共重合体、エチレン−ヘキセン共重合体、エチレン−オクテン共重合体、更に第三成分を加えたEPDM等のオレフィン系ゴムが好適に用いられる。
【0039】
さらに、本発明の熱可塑性樹脂組成物には、成分(A)〜(E)の他に、必要に応じて、樹脂の混練時や成形加工時に、慣用の他の添加剤、例えば難燃剤、充填剤、耐熱剤、耐候剤、滑剤、離型剤、結晶核剤、可塑剤、流動性改良剤、安定剤等を添加することが出来る。安定剤としては、慣用の全ての安定剤が挙げられ、熱安定剤、酸化防止剤(リン系酸化防止剤、フェノール系酸化防止剤、イオウ系酸化防止剤、銅系酸化防止剤)、光安定剤(ヒンダードアミン系酸化防止剤)、さらには重合禁止剤等を含む。
【0040】
本発明の熱可塑性樹脂組成物の製造方法は、ポリオレフィン樹脂とポリアミド樹脂の熱可塑性樹脂組成物を製造する通常の方法で製造できる。
本発明の熱可塑性樹脂組成物の十分な物性(例えば、衝撃強度)を得るという観点や、溶融混練時に溶融樹脂粘度の上昇を抑え、樹脂温度の過度な上昇を抑えるという観点から、好ましくは、ポリオレフィン樹脂(成分(A))を成分(E)および成分(F)によって酸変性する工程と、得られた酸変性物とポリアミド樹脂(成分(B))、導電性カーボンブラック(成分(C))およびテルペンフェノール樹脂(成分(D))とを配合および/または混練する工程を含み、前記の酸変性する工程と配合および/または混練する工程を別工程とする製造方法である。
【0041】
さらに好ましい製造方法としては、成分(A)を成分(E)および成分(F)で変性する第一の工程と、第一の工程で得られた変性物に成分(B)を加えて溶融混練する第二の工程と、次いで、第二の工程で得られた溶融混練物に成分(C)を加えて溶融混練する第三の工程を含み、成分(D)を第二の工程および/または第三の工程で加えて溶融混練する製造方法である。
【0042】
第一の工程は、成分(A)を成分(E)および成分(F)で変性し、成分(A)の変性物を得る行程である。具体的には、単軸、二軸または多軸の連続混練機もしくはバッチ式混練機を用いて溶融混練することが好ましい。経済的には二軸の連続混練機が好ましい。この時の温度は、樹脂の温度で130〜280℃である。実際の混練機のシリンダー温度の設定は樹脂の溶融に要する吸熱と剪断による発熱を考慮して150〜260℃程度に設定する場合が多い。また、成分(A)の変性方法としては、成分(A)、成分(E)および成分(F)を溶媒に溶かして液中で変性する方法や、高速の攪拌羽根を有するヘンシェルミキサーなどの混合機内で、成分(A)のガラス転移温度以上にあり、かつ固体状態にある成分(A)に、成分(E)および成分(F)を添加して変性する方法等が挙げられる。
【0043】
第二の工程は、第一の工程で得られた変性物に、成分(B)、または成分(B)と成分(D)を溶融混練することによって、熱可塑性樹脂組成物を得る工程である。具体的には、溶融混練は単軸、二軸または多軸の連続混練機もしくはバッチ式混練機を用いることが好ましい。経済的には二軸の連続混練機が好ましい。この時、第一の工程で得られた成分(A)の変性物は溶融したままのものでも良く、一旦冷却して固化したものでもよい。溶融したまま、連続工程で行う方が経済的には有利である。第二の工程の樹脂の温度は200〜360℃である。実際の混練機のシリンダー温度の設定は樹脂の溶融に要する吸熱と剪断による発熱を考慮し、また、十分に溶融でき、樹脂を劣化させないという観点から、220〜300℃程度に設定する場合が多い。
【0044】
第三の工程は、第二の工程で得られた溶融混練物に成分(C)、または成分(C)と成分(D)を溶融混練することによって、熱可塑性樹脂組成物を得る工程である。具体的には、溶融混練は単軸、二軸または多軸の連続混練機もしくはバッチ式混練機を用いることが好ましい。経済的には二軸の連続混練機が好ましい。この時、第二の工程で得られた溶融混練物は溶融したままのものでもよく、一旦冷却して固化したものでもよい。溶融したまま連続工程で行う方が経済的には有利である。成分(C)の配合については、成分(C)をそのまま配合してもよく、例えば、予め別の工程で成分(B)と溶融混練してマスターバッチを用意しておき、そのマスターバッチを用いてもよい。第三の工程の樹脂の温度は240〜360℃である。実際の混練機のシリンダー温度の設定は樹脂の溶融に要する吸熱と剪断による発熱を考慮し、また、十分に溶融でき、樹脂を劣化させないという観点から、240〜300℃程度に設定する場合が多い。
【0045】
また、上記の第一工程から第三工程を含む製造方法において、溶融樹脂を各工程間で一旦冷却固化してもよいが、経済的観点からは、溶融したままで行う連続工程が好ましい。この時、シリンダーに沿って3つのフィード口を持ち、その各々のフィード口の後(次のフィード口との間、第三フィード口の後はダイとの間)に、混練部を持つ二軸混練機を用いる方法が経済的に有利である。
【0046】
本発明の熱可塑性樹脂組成物の製造方法としては、熱可塑性樹脂組成物に導電性、流動性、耐衝撃性のすべてが良好な性能を発現させるためには、上記の工程を含む製造方法が好ましい。
【0047】
本発明の熱可塑性樹脂組成物は、射出成形法、ブロー成形法、シート成形法、真空成形法等の幅広い成形法に適用することが可能であり、特に射出成形法への適用が最適である。また得られた成形品は自動車用外板部品や家電製品、電子機器部品に幅広く使用できる。特に静電気を嫌い、製品の寸法安定性が求められる自動車の燃料タンク用ヒューエルキャップ等に好適に用いられる。
【0048】
【実施例】
以下に実施例および比較例を示して本発明を詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
[各組成物及び試験片の作成]
各実施例及び比較例を表に示すような組成で混合し、12のバレルからなるシリンダーにおいてバレル1に第一のフィード口、バレル6に第二のフィード口、バレル9に第三のフィード口を持つの二軸混練機(東芝機械製 TEM−50A)で、シリンダー温度を第一のフィード口から第一のフィード口と第二のフィード口の間にある第一の混練部までを240℃、第一の混練部よりも下流側(ダイ側)を260℃として押し出し、水槽にて冷却後ストランドカッターによりペレット化して組成物を得た。
上記で得られたペレットを130℃ 2時間真空乾燥した後、射出成形機(東芝機械製 IS220EN)で、シリンダー温度260℃、射出圧力1200kg/cm2、金型温度50℃の条件で各テストピースおよび平板(150mm×150mm、厚み:3mm)を成形した。
上記で得られたペレット、テストピースおよび平板を、下記の方法に従って試験して、データを得た。
【0049】
[メルトフローレイト(MRF)の測定](単位:dg/min)
二軸混練機よって得られたペレットを140℃で5時間真空乾燥した後、ASTM D−1238に準拠して測定した。但し、荷重は49N、設定温度は280℃で行った。
【0050】
[アイゾッド衝撃強度の測定](単位:KJ/m2
前述の射出成形によって得た3.2mmアイゾット用試験片を、ASTM D256に準拠してノッチを入れ23℃雰囲気下で衝撃テストを実施した。
【0051】
[体積抵抗の測定](単位:Ω・cm)
前述の射出成形によって得た3.0mmの平板を高抵抗抵抗計(Hiresta IP MCP−HT260)を用い、23℃、印加電圧 500Vで測定した。
【0052】
[吸水率の測定](単位:%)
前述の射出成形によって得た3.0mmの平板を、40℃95%RHの雰囲気下で200時間強制吸水の状態調節し、その後、23℃50%RHの雰囲気下で30分冷却後、重量を測定し、強制吸水前の重量との差から吸水率を求めた。
【0053】
[吸水寸法変化率の測定](単位:%)
前述の射出成形によって得た3.0mmの平板を、40℃95%RHの雰囲気下で96時間強制吸水の状態調節し、その後、23℃50%RHの雰囲気下で30分冷却後、成形時の溶融樹脂の流動方向に対し直角方向の寸法を測定し、強制吸水前の寸法との差から吸水寸法変化率を求めた。
【0054】
実施例及び比較例には、下記の原料を用いた。
[ポリプロピレン]
PP:ノーブレン AD630G2(住友化学工業株式会社製)
[ポリアミド樹脂]
PA6:A1020BRL(ユニチカ株式会社製)
[相容化剤]
MAH:相容化剤 無水マレイン酸
[カーボンブラック]
CBMB:ケッチェンブラックEC600JD(ライオン・アクゾ株式会社製)を15重量%含むPA6のマスターバッチ
ケッチェンブラックEC600JD(ライオン・アクゾ株式会社製):BET法表面積1270m2/g、DBP吸油量495ml/100g
[テルペンフェノール]
テルペン樹脂YP902(ヤスハラケミカル株式会社製) 水酸基価=240
[耐衝撃材]
EPR:エスプレンSPO V0111(住友化学工業株式会社製)
[添加剤]
添加剤1:GSYP101(吉富ファインケミカル株式会社製)
添加剤2:SAH:無水コハク酸
[その他]
PO:パーオキサイド 1,3−ビス(t−ブチルパーオキシジイソプロピル)ベンゼンを、ポリプロピレンで8%濃度に希釈したもの。
【0055】
実施例1〜2および比較例1〜3
表1に各実施例および比較例の組成と得られた組成物のMRF、アイゾット衝撃強度、体積抵抗、吸水率、吸水寸法変化率を示した。
【0056】
実施例1は、成分(D)(テルペンフェノール)を第二のフィード口から3重量部、実施例2は、成分(D)を第三のフィード口から3重量部それぞれ添加したのに対して、比較例1は成分(D)を未添加とした。それ以外は、実施例1、2と同じとした。
【0057】
実施例1、2と比較例1を比較すると、実施例1、2は吸水率が低く、吸水後の寸法変化率が小さく、寸法安定性に優れることがわかる。
【0058】
比較例2は、成分(D)を第一のフィード口から3重量部添加した以外は、実施例1,2と同じとした。実施例1、2と比較例2を比較すると、実施例1、2はアイゾット衝撃強度が高く、耐衝撃性と他物性とのバランスが良好であることがわかる。
【0059】
比較例3は、成分(D)を第二のフィード口から6重量部添加した以外は、実施例比較例1、2と同じとした。実施例1、2と比較例3を比較すると、実施例1、2はアイゾット衝撃強度が高く、耐衝撃性と他物性とのバランスが良好であることがわかる。
【0060】
【表1】

Figure 0003961891
【0061】
【発明の効果】
以上説明したとおり、本発明によれば、導電性を有し、吸水による寸法変化が小さく、流動性、耐衝撃性のバランスに優れる熱可塑性樹脂組成物、その製造方法およびその熱可塑性樹脂組成物を用いて得られる燃料タンク用キャップを得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoplastic resin composition, a method for producing the same, and a fuel tank cap obtained using the thermoplastic resin composition. More specifically, the present invention relates to a thermoplastic resin composition having conductivity, small dimensional change due to water absorption, and excellent balance between fluidity and impact resistance, a method for producing the same, and a fuel tank cap.
[0002]
[Prior art]
Polyamide resin has excellent chemical resistance to gasoline and other organic solvents and alkaline liquids, and has high fluidity, heat resistance, and creep resistance, so it is used as an automotive exterior material and engine room parts. In addition, carbon black is melt-kneaded to provide conductivity, suppress the generation of static electricity and charge, and have a function that enables discharge in a relatively short time. It is used as a system component. However, the polyamide resin has the disadvantage that the dimensional change becomes large due to water absorption, and the impact strength is remarkably lowered by the addition of carbon black. In order to solve these problems, a method of blending a modified polyethylene copolymer to suppress dimensional change due to water absorption and improving impact resistance is known, but it has conductivity required as a fuel tank cap. The impact strength was not achieved at the same time.
[0003]
As a method for achieving both conductivity and impact resistance, Japanese Patent Application Laid-Open No. 11-180171 describes blending a carbon black dispersant. However, it is insufficient in terms of fluidity and suppression of dimensional change during water absorption, and there is also a problem that the carbon black dispersant contaminates the mold during molding.
[0004]
It is also known to use modified polypropylene as a modifier for polyamide resin. When modified polypropylene is used, fluidity and conductivity are ensured, but dimensional change due to water absorption is still insufficient, and all of fluidity, impact resistance, conductivity, and dimensional stability upon water absorption are satisfied. No resin was obtained.
[0005]
[Problems to be solved by the invention]
An object of the present invention is obtained by using a thermoplastic resin composition having conductivity, small dimensional change due to water absorption, and excellent balance between fluidity and impact resistance, a production method thereof, and the thermoplastic resin composition. The object is to provide a fuel tank cap.
[0006]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied to solve the above-mentioned problems. As a result, polyolefin resin (component (A)), polyamide resin (component (B)), conductive carbon black (component (C)), and terpene phenol resin. A thermoplastic resin composition containing (component (D)), wherein the weight ratio of component (A) to component (B) ((A) / (B)) is in a certain range, and the component (C) The amount is in a certain range with respect to the total amount of component (A) and component (B), and the amount of component (D) is in a certain range with respect to the total amount of component (A) and component (B) The present inventors have found that a thermoplastic resin composition can solve the above problems and have completed the present invention.
[0007]
That is, the present invention
A thermoplastic resin composition containing the following components (A) to (D), wherein the weight ratio of component (A) to component (B) ((A) / (B)) is 5/95 to 70/30. The amount of component (C) is 1 to 20 parts by weight relative to 100 parts by weight of the total amount of component (A) and component (B), and the amount of component (D) is component (A) and component ( The thermoplastic resin composition is 1 to 5 parts by weight relative to 100 parts by weight of the total amount of B).
Component (A): Polyolefin resin
Component (B): Polyamide resin
Component (C): Conductive carbon black
Ingredient (D): Terpene phenol resin
The present invention also relates to a method for producing the above thermoplastic resin composition, and a fuel tank cap obtained by using the thermoplastic resin composition.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The component (A) used in the thermoplastic resin composition of the present invention is a polyolefin resin.
The polyolefin resin is an olefin homopolymer or copolymer. Examples of olefins include α-olefins and cyclic olefins. Examples of the α-olefin include ethylene, propylene, butene-1, pentene-1, hexene-1, 3-methylbutene-1, 4-methylpentene-1, octene-1, decene-1, dodecene-1, and tetradecene-1. , Hexadecene-1, octadecene-1, eicosene-1, and the like. Examples of the cyclic olefin include cyclic olefins described in JP-A-2-115248.
Among the polyolefins, a polypropylene resin is preferable from the viewpoints of the fluidity of the final composition and the appearance as a product, rigidity, heat resistance, and economy.
[0009]
Polypropylene resins include crystalline polypropylene homopolymers, crystalline propylene homopolymer moieties obtained in at least one step of polymerization and propylene and ethylene and / or at least one other α-olefin (e.g. , Butene-1, hexene-1, etc.), and a crystalline propylene-ethylene block copolymer having a propylene-ethylene random copolymer portion obtained by copolymerization. It may be a mixture with a propylene-ethylene block copolymer. Examples of the method for producing the polypropylene resin include a polymerization method using a homogeneous catalyst such as a titanium catalyst, a supported catalyst, or a metallocene.
[0010]
The component (B) used in the thermoplastic resin composition of the present invention is a polyamide resin.
The “polyamide resin” used in the present invention is an aliphatic polyamide resin containing a structural unit derived from lactams, an aliphatic polyamide resin obtained by polymerization of aminocarboxylic acid, or a saturated aliphatic group having 4 to 12 carbon atoms. It means an aliphatic polyamide resin or a thermoplastic aromatic polyamide obtained by polycondensation of a dicarboxylic acid and an aliphatic diamine having 2 to 12 carbon atoms. These polyamide resins may be used alone or in combination of two or more at any ratio. These polyamide resins may be crystalline or amorphous.
[0011]
As the polyamide resin, a polyamide resin having substantially the same amount of amine end groups and carboxyl end groups may be used, or a polyamide resin in which the amount of amine end groups is larger than the amount of carboxyl end groups may be used. It is also possible to use a polyamide resin in which the amount of carboxyl end groups is larger than the amount of amine end groups, or a mixture in which these polyamide resins are mixed in an arbitrary ratio.
[0012]
Examples of the lactams used in the aliphatic polyamide resin containing a structural unit derived from the above lactams include ε-caprolactam and ω-laurolactam.
[0013]
Examples of the aminocarboxylic acid used in the aliphatic polyamide resin obtained by polymerization of the above aminocarboxylic acid include 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid. Can do.
[0014]
Examples of the saturated aliphatic dicarboxylic acid used in the aliphatic polyamide resin obtained by polycondensation of the saturated aliphatic dicarboxylic acid having 4 to 12 carbon atoms and the aliphatic diamine having 2 to 12 carbon atoms include adipic acid, Examples thereof include pimelic acid, azelaic acid, suberic acid, sebacic acid and dodecanedioic acid, and examples of the aliphatic diamine include hexamethylene diamine and octamethylene diamine.
[0015]
In the polycondensation of saturated aliphatic dicarboxylic acid and aliphatic diamine, generally equimolar amounts of dicarboxylic acid and diamine can be used. Further, by using an excessive amount of diamine, the amount of amine end groups in the obtained polyamide resin can be made larger than the amount of carboxyl end groups, and conversely, by using an excessive amount of dicarboxylic acid, the resulting polyamide resin can be obtained. The amount of carboxyl end groups therein can be greater than the amount of amine end groups.
[0016]
Further, instead of saturated aliphatic dicarboxylic acid, an ester or acid chloride or acid anhydride of saturated aliphatic dicarboxylic acid may be used, and an ester or acid anhydride of saturated aliphatic dicarboxylic acid and saturated aliphatic dicarboxylic acid may be used. A mixture of these may also be used. Similarly, an aliphatic diamine salt may be used instead of the aliphatic diamine, or a mixture of an aliphatic diamine and an aliphatic diamine salt may be used.
[0017]
The “aromatic polyamide” in the thermoplastic aromatic polyamide means a polyamide having an aromatic nucleus and an amide bond in the main chain skeleton. An example of the aromatic polyamide used in the present invention is polyhexamethylene isophthalamide (nylon 6I).
[0018]
The aromatic polyamide used in the present invention can be produced by the method exemplified below.
(1) A method of polycondensing aromatic amino acids
(2) Method of polycondensing aromatic dicarboxylic acid and diamine
(3) Method of polycondensing aromatic amino acid, aromatic dicarboxylic acid and diamine
(4) Method of polycondensation of aromatic dicarboxylic acid and diisocyanate
Examples of the aromatic amino acid used in the production of the above aromatic polyamide include paraaminomethylbenzoic acid and paraaminoethylbenzoic acid, and examples of the aromatic dicarboxylic acid include terephthalic acid and isophthalic acid. Examples of the diisocyanate include 4,4-diphenylmethane diisocyanate and tolylene diisocyanate.
[0019]
And as a diamine used in manufacture of said aromatic polyamide, hexamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2,2,4- / 2,4,4-trimethylhexamethylene diamine, metaxylylene diamine Amine, paraxylylenediamine, bis (p-aminocyclohexyl) methane, bis (p-aminocyclohexyl) propane, bis (3-methyl, 4-aminocyclohexyl) methane, 1,3-bis (aminomethyl) cyclohexane, 1 , 4-bis (aminomethyl) cyclohexane.
[0020]
Examples of the aliphatic polyamide resin include nylon 66, nylon 69, nylon 610, nylon 612, nylon 46, nylon 6, nylon 11 and nylon 12. Examples of the aromatic polyamide include nylon 6I, nylon 6T, and nylon 6I6T. Among the above polyamide resins, nylon 6, nylon 66, or a mixture in which nylon 6 and nylon 66 are mixed at an arbitrary ratio is preferable.
[0021]
Component (C) used in the thermoplastic resin composition of the present invention is conductive carbon black.
Examples of the conductive carbon black include acetylene black and furnace black. Since this carbon black desirably imparts the necessary electrical conductivity to the composition with a small amount of addition, acetylene black and oil furnace black, particularly oil furnace black with few impurities and excellent conductivity are preferred. . Among them, in particular, XCF (Extra Conductive Black), SCF (Super Conductive Furnace Black), CF (Conductive Furnace Black) or SAF (Super Abbreviation Black) can be used.
[0022]
Among them, from the viewpoint of preventing the deterioration of the resin by suppressing the conductivity of the obtained resin composition, the increase in viscosity and the significant heat generation during kneading. 2 BET specific surface area by adsorption is 750m 2 / G or more, particularly preferably 1000 m 2 From the viewpoint of conductivity, conductive carbon black having a DBP oil absorption of 300 ml / 100 g or more, particularly preferably 400 ml / 100 g or more is preferable.
[0023]
The conductive carbon black (component (C)) used in the present invention may be added as it is, such as in powder form or granular form. Further, the resin used in the present invention, for example, a polyamide resin (component (B)) may be previously melt-kneaded and used as a master batch. From the problem of dispersion of conductive carbon black (component (C)), it is preferable to use it as a master batch.
[0024]
Component (D) used in the thermoplastic resin composition of the present invention is a terpene phenol resin.
The terpene phenol resin is a copolymer of terpenes and phenols. Terpenes are (C Five H 8 ) Hydrocarbon compound represented by n or an oxygen-containing compound derived therefrom, for example, monoterpenes (when n = 2, myrcene, osymene, pinene, limonene, citronole, borneol, menthol, camphor, etc.), sesquiterpenes (When n = 3, curcumen, etc.), diterpenes (when n = 4, camphorene, hinokiol, etc.), tetraterpenes (when n = 8, carotenoids, etc.), polyterpenes (natural rubber), etc. Can do. Preferred terpenes are monoterpenes, particularly pinene and limonene.
[0025]
Phenols are compounds having at least one hydroxyl group in an aromatic ring such as a benzene ring or a naphthalene ring, and may have a substituent (for example, a halogen atom or an alkyl group) in the aromatic ring. For example, phenol, cresol, xylenol, naphthol, catechol, resorcin, hydroquinone, pyrogallol and the like can be mentioned. A preferred phenol is phenol.
[0026]
A preferred terpene phenol resin is a copolymer of monoterpenes and phenol. More preferred is a copolymer of phenol and monoterpenes such as α-pinene and limonene, which are industrially easy to produce. The hydroxyl value of the terpene phenol resin used in the present invention is usually 150 or more, and preferably 200 or more from the viewpoint of the effect of suppressing dimensional changes due to water absorption.
[0027]
Component (E) used in the thermoplastic resin composition of the present invention is a compatibilizing agent.
The compatibilizer used in the present invention is a compound that can be used for the purpose of improving the compatibility between the polypropylene resin and the polyamide resin. From the reaction efficiency and economic viewpoint of polypropylene resin and polyamide resin, maleic anhydride, fumaric acid, maleic acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, aconitic acid, aconitic anhydride, citric acid and malic acid At least one selected from the group consisting of
[0028]
Component (F) used in the thermoplastic resin composition of the present invention is an organic peroxide.
The organic peroxide used in the present invention preferably has an action of extracting protons from the polypropylene resin after being decomposed to generate radicals. Specifically, di-3-methoxybutyl peroxy is used. Dicarbonate, di-2-ethylhexyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, diisopropyl peroxydicarbonate, t-butyl peroxyisopropyl carbonate, dimyristyl peroxycarbonate, 1,1 , 3,3-tetramethyl butyl neodecanoate, α-cumyl peroxy neodecanoate, t-butyl peroxyneodecanoate, 1 bis (t-butylperoxy) cyclohexane, 2,2 bis (4,4-di-t- Butyl peroxy Chlohexyl) propane, 1,1-bis (t-butylperoxy) cyclododecane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy Laurate, 2,5 dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxyacetate, 2,2-bis (t-butylperoxy) butene, t-butylperoxybenzoate, n- Butyl-4,4-bis (t-beroxy) valerate, di-t-butylberoxyisophthalate, dicumyl peroxide, α-α′-bis (t-butylperoxy-m-isopropyl) benzene, 2, 5-dimethyl-2,5-di (t-butylperoxy) hexane, 1,3-bis (t-butylperoxy) Diisopropyl) benzene, t-butylcumyl peroxide, di-t-butyl peroxide, p-menthane hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3 and the like It is done.
[0029]
The organic peroxide having a half-life of 1 minute is preferably 50 to 230 ° C. in terms of controlling the reaction temperature in the component (A) modification step. An organic peroxide may be used independently and may be used together 2 or more types.
[0030]
The content ratio of each component in the thermoplastic resin composition of the present invention is such that the weight ratio of component (A) to component (B) (component (A) / component (B)) is 5/95 to 70/30, The amount of component (C) is 1 to 20 parts by weight with respect to 100 parts by weight of the total amount of component (A) and component (B), and the amount of component (D) is the amount of component (A) and component (B). It is 1-5 weight part with respect to 100 weight part of total amounts.
[0031]
In the weight ratio of component (A) to component (B) (component (A) / component (B)), if the amount of component (A) is excessive, the thermoplastic resin composition exhibits characteristics close to that of polypropylene resin, and the strength And creep properties may deteriorate, and gasoline resistance may decrease. On the other hand, if the component (B) is excessive, the dimensional change during water absorption may increase. On the other hand, if the amount of the component (C) is less than 1 part by weight, the intended conductivity may not be obtained. Conversely, if it exceeds 20 parts by weight, the impact resistance may be lowered or the melt viscosity may be reduced. There is a case where molding processability is lowered due to the increase. About a component (D), if it is less than 1 weight part, the effect which suppresses the dimensional change by water absorption may become low, and conversely when it exceeds 5 weight part, impact resistance may fall.
[0032]
Further, the amount of the component (E) is 0.05 with respect to 100 parts by weight of the total amount of the component (A) and the component (B) from the viewpoint of compatibility between the polypropylene resin and the polyamide resin, impact resistance and strength. ~ 2 parts by weight.
[0033]
The amount of component (F) is such that the polypropylene resin is sufficiently acid-modified to obtain sufficient compatibility between the polypropylene resin and the polyamide resin, and sufficient impact strength is obtained. From the viewpoint of obtaining sufficient impact strength by molecular weight and from the viewpoint of obtaining a good appearance of the molded product, 0.01 to 3 weights with respect to 100 parts by weight of the total amount of the component (A) and the component (B). Part.
[0034]
In addition to the above components (A) to (F), a rubber-like substance can be added as an optional component to the thermoplastic resin composition of the present invention.
Rubber-like materials include natural and synthetic polymers that are elastic at room temperature. Specific examples thereof include natural rubber, butadiene copolymer, styrene-isoprene copolymer, butadiene-styrene copolymer (including all of random copolymer, block copolymer, graft copolymer, etc.). Isoprene polymer, chlorobutadiene polymer, butadiene-acrylonitrile copolymer, isobutylene polymer, isobutylene-butadiene copolymer, isobutylene-isoprene copolymer, acrylate polymer, ethylene-propylene copolymer, ethylene-propylene -Diene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, ethylene-octene copolymer, olefin-based rubber such as EPDM to which a third component is added, thiocol rubber, polysulfide rubber, polyurethane rubber, Polyether rubber (for example, polypropylene Sid, etc.), epichlorohydrin rubber.
[0035]
As a method for producing these rubber-like substances, a general polymerization method using a general polymerization catalyst (for example, peroxide, trialkylaluminum, lithium halide, nickel-based catalyst, vanadium-based catalyst, etc.) (for example, For example, emulsion polymerization, solution polymerization and the like.
[0036]
Further, those having various crosslinking degrees, those having various proportions of microstructures (for example, cis structure, trans structure, vinyl group, etc.) or those having various average rubber particle diameters can be used. When these rubber-like substances are copolymers, any of various copolymers such as random copolymers, block copolymers, and graft copolymers can be used.
[0037]
Furthermore, when producing these rubber-like substances, it is also possible to carry out copolymerization with monomers such as other olefins, dienes, aromatic vinyl compounds acrylic acid, acrylic acid esters, methacrylic acid esters, etc. It is. As the copolymerization method, any method such as random copolymerization, block copolymerization, and graft copolymerization can be used. Specific examples of these monomers include ethylene, propylene, butene, styrene, chlorostyrene, α-methylstyrene and the like as other olefins, and butadiene, isobutylene, chlorobutadiene and the like as dienes. Examples of acrylic esters include methyl acrylate, ethyl acrylate, butyl acrylate, etc., and examples of methacrylic esters include methyl methacrylate and the like, and polar groups such as acrylic acid, acrylonitrile, and maleic anhydride. Also included are monomers having
[0038]
Examples of rubber-like substances include ethylene-propylene copolymers, ethylene-propylene-diene copolymers, ethylene-butene copolymers, ethylene-hexene copolymers, ethylene-octene copolymers, and olefins such as EPDM. A rubber is preferably used from the viewpoint of compatibility with polypropylene resin. Further, an ethylene-propylene copolymer grafted with an acid such as maleic anhydride, an ethylene-propylene-diene copolymer, an ethylene-butene copolymer, an ethylene-hexene copolymer, an ethylene-octene copolymer, An olefin rubber such as EPDM to which three components are added is preferably used.
[0039]
Furthermore, in addition to the components (A) to (E), the thermoplastic resin composition of the present invention, if necessary, other conventional additives such as a flame retardant, during resin kneading or molding, Fillers, heat-resistant agents, weathering agents, lubricants, mold release agents, crystal nucleating agents, plasticizers, fluidity improvers, stabilizers, and the like can be added. Stabilizers include all conventional stabilizers, thermal stabilizers, antioxidants (phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants, copper antioxidants), light stabilizers An agent (hindered amine antioxidant), and further a polymerization inhibitor.
[0040]
The method for producing the thermoplastic resin composition of the present invention can be produced by an ordinary method for producing a thermoplastic resin composition of a polyolefin resin and a polyamide resin.
From the viewpoint of obtaining sufficient physical properties (for example, impact strength) of the thermoplastic resin composition of the present invention and from the viewpoint of suppressing an increase in the melt resin viscosity during melt kneading and suppressing an excessive increase in the resin temperature, preferably, The step of acid-modifying polyolefin resin (component (A)) with component (E) and component (F), the obtained acid-modified product and polyamide resin (component (B)), conductive carbon black (component (C)) ) And a terpene phenol resin (component (D)) are blended and / or kneaded, and the acid-modifying step and the blending and / or kneading step are separate steps.
[0041]
As a more preferable production method, the first step of modifying the component (A) with the component (E) and the component (F), and the component (B) is added to the modified product obtained in the first step, followed by melt-kneading. A second step of adding the component (C) to the melt-kneaded product obtained in the second step and melt-kneading the component (D) in the second step and / or It is a production method in which it is melt kneaded in the third step.
[0042]
The first step is a step of modifying component (A) with component (E) and component (F) to obtain a modified product of component (A). Specifically, it is preferable to melt-knead using a uniaxial, biaxial or multiaxial continuous kneader or batch kneader. Economically, a biaxial continuous kneader is preferred. The temperature at this time is 130 to 280 ° C. as the temperature of the resin. In practice, the cylinder temperature of the kneader is often set to about 150 to 260 ° C. in consideration of heat absorption required for melting the resin and heat generation due to shearing. In addition, as a modification method of component (A), component (A), component (E) and component (F) are dissolved in a solvent and modified in a liquid, mixing such as a Henschel mixer having a high-speed stirring blade Examples include a method in which the component (A) and the component (F) are added to the component (A) that is at or above the glass transition temperature of the component (A) and is in a solid state and modified.
[0043]
The second step is a step of obtaining a thermoplastic resin composition by melt-kneading component (B) or component (B) and component (D) in the modified product obtained in the first step. . Specifically, it is preferable to use a uniaxial, biaxial or multiaxial continuous kneader or batch kneader for melt kneading. Economically, a biaxial continuous kneader is preferred. At this time, the modified product of the component (A) obtained in the first step may be in a molten state or may be cooled and solidified. It is economically advantageous to carry out the process in a continuous process while it is melted. The temperature of the resin in the second step is 200 to 360 ° C. The cylinder temperature of the actual kneader is often set to about 220 to 300 ° C. in consideration of heat absorption required for melting the resin and heat generation due to shear, and from the viewpoint that it can be sufficiently melted and does not deteriorate the resin. .
[0044]
The third step is a step of obtaining a thermoplastic resin composition by melt-kneading component (C), or component (C) and component (D), in the melt-kneaded product obtained in the second step. . Specifically, it is preferable to use a uniaxial, biaxial or multiaxial continuous kneader or batch kneader for melt kneading. Economically, a biaxial continuous kneader is preferred. At this time, the melt-kneaded product obtained in the second step may be as it is melted or may be cooled and solidified. It is economically advantageous to carry out the melt in a continuous process. Regarding the blending of the component (C), the component (C) may be blended as it is. For example, a masterbatch is prepared in advance by melt-kneading with the component (B) in a separate step, and the masterbatch is used. May be. The temperature of the resin in the third step is 240 to 360 ° C. The actual setting of the cylinder temperature of the kneader takes into consideration the endotherm required for melting the resin and the heat generated by shearing, and is often set to about 240 to 300 ° C. from the viewpoint of sufficient melting and no deterioration of the resin. .
[0045]
Moreover, in the manufacturing method including the first step to the third step, the molten resin may be once cooled and solidified between the steps, but from the economical viewpoint, a continuous step performed while being melted is preferable. At this time, there are three feed ports along the cylinder, and after each feed port (between the next feed port and after the third feed port is between the dies), a biaxial shaft with a kneading part A method using a kneader is economically advantageous.
[0046]
As a method for producing the thermoplastic resin composition of the present invention, in order for the thermoplastic resin composition to exhibit good performance in terms of conductivity, fluidity, and impact resistance, a production method including the above-described steps may be used. preferable.
[0047]
The thermoplastic resin composition of the present invention can be applied to a wide range of molding methods such as an injection molding method, blow molding method, sheet molding method, vacuum molding method, etc., and is particularly suitable for application to an injection molding method. . The obtained molded product can be widely used for automotive outer plate parts, home appliances, and electronic device parts. It is particularly suitable for fuel tank fuel caps for automobiles that do not like static electricity and require dimensional stability of products.
[0048]
【Example】
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples, but the present invention is not limited to these examples.
[Preparation of each composition and test piece]
Each Example and Comparative Example were mixed in the composition shown in the table, and in a cylinder consisting of 12 barrels, the first feed port for barrel 1, the second feed port for barrel 6, and the third feed port for barrel 9 The temperature of the cylinder from the first feed port to the first kneading section between the first feed port and the second feed port is 240 ° C. Then, the downstream side (die side) of the first kneading part was extruded at 260 ° C., cooled in a water tank, and then pelletized with a strand cutter to obtain a composition.
The pellets obtained above were vacuum-dried at 130 ° C. for 2 hours, and then the cylinder temperature was 260 ° C. and the injection pressure was 1200 kg / cm using an injection molding machine (IS220EN manufactured by Toshiba Machine). 2 Each test piece and a flat plate (150 mm × 150 mm, thickness: 3 mm) were molded under the conditions of a mold temperature of 50 ° C.
The pellets, test pieces and flat plates obtained above were tested according to the following method to obtain data.
[0049]
[Measurement of Melt Flow Rate (MRF)] (Unit: dg / min)
The pellets obtained by the biaxial kneader were vacuum-dried at 140 ° C. for 5 hours, and then measured according to ASTM D-1238. However, the load was 49N and the set temperature was 280 ° C.
[0050]
[Measurement of Izod impact strength] (Unit: KJ / m 2 )
The test piece for 3.2 mm Izod obtained by the above-described injection molding was notched according to ASTM D256 and subjected to an impact test in a 23 ° C. atmosphere.
[0051]
[Measurement of volume resistance] (Unit: Ω · cm)
A 3.0 mm flat plate obtained by the above-described injection molding was measured at 23 ° C. and an applied voltage of 500 V using a high resistance resistance meter (Hiresta IP MCP-HT260).
[0052]
[Measurement of water absorption] (Unit:%)
The 3.0 mm flat plate obtained by the above-described injection molding was subjected to forced water absorption for 200 hours in an atmosphere of 40 ° C. and 95% RH, then cooled for 30 minutes in an atmosphere of 23 ° C. and 50% RH, and then the weight was measured. The water absorption was determined from the difference from the weight before forced water absorption.
[0053]
[Measurement of dimensional change rate of water absorption] (Unit:%)
The 3.0 mm flat plate obtained by the above-described injection molding was subjected to forced water absorption for 96 hours in an atmosphere of 40 ° C. and 95% RH, then cooled for 30 minutes in an atmosphere of 23 ° C. and 50% RH, and then molded. The dimension in the direction perpendicular to the flow direction of the molten resin was measured, and the water absorption dimensional change rate was determined from the difference from the dimension before forced water absorption.
[0054]
The following raw materials were used in Examples and Comparative Examples.
[polypropylene]
PP: Noblen AD630G2 (manufactured by Sumitomo Chemical Co., Ltd.)
[Polyamide resin]
PA6: A1020BRL (manufactured by Unitika Ltd.)
[Compatibilizer]
MAH: compatibilizer maleic anhydride
[Carbon black]
CBMB: PA6 masterbatch containing 15% by weight of Ketjen Black EC600JD (Lion Akzo Co., Ltd.)
Ketjen Black EC600JD (Lion Akzo Co., Ltd.): BET method surface area 1270m 2 / G, DBP oil absorption 495ml / 100g
[Terpene phenol]
Terpene resin YP902 (manufactured by Yasuhara Chemical Co., Ltd.) hydroxyl value = 240
[Shock resistant material]
EPR: Esprene SPO V0111 (manufactured by Sumitomo Chemical Co., Ltd.)
[Additive]
Additive 1: GSYP101 (made by Yoshitomi Fine Chemical Co., Ltd.)
Additive 2: SAH: Succinic anhydride
[Others]
PO: peroxide 1,3-bis (t-butylperoxydiisopropyl) benzene diluted with polypropylene to 8% concentration.
[0055]
Examples 1-2 and Comparative Examples 1-3
Table 1 shows the compositions of the examples and comparative examples and the MRF, Izod impact strength, volume resistance, water absorption rate, and water absorption dimensional change rate of the obtained compositions.
[0056]
In Example 1, 3 parts by weight of component (D) (terpene phenol) was added from the second feed port, and in Example 2, 3 parts by weight of component (D) was added from the third feed port. In Comparative Example 1, the component (D) was not added. Other than that, it was the same as Examples 1 and 2.
[0057]
Comparing Examples 1 and 2 with Comparative Example 1, it can be seen that Examples 1 and 2 have a low water absorption rate, a small dimensional change rate after water absorption, and excellent dimensional stability.
[0058]
Comparative Example 2 was the same as Examples 1 and 2 except that 3 parts by weight of component (D) was added from the first feed port. Comparing Examples 1 and 2 with Comparative Example 2, it can be seen that Examples 1 and 2 have high Izod impact strength and a good balance between impact resistance and other physical properties.
[0059]
Comparative Example 3 was the same as Example Comparative Examples 1 and 2 except that 6 parts by weight of component (D) was added from the second feed port. Comparing Examples 1 and 2 with Comparative Example 3, it can be seen that Examples 1 and 2 have high Izod impact strength and a good balance between impact resistance and other physical properties.
[0060]
[Table 1]
Figure 0003961891
[0061]
【The invention's effect】
As described above, according to the present invention, the thermoplastic resin composition having conductivity, small dimensional change due to water absorption, and excellent balance between fluidity and impact resistance, its production method, and its thermoplastic resin composition A fuel tank cap obtained by using can be obtained.

Claims (7)

成分(A)を成分(E)および成分(F)で変性する工程と、前記変性工程で得られた変性物に成分(B)、成分(C)および成分(D)を配合および/または混練する工程とを含み、前記の変性する工程と配合および/または混練する工程が、別工程であり、成分(A)と成分(B)の重量比((A)/(B))が5/95〜70/30であり、成分(C)の量が成分(A)および成分(B)の合計量100重量部に対して1〜20重量部であり、成分(D)の量が成分(A)および成分(B)の合計量100重量部に対して1〜5重量部であり、成分(E)の量が成分(A)および成分(B)の合計量100重量部に対して0.05〜2重量部であり、成分(F)の量が成分(A)および成分(B)の合計量100重量部に対して0.01〜3重量部であることを特徴とする熱可塑性樹脂組成物の製造方法。
成分(A):ポリオレフィン樹脂
成分(B):ポリアミド樹脂
成分(C):導電性カーボンブラック
成分(D):テルペンフェノール樹脂
成分(E):無水マレイン酸、フマル酸、マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、アコニット酸、無水アコニット酸、クエン酸およびリンゴ酸からなる群から選ばれる少なくとも一種の相容化剤
成分(F):有機過酸化物
The step of modifying component (A) with component (E) and component (F), and blending and / or kneading component (B), component (C) and component (D) with the modified product obtained in the modification step And the step of blending and / or kneading is a separate step , and the weight ratio of component (A) to component (B) ((A) / (B)) is 5 / 95 to 70/30, the amount of component (C) is 1 to 20 parts by weight with respect to 100 parts by weight of the total amount of component (A) and component (B), and the amount of component (D) is the component ( 1 to 5 parts by weight with respect to 100 parts by weight of the total amount of A) and component (B), and the amount of component (E) is 0 with respect to 100 parts by weight of the total amount of component (A) and component (B). 0.05 to 2 parts by weight, and the amount of component (F) is 0.0 with respect to 100 parts by weight of the total amount of component (A) and component (B). Method for producing a thermoplastic resin composition you being a 3 weight parts.
Component (A): Polyolefin resin
Component (B): Polyamide resin
Component (C): Conductive carbon black
Ingredient (D): Terpene phenol resin
Component (E): at least one selected from the group consisting of maleic anhydride, fumaric acid, maleic acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, aconitic acid, aconitic anhydride, citric acid and malic acid Compatibilizer
Ingredient (F): Organic peroxide
成分(A)を成分(E)および成分(F)で変性する第一の工程と、第一の工程で得られた変性物と成分(B)を溶融混練する第二の工程と、第二の工程で得られた溶融混練物に成分(C)を加えて溶融混練する第三の工程とを含み、成分(D)を第二の工程および/または第三の工程で加えて溶融混練することを特徴とする請求項1に記載の熱可塑性樹脂組成物の製造方法。A first step of modifying component (A) with component (E) and component (F), a second step of melt-kneading the modified product obtained in the first step and component (B), and a second step And the third step of adding and melting the component (C) to the melt-kneaded product obtained in the step (2), and melt-kneading the component (D) in the second step and / or the third step. the method for producing a thermoplastic resin composition according to claim 1, characterized in that. ポリオレフィン樹脂(成分(A))が、ポリプロピレン樹脂であることを特徴とする請求項1または2に記載の熱可塑性樹脂組成物の製造方法The method for producing a thermoplastic resin composition according to claim 1 or 2 , wherein the polyolefin resin (component (A)) is a polypropylene resin. 導電性カーボンブラック(成分(C))のBET法比表面積が750〜1500m2/gであり、DBP吸油量が300ml/100g以上であることを特徴とする請求項1〜3のいずれかに記載の熱可塑性樹脂組成物の製造方法4. The conductive carbon black (component (C)) has a BET specific surface area of 750 to 1500 m 2 / g and a DBP oil absorption of 300 ml / 100 g or more. A method for producing a thermoplastic resin composition. テルペンフェノール樹脂(成分(D))の水酸基価が、200以上であることを特徴とする請求項1〜のいずれかに記載の熱可塑性樹脂組成物の製造方法The method for producing a thermoplastic resin composition according to any one of claims 1 to 4 , wherein the terpene phenol resin (component (D)) has a hydroxyl value of 200 or more. 請求項1〜5のいずれかに記載の熱可塑性樹脂組成物の製造方法によって製造された熱可塑性樹脂組成物。The thermoplastic resin composition manufactured by the manufacturing method of the thermoplastic resin composition in any one of Claims 1-5. 請求項に記載の熱可塑性樹脂組成物を用いて得られる燃料タンク用キャップ。A fuel tank cap obtained by using the thermoplastic resin composition according to claim 6 .
JP2002181097A 2002-06-21 2002-06-21 Thermoplastic resin composition Expired - Fee Related JP3961891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181097A JP3961891B2 (en) 2002-06-21 2002-06-21 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181097A JP3961891B2 (en) 2002-06-21 2002-06-21 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JP2004026869A JP2004026869A (en) 2004-01-29
JP3961891B2 true JP3961891B2 (en) 2007-08-22

Family

ID=31178021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181097A Expired - Fee Related JP3961891B2 (en) 2002-06-21 2002-06-21 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP3961891B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4489475B2 (en) * 2004-03-19 2010-06-23 株式会社プライムポリマー Polypropylene resin composition
JP2005264017A (en) * 2004-03-19 2005-09-29 Mitsui Chemicals Inc Polypropylene resin composition
JP4725118B2 (en) * 2005-02-02 2011-07-13 三菱化学株式会社 Conductive polyamide resin composition
JP4828258B2 (en) * 2006-02-28 2011-11-30 信越ポリマー株式会社 Packaging for electronic parts
TW201139556A (en) * 2010-03-15 2011-11-16 Toyo Boseki Polyamide resin composition for injection molding
EP3526284B1 (en) * 2016-10-17 2021-07-28 L. Brüggemann GmbH & Co. KG Additive for the controlled adjustment of the viscosity of polymers
JP2018123266A (en) * 2017-02-02 2018-08-09 古河電気工業株式会社 Conductive resin molding and conductive resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4724900B2 (en) * 1999-07-13 2011-07-13 東レ株式会社 Flame retardant polyamide resin composition and molded article thereof

Also Published As

Publication number Publication date
JP2004026869A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
EP0211479B1 (en) Glass fibre-reinforced polypropylene composition
FI110514B (en) Fiberglass reinforced grafted propylene polymer composition
EP2748260B1 (en) Recycled thermoplastic with toughener
CN111849069A (en) Composite rubber thermoplastic elastomer and preparation method thereof
JP3961891B2 (en) Thermoplastic resin composition
JPS59149940A (en) Propylene polymer composition
CN102653616B (en) Propylene resin composition
JPH051185A (en) Thermoplastic resin composition excellent in strength and its production
US5112916A (en) Olefin polymer and a resin composition containing the same
KR0179386B1 (en) Thermoplastic compositions based on polyolefin and vinyl-aromatic polymer
JPH0299549A (en) Polypropylene resin composition having high withstand voltage property
JP2008226850A (en) Flame-retardant thermoplastic elastomer resin composition and manufacturing method therefor
CN115678264A (en) Antistatic flame-retardant composite material and preparation method and application thereof
KR100515178B1 (en) Improved flame retardant thermoplastic composition
JP4306165B2 (en) Automotive tailgate
JP2597879B2 (en) Fiber reinforced polymer composition
JP3135298B2 (en) Thermoplastic molding
JPH06234888A (en) Composition for blow molding
JP2019006976A (en) Graft copolymer, thermoplastic resin composition, and molded article
JPS6079059A (en) Thermoplastic elastomer
CN112143105B (en) High-toughness high-efficiency flame-retardant polypropylene composition with good appearance and preparation method and application thereof
JP2012007066A (en) Resin composition for adhesion
JPH0912872A (en) Thermoplastic resin composition
JP2001106835A (en) High-strength polyolefin resin composition
JP2010272531A (en) Flame-retardant thermoplastic elastomer resin composition and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070419

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees