JP3960090B2 - Manufacturing method of coil-embedded dust core - Google Patents

Manufacturing method of coil-embedded dust core Download PDF

Info

Publication number
JP3960090B2
JP3960090B2 JP2002077115A JP2002077115A JP3960090B2 JP 3960090 B2 JP3960090 B2 JP 3960090B2 JP 2002077115 A JP2002077115 A JP 2002077115A JP 2002077115 A JP2002077115 A JP 2002077115A JP 3960090 B2 JP3960090 B2 JP 3960090B2
Authority
JP
Japan
Prior art keywords
coil
ferromagnetic metal
metal particles
dust core
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002077115A
Other languages
Japanese (ja)
Other versions
JP2003272922A (en
Inventor
和彦 柴田
英治 茂呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002077115A priority Critical patent/JP3960090B2/en
Publication of JP2003272922A publication Critical patent/JP2003272922A/en
Application granted granted Critical
Publication of JP3960090B2 publication Critical patent/JP3960090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、磁芯を一体化したインダクタ、その他の電子機器に用いるコイル封入圧粉磁芯の製造方法に係り、とくに導線間のショート(短絡)発生を防止したコイル封入圧粉磁芯製造方法に関する。
【0002】
【従来の技術】
近年、電気、電子機器の小型化が進み、小型(低背)で大電流に対応した圧粉磁芯が要求されている。圧粉磁芯の材料には、フェライト粉末や強磁性金属粉末が用いられている。
【0003】
強磁性金属粉末は、フェライト粉末に比較して飽和磁束密度が大きいため、直流重畳特性が高磁界まで保たれ、大電流を必要とする用途に適している。
【0004】
磁芯の小型化(低背)をさらに推進するため、コイルと磁性粉が一体になったコイルが提案されている。この構造のインダクタを、本明細書では、コイル封入圧粉磁芯と呼ぶ。
【0005】
従来から表面実装型のインダクタの構造が提案されている。例えば、特開平5−291046号公報には、絶縁被覆した市販電線に外部電極を接続し、市販電線を巻回した巻線全体を絶縁被膜で覆い、さらにそれらを包み込むように磁性粉末とともに成形することが開示されている。
【0006】
この場合、導線、つまり市販電線と磁性粉末の間の絶縁は確保されるが、導線間の絶縁は、市販電線の薄い絶縁被膜のみで保たれているため、巻線時の傷、又はリフロー時の応力疲労(クレージング:crazing)による被膜破れにより、導線間のショート不具合が発生することが問題となっていた。
【0007】
また、前記特開平5−291046号公報には、成形方法について明確な記述がないが、例えば、コイル封入圧粉磁芯の製造方法として、特許第3108931号公報に、粉末成形機を用いる方法が開示されている。この場合、導線間のプレス方向に強圧が加わり、導線の絶縁被膜がダメージを受け、導線間のショート不具合が多発していた。
【0008】
また、特開2001−267160号公報には、平角導線を使用し、引き出し線をコイルの上と下から引き出している例が示されている。しかし、この場合、強磁性金属粉末が導線間に入り込み、高圧成形されるため、その金属粉末を経由して、導線間のショート不具合が起こることがあった。
【0009】
【発明が解決しようとする課題】
コイル封入圧粉磁芯は、小型で大きなインダクタンスが得られる構造であるが、磁性粉の中にコイルが挿入され、粉末成形法により、3〜10トン/cmの高圧成形でプレスされるため、コイルを構成する導線間のショート不具合が問題となっていた。なお、1トン/cm =9.8×10Paである。
【0010】
本発明の第1の目的は、上記の点に鑑み、コイルを埋め込んだコイル封入圧粉磁芯の製造方法において、磁性粉末の平均粒子径とコイルを構成する導線の絶縁被膜の平均厚さを適切に設定することにより、コイルを構成する導線間のショート不具合の防止を図ったコイル封入圧粉磁芯の製造方法を提供することにある。
【0011】
また、本発明の第2の目的は、コイルを構成する導線間に強磁性金属粒子が入り込まない製法とすることで、コイルを構成する導線間のショート不具合の防止を図ったコイル封入圧粉磁芯の製造方法を提供することにある。
【0012】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0013】
【課題を解決するための手段】
コイル封入圧粉磁芯のショート不具合を解析した結果、コイルを構成する導線に元々存在する絶縁被膜のピンホール、又は巻線時に発生した絶縁被膜の傷があると、絶縁材をコーティングした強磁性金属粒子からなる強磁性金属粉末中に空心コイルをインサート成形する工程で、前記金属粒子を経由して線間ショートが起こることが判明した。
【0014】
そこで、コイル封入圧粉磁芯に用いる導線の絶縁被膜の平均厚さt(μm)と、絶縁材でコーティングされた強磁性金属粉末の平均粒子径φ(μm)の関係を調べた結果、φ<t×3の関係が成り立つ場合に、レアショート不具合が著しく減少することが判明した。
【0015】
また、コイルを構成する導線間に前記強磁性金属粒子が入り込まないように、予め熱融着すると、さらにレアショート不具合が減少することが判明した。
【0016】
そこで、本願請求項1の発明は、厚さ0.001〜0.010mmの熱融着層を絶縁被膜上に塗布した平角導線を厚さ方向に積層してエッジワイズ状に巻線した空心コイルを、該空心コイルの軸方向に圧力を加えた状態で熱融着させた後、重量比率で1〜8%の絶縁材をコーティングした強磁性金属粒子からなる磁性粉末中に、前記空心コイルをインサート成形したコイル封入圧粉磁芯の製造方法であって、
前記強磁性金属粒子が、Fe、Fe−Ni合金又はFe−Si合金であり、
前記強磁性金属粒子をコーティングする絶縁材がシリコン樹脂又はエポキシ樹脂であり、
前記強磁性金属粒子をコーティングした前記磁性粉末として、平均粒子径の3倍以上の粒子径を分級によりカットしたものを用い、
前記インサート成形の成形圧力が4×9.8×10〜7×9.8×10Paであり、
前記平角導線の絶縁被膜はポリエステル、ポリイミド又はエナメルであり、
前記平角導線の絶縁被膜の平均厚さをt(μm)、及び前記磁性粉末の平均粒子径をφ(μm)とするとき、
φ<t×3
を満足することを特徴としている。
【0020】
【発明の実施の形態】
以下、本発明に係るコイル封入圧粉磁芯製造方法の実施の形態を図面に従って説明する。
【0021】
図1は本発明に係るコイル封入圧粉磁芯の製造方法の第1の実施の形態であって、図1(A)はコイル上側の圧粉磁芯部を省略した平面図、(B)は正断面図である。図において、1はコイル、20は圧粉磁芯部であり、圧粉磁芯部20はコイル1に継線された電極端子5の外部導出部分を除き当該コイル1及び電極端子5の周囲を覆っている。
【0022】
前記コイル1は、絶縁被膜された平角導線2(平角銅線)をエッジワイズ状に数ターン巻線したもの、すなわち、厚さ方向に積層しかつ幅方向に湾曲状に曲げて筒状に数ターン巻回したものである。コイル1の両端部にはそれぞれ電極端子5が電気的に接続されている。コイル1の端部と電極端子5との継線部分及び電極端子5の圧粉磁芯部20内に埋設される部分は、絶縁被覆されている。なお、コイル1の端部を圧粉磁芯部20の外部に導出して直接電極端子として用いる継線レス構造としても差し支えない。
【0023】
前記圧粉磁芯部20に用いる強磁性金属粒子としては、Fe、Fe−Ni合金、Fe−Si合金等があり、これらから適宜選択すればよい。
【0024】
強磁性金属粒子をコーティングする絶縁材としては、シリコン樹脂、エポキシ樹脂等があり、これらの絶縁材を用いて前記強磁性金属粒子はコーティングされている。前記絶縁材の混合割合は、当該絶縁材をコーティングした強磁性金属粒子からなる磁性粉末に対する重量比率で1〜8%とする。なお、コーティングに使用する絶縁材の重量比を8%より多くすると、成形して得た圧粉磁芯部20の透磁率が低下し、大きなインダクタンスを得ることができず、また絶縁材の重量比を1%未満にすると各強磁性金属粒子相互間の絶縁が不充分となり、磁芯としての特性が大幅に低下するため、コーティングに使用する絶縁材の重量比は1〜8%が適している。
【0025】
そして、上記のように重量比率で1〜8%の絶縁材をコーティングした強磁性金属粒子からなる磁性粉末中に、前記コイル1を設けた状態で粉末成形機にて4〜7トン/cm程度の成形圧力をかけて圧粉磁芯部20を成形一体化する。圧粉磁芯部20の成形方法としては、例えば、前記磁性粉末を成形金型内に充填して圧縮成形することで、図1(A)のように圧粉磁芯部20の下部磁芯部20aを成形金型内に作製しておき、その上にコイル1を載置した後、コイル1が埋まるように再度磁性粉末を成形金型内に充填して、下部磁芯部20a及びコイル1が積層された方向に加圧して圧縮成形(コイルを磁性粉末でインサート成形)する方法(特開2001−267160号公報に開示された方法)等を採用可能である。
【0026】
前記磁性粉末を圧縮成形する際に、強磁性金属粉末がコイル導線間に入り込み、その金属粉末を経由して、導線間のショート不具合が発生するのを回避するため、コイル1に使用する平角導線2の絶縁被膜の平均厚さをt(μm)、及びコーティングした強磁性金属粒子(つまり磁性粉末)の平均粒子径をφ(μm)とするとき、
φ<t×3 …(1)
を満足するように設定する。
【0027】
前記不等式(1)を満足させる理由を以下に詳述する。
【0028】
本発明者等は以下の表1のように、コーティング樹脂でコーティングされた強磁性金属粒子(Fe−Ni合金、Fe、Fe−Si合金)の平均粒子径φ(μm)とコイル1の絶縁被膜平均厚さt(μm)との関係を変化させてコイル封入圧粉磁芯のサンプル(図1の構造を有するもの)を500個作製し、ショート発生個数を計数した。
【0029】
【表1】

Figure 0003960090
但し、コイル1に使用した導線は、厚さ0.45mm、幅2.2mmの平角銅線で、その絶縁被膜には、ポリエステル、ポリイミド又はエナメルを用いたが、絶縁被膜の樹脂の材質差はほとんど認められなかった。コーティングされた強磁性金属粒子(つまり磁性粉末)の平均粒子径は、粒度分布測定器により測定し、平均粒子径の3倍以上の粒子を分級によりカットした。レアショートの検出は、100kHzと1MHzのインダクタンスをLCRメーターHP4284Aで測定し、L(1MHz)/L(100kHz)の比率が、0.90以下となる場合をレアショートと判定した。
【0030】
前記表1のφ/tの値と判定結果(〇:良好、×:不良)より明らかなように、φ/t<3、換言すれば φ<t×3の関係が成立する場合に、レアショート不具合が著しく減少することが判明した。
【0031】
なお、成形圧力を4〜7トン/cmの間で変化させたが、ショート発生数と成形圧力の相関は小さいことが判明した。また、強磁性金属粒子やコーティング樹脂の材質自体とショート発生数の相関も認められないことがわかった。
【0032】
この第1の実施の形態によれば、重量比率で1〜8%の絶縁材をコーティングした強磁性金属粒子からなる磁性粉末中に、コイル1を埋め込んだコイル封入圧粉磁芯において、前記コイル1に使用する導線の絶縁被膜の平均厚さをt(μm)、及び前記磁性粉末の平均粒子径をφ(μm)とするとき、φ<t×3を満足させるように、絶縁被膜の平均厚さをt及び磁性粉末の平均粒子径をφを設定することにより、レアショート不具合を著しく低減させることが可能である。この結果、高い信頼性のコイル封入圧粉磁芯を作製可能となる。
【0033】
図2で本発明の第2の実施の形態で用いる空心コイル1A及び製造方法について説明する。この場合、図2(A),(B)のように厚さ0.001〜0.010mmの熱融着層を絶縁被膜上に塗布した平角導線2A(平角銅線)をエッジワイズ状に数ターン巻線するが、この状態では平角導線の各層間に隙間が存在しているため、空心コイル1Aの軸方向に圧力を加えた状態で各層の熱融着層同士を熱融着(250℃で10秒間)させて、図2(C)のように各層の平角導線間に隙間が残らないようにする。なお、熱融着層の厚さを0.001〜0.010mmの範囲とするのは、0.001mm未満では熱融着層が薄過ぎて、熱融着不良が発生する可能性があり、また0.010mmを超えると必要以上に熱融着層が厚くなり、コイルの薄型化の妨げになるからである。
【0034】
以後の処理は第1の実施の形態と同様にして、重量比率で1〜8%の絶縁材をコーティングした強磁性金属粒子からなる磁性粉末中に、熱融着処理したコイル1Aを配置してインサート成形することによりコイル封入圧粉磁芯を作製する。
【0035】
この第2の実施の形態の場合、コーティング樹脂でコーティングされた強磁性金属粒子(Fe−Ni合金、Fe、Fe−Si合金)の平均粒子径φ(μm)と熱融着処理したコイル1Aの絶縁被膜平均厚さt(μm)との関係を変化させたときのショート発生状況は以下の表2の通りとなった。
【表2】
Figure 0003960090
但し、コイル1Aの各層の平角導線同士が隙間無く熱融着されている点を除けば、測定条件は表1と同じである。
【0036】
この第2の実施の形態の場合、φ<t×3の関係が成立すれば、レアショート不具合発生は無いことがわかり、さらに、それよりも悪い条件(粒子径が大、絶縁被膜が薄い)でも不良が発生しない場合があり、コイル1Aのように各層の平角導線同士が隙間無く熱融着された構造として、平角導線間に強磁性金属粒子が入り込まないようにすることが、レアショート発生防止に有効であることがわかる。
【0037】
以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0038】
【発明の効果】
以上説明したように、本発明によれば、絶縁材をコーティングした強磁性金属粒子からなる磁性粉末中に、コイルを埋め込んだコイル封入圧粉磁芯において、前記磁性粉末の平均粒子径とコイルに用いる導線の絶縁被膜の平均厚さを適切に設定することで、ショート発生を確実に防止できる。
【0039】
さらに、コイル封入圧粉磁芯のコイルとして、熱融着層を塗布した平角導線を厚さ方向に積層してエッジワイズ状に巻線し、かつ各層の平角導線同士を隙間無く熱融着処理したものを用いることで、前記平角導線間に強磁性金属粒子が入り込まないようにして、ショート発生防止をいっそう確実にすることができる。
【図面の簡単な説明】
【図1】 本発明に係るコイル封入圧粉磁芯の製造方法の第1の実施の形態であって、(A)はコイル上側の圧粉磁芯部を省略した平面図、(B)は正断面図である。
【図2】本発明の第2の実施の形態で用いる熱融着処理を行うコイルの例を示す説明図である。
【符号の説明】
1,1A コイル
2,2A 平角導線
5 電極端子
20 圧粉磁芯部
20a 下部磁芯部[0001]
BACKGROUND OF THE INVENTION
The present invention includes an inductor integrated magnetic cores, the method for manufacturing the coil-embedded dust core used in other electronic devices, especially short-circuit between conductors (short) production of coils embedded dust core that prevents occurrence Regarding the method.
[0002]
[Prior art]
In recent years, the miniaturization of electric and electronic devices has progressed, and there is a demand for a compact magnetic core that is small (low profile) and can handle a large current. Ferrite powder and ferromagnetic metal powder are used as the material for the dust core.
[0003]
Since the ferromagnetic metal powder has a higher saturation magnetic flux density than the ferrite powder, the direct current superposition characteristics are maintained up to a high magnetic field and is suitable for applications requiring a large current.
[0004]
In order to further promote the miniaturization (low profile) of the magnetic core, a coil in which the coil and the magnetic powder are integrated has been proposed. In this specification, the inductor having this structure is referred to as a coil-embedded dust core.
[0005]
Conventionally, surface mount inductor structures have been proposed. For example, in Japanese Patent Application Laid-Open No. 5-291406, an external electrode is connected to a commercially available electric wire coated with insulation, the entire winding around which the commercial electric wire is wound is covered with an insulating film, and further molded with magnetic powder so as to enclose them. It is disclosed.
[0006]
In this case, insulation between the conducting wire, that is, the commercial wire and the magnetic powder is ensured, but the insulation between the conducting wires is maintained only by the thin insulation film of the commercial wire, so that the wound during winding or reflow It has been a problem that a short-circuit failure between the conductors occurs due to the tearing of the coating due to stress fatigue (crazing).
[0007]
Moreover, although the said Unexamined-Japanese-Patent No. 5-291046 does not have a clear description about a shaping | molding method, for example, as a manufacturing method of a coil enclosure powder magnetic core, the method of using a powder molding machine is disclosed in the patent 3108931. It is disclosed. In this case, a strong pressure is applied in the pressing direction between the conducting wires, the insulating coating of the conducting wires is damaged, and short-circuit defects between the conducting wires occur frequently.
[0008]
Japanese Patent Application Laid-Open No. 2001-267160 shows an example in which a flat conductive wire is used and lead wires are drawn out from above and below the coil. However, in this case, since the ferromagnetic metal powder enters between the conductors and is subjected to high-pressure molding, a short circuit between the conductors may occur via the metal powder.
[0009]
[Problems to be solved by the invention]
The coil-embedded dust core has a small size and a large inductance, but the coil is inserted into the magnetic powder and pressed by high-pressure molding of 3 to 10 ton / cm 2 by the powder molding method. The short defect between the conducting wires constituting the coil has been a problem. Note that 1 ton / cm 2 = 9.8 × 10 7 Pa.
[0010]
In view of the above points, the first object of the present invention is to provide an average particle diameter of magnetic powder and an average thickness of an insulating coating of a conductor constituting the coil in a method of manufacturing a coil-embedded dust core in which a coil is embedded. An object of the present invention is to provide a method for manufacturing a coil-embedded dust core in which a short-circuit failure between conductors constituting a coil is prevented by setting appropriately.
[0011]
In addition, a second object of the present invention is to provide a coil-embedded dust magnet which prevents a short circuit failure between the conductors constituting the coil by adopting a manufacturing method in which ferromagnetic metal particles do not enter between the conductors constituting the coil. It is to provide a manufacturing method of a lead.
[0012]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0013]
[Means for Solving the Problems]
As a result of analyzing the short-circuit failure of the coil-embedded dust core, if there is a pinhole in the insulating coating that originally exists in the conducting wire constituting the coil, or if there is a scratch on the insulating coating that occurs during winding, the ferromagnetic coated with the insulating material It has been found that in the process of insert-molding an air-core coil in a ferromagnetic metal powder made of metal particles, a short-circuit between lines occurs via the metal particles.
[0014]
Therefore, as a result of investigating the relationship between the average thickness t (μm) of the insulating film of the conductive wire used for the coil-embedded dust core and the average particle diameter φ (μm) of the ferromagnetic metal powder coated with the insulating material, φ It has been found that when the relationship of <t × 3 holds, the rare short-circuit defect is significantly reduced.
[0015]
Further, it has been found that rare short-circuit defects are further reduced by heat-sealing in advance so that the ferromagnetic metal particles do not enter between the conductive wires constituting the coil.
[0016]
Therefore, the invention of claim 1 of the present application is an air-core coil in which a rectangular conductor wire having a thickness of 0.001 to 0.010 mm coated on an insulating coating is laminated in the thickness direction and wound in an edgewise manner. Is heat-sealed in a state where pressure is applied in the axial direction of the air-core coil, and then the air-core coil is placed in a magnetic powder comprising ferromagnetic metal particles coated with 1 to 8% by weight of an insulating material. A method of manufacturing an insert-molded coil-embedded dust core,
The ferromagnetic metal particles are Fe, Fe-Ni alloy or Fe-Si alloy;
The insulating material for coating the ferromagnetic metal particles is a silicon resin or an epoxy resin,
As the magnetic powder coated with the ferromagnetic metal particles, a particle size that is three times the average particle size cut by classification,
The molding pressure of the insert molding is 4 × 9.8 × 10 7 to 7 × 9.8 × 10 7 Pa,
The insulating coating of the flat wire is polyester, polyimide or enamel,
When the average thickness of the insulating coating of the flat wire is t (μm) and the average particle diameter of the magnetic powder is φ (μm),
φ <t × 3
It is characterized by satisfying.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the method for manufacturing the coil-embedded dust core according to the present invention with reference to the accompanying drawings.
[0021]
FIG. 1 is a first embodiment of a method for producing a coil-embedded dust core according to the present invention, and FIG. 1 (A) is a plan view in which the dust core portion on the upper side of the coil is omitted. Is a front sectional view. In the figure, 1 is a coil, 20 is a dust core portion, and the dust core portion 20 is around the coil 1 and the electrode terminal 5 except for an external lead-out portion of the electrode terminal 5 connected to the coil 1. Covering.
[0022]
The coil 1 is obtained by winding an insulating coated flat conductor 2 (flat copper wire) several times in an edgewise manner, that is, laminating in the thickness direction and bending it in a curved shape in the width direction. It is a turn wound. Electrode terminals 5 are electrically connected to both ends of the coil 1. The connecting portion between the end of the coil 1 and the electrode terminal 5 and the portion embedded in the dust core 20 of the electrode terminal 5 are covered with insulation. The end portion of the coil 1 may be led out to the outside of the dust core portion 20 and directly connected as an electrode terminal.
[0023]
Examples of the ferromagnetic metal particles used for the dust core 20 include Fe, Fe—Ni alloy, Fe—Si alloy, and the like.
[0024]
Examples of the insulating material for coating the ferromagnetic metal particles include silicon resin and epoxy resin, and the ferromagnetic metal particles are coated using these insulating materials. The mixing ratio of the insulating material is 1 to 8% by weight with respect to the magnetic powder made of ferromagnetic metal particles coated with the insulating material. If the weight ratio of the insulating material used for the coating is more than 8%, the magnetic permeability of the dust core 20 obtained by molding decreases, and a large inductance cannot be obtained, and the weight of the insulating material If the ratio is less than 1%, the insulation between the ferromagnetic metal particles becomes insufficient, and the characteristics as the magnetic core are greatly reduced. Therefore, the weight ratio of the insulating material used for coating is suitably 1 to 8%. Yes.
[0025]
And in the magnetic powder which consists of the ferromagnetic metal particle which coated the insulating material of 1-8% by weight ratio as mentioned above, in the state which provided the said coil 1, it is 4-7 tons / cm < 2 > with a powder molding machine. The dust core 20 is molded and integrated by applying a molding pressure of a certain degree. As a molding method of the dust core 20, for example, the magnetic powder is filled in a molding die and compression-molded, thereby forming a lower core of the dust core 20 as shown in FIG. After the part 20a is prepared in the molding die and the coil 1 is placed thereon, the magnetic powder is filled again in the molding die so that the coil 1 is buried, and the lower magnetic core part 20a and the coil It is possible to employ a method in which pressure is applied in the direction in which 1 is laminated and compression molding (a coil is insert-molded with magnetic powder) (a method disclosed in Japanese Patent Laid-Open No. 2001-267160).
[0026]
When the magnetic powder is compression-molded, the rectangular conductive wire used for the coil 1 is used to prevent the ferromagnetic metal powder from entering between the coil conductors and causing short-circuit defects between the conductors via the metal powder. When the average thickness of the insulating film 2 is t (μm) and the average particle diameter of the coated ferromagnetic metal particles (that is, magnetic powder) is φ (μm),
φ <t × 3 (1)
Set to satisfy.
[0027]
The reason why the inequality (1) is satisfied will be described in detail below.
[0028]
As shown in Table 1 below, the inventors of the present invention used an average particle diameter φ (μm) of ferromagnetic metal particles (Fe—Ni alloy, Fe, Fe—Si alloy) coated with a coating resin and an insulating film of the coil 1. 500 samples of the coil-embedded dust core (having the structure shown in FIG. 1) were prepared by changing the relationship with the average thickness t (μm), and the number of shorts generated was counted.
[0029]
[Table 1]
Figure 0003960090
However, the lead wire used for the coil 1 is a flat copper wire having a thickness of 0.45 mm and a width of 2.2 mm, and the insulation film is made of polyester, polyimide or enamel. Almost not recognized. The average particle diameter of the coated ferromagnetic metal particles (i.e. magnetic powder) was measured by a particle size distribution measuring apparatus, cut by classification particle size of at least 3 times the average particle diameter. For detection of rare short, inductance of 100 kHz and 1 MHz was measured with LCR meter HP4284A, and a case where the ratio of L 0 (1 MHz) / L 0 (100 kHz) was 0.90 or less was determined as a rare short.
[0030]
As is clear from the value of φ / t and the determination result (◯: good, x: bad) in Table 1, φ / t <3, in other words, φ <t × 3, when the relationship is satisfied. It has been found that short circuit defects are significantly reduced.
[0031]
Although the molding pressure was varied between 4 and 7 tons / cm 2 , it was found that the correlation between the number of shorts and the molding pressure was small. It was also found that there was no correlation between the ferromagnetic metal particles or the coating resin itself and the number of shorts.
[0032]
According to the first embodiment, in the coil-embedded dust core in which the coil 1 is embedded in the magnetic powder composed of the ferromagnetic metal particles coated with 1 to 8% by weight of the insulating material, the coil When the average thickness of the insulation film of the conductive wire used in 1 is t (μm) and the average particle diameter of the magnetic powder is φ (μm), the average of the insulation film so as to satisfy φ <t × 3 By setting the thickness to t and the average particle diameter of the magnetic powder to φ, it is possible to remarkably reduce rare short-circuit defects. As a result, a highly reliable coil-embedded dust core can be produced.
[0033]
The air-core coil 1A and manufacturing method used in the second embodiment of the present invention will be described with reference to FIG. In this case, as shown in FIGS. 2 (A) and 2 (B), a flat conducting wire 2A (flat copper wire) in which a heat-sealing layer having a thickness of 0.001 to 0.010 mm is applied on an insulating film is edgewise. In this state, there are gaps between the layers of the rectangular conductor wire. Therefore, the heat-sealing layers of each layer are heat-sealed (250 ° C.) with pressure applied in the axial direction of the air-core coil 1A. 10 seconds) so that no gap remains between the flat conductors of each layer as shown in FIG. Note that the thickness of the heat-sealing layer is in the range of 0.001 to 0.010 mm. If the thickness is less than 0.001 mm, the heat-sealing layer may be too thin, and heat-sealing failure may occur. On the other hand, if the thickness exceeds 0.010 mm, the heat-sealing layer becomes thicker than necessary, which hinders thinning of the coil.
[0034]
Subsequent processing is performed in the same manner as in the first embodiment, in which a coil 1A that has been heat-sealed is placed in a magnetic powder composed of ferromagnetic metal particles coated with an insulating material of 1 to 8% by weight. A coil-embedded dust core is produced by insert molding.
[0035]
In the case of this second embodiment, the average particle diameter φ (μm) of the ferromagnetic metal particles (Fe—Ni alloy, Fe, Fe—Si alloy) coated with the coating resin and the heat-sealed coil 1A Table 2 below shows the short-circuit occurrence when the relationship with the average thickness t (μm) of the insulating coating was changed.
[Table 2]
Figure 0003960090
However, the measurement conditions are the same as those in Table 1 except that the rectangular conductors of each layer of the coil 1A are heat-sealed without gaps.
[0036]
In the case of this second embodiment, if the relationship of φ <t × 3 is established, it can be seen that there is no occurrence of a short-circuit failure, and further worse conditions (large particle diameter, thin insulating coating) However, there are cases where defects do not occur, and it is a rare short circuit that prevents the ferromagnetic metal particles from entering between the rectangular conductors as a structure in which the rectangular conductors of each layer are heat-sealed without gaps like the coil 1A. It turns out that it is effective in prevention.
[0037]
Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.
[0038]
【The invention's effect】
As described above, according to the present invention, in the coil-embedded dust core in which the coil is embedded in the magnetic powder composed of the ferromagnetic metal particles coated with the insulating material, the average particle diameter of the magnetic powder and the coil are determined. The occurrence of a short circuit can be reliably prevented by appropriately setting the average thickness of the insulating coating of the conducting wire to be used.
[0039]
Furthermore, as a coil with a dust core in a coil, rectangular conductors coated with a heat-sealing layer are laminated in the thickness direction and wound in an edgewise manner, and the rectangular conductors of each layer are heat-sealed without gaps. By using this, it is possible to further prevent the occurrence of a short circuit by preventing the ferromagnetic metal particles from entering between the rectangular conductive wires.
[Brief description of the drawings]
FIG. 1 is a first embodiment of a method for producing a coil-embedded dust core according to the present invention, in which (A) is a plan view in which a dust core portion on the upper side of a coil is omitted, and (B) is a plan view. It is a front sectional view.
FIG. 2 is an explanatory diagram showing an example of a coil that performs heat-sealing processing used in the second embodiment of the present invention.
[Explanation of symbols]
1, 1A Coil 2, 2A Flat conductor 5 Electrode terminal 20 Dust core 20a Lower core

Claims (1)

厚さ0.001〜0.010mmの熱融着層を絶縁被膜上に塗布した平角導線を厚さ方向に積層してエッジワイズ状に巻線した空心コイルを、該空心コイルの軸方向に圧力を加えた状態で熱融着させた後、重量比率で1〜8%の絶縁材をコーティングした強磁性金属粒子からなる磁性粉末中に、前記空心コイルをインサート成形したコイル封入圧粉磁芯の製造方法であって、
前記強磁性金属粒子が、Fe、Fe−Ni合金又はFe−Si合金であり、
前記強磁性金属粒子をコーティングする絶縁材がシリコン樹脂又はエポキシ樹脂であり、
前記強磁性金属粒子をコーティングした前記磁性粉末として、平均粒子径の3倍以上の粒子径を分級によりカットしたものを用い、
前記インサート成形の成形圧力が4×9.8×10〜7×9.8×10Paであり、
前記平角導線の絶縁被膜はポリエステル、ポリイミド又はエナメルであり、
前記平角導線の絶縁被膜の平均厚さをt(μm)、及び前記磁性粉末の平均粒子径をφ(μm)とするとき、
φ<t×3
を満足することを特徴とするコイル封入圧粉磁芯の製造方法。
An air-core coil in which a rectangular conductor wire having a thickness of 0.001 to 0.010 mm coated on an insulating coating is laminated in the thickness direction and wound in an edgewise manner is pressed in the axial direction of the air-core coil. Of the encapsulated powder magnetic core in which the air-core coil is insert-molded in a magnetic powder made of ferromagnetic metal particles coated with 1 to 8% by weight of an insulating material. A manufacturing method comprising:
The ferromagnetic metal particles are Fe, Fe-Ni alloy or Fe-Si alloy;
The insulating material for coating the ferromagnetic metal particles is a silicon resin or an epoxy resin,
As the magnetic powder coated with the ferromagnetic metal particles, a particle size that is three times the average particle size cut by classification,
The molding pressure of the insert molding is 4 × 9.8 × 10 7 to 7 × 9.8 × 10 7 Pa,
The insulating coating of the flat wire is polyester, polyimide or enamel,
When the average thickness of the insulating coating of the flat wire is t (μm) and the average particle diameter of the magnetic powder is φ (μm),
φ <t × 3
A method for producing a coil-embedded dust core, wherein:
JP2002077115A 2002-03-19 2002-03-19 Manufacturing method of coil-embedded dust core Expired - Lifetime JP3960090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077115A JP3960090B2 (en) 2002-03-19 2002-03-19 Manufacturing method of coil-embedded dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002077115A JP3960090B2 (en) 2002-03-19 2002-03-19 Manufacturing method of coil-embedded dust core

Publications (2)

Publication Number Publication Date
JP2003272922A JP2003272922A (en) 2003-09-26
JP3960090B2 true JP3960090B2 (en) 2007-08-15

Family

ID=29205606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077115A Expired - Lifetime JP3960090B2 (en) 2002-03-19 2002-03-19 Manufacturing method of coil-embedded dust core

Country Status (1)

Country Link
JP (1) JP3960090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405610A (en) * 2015-12-28 2016-03-16 江苏晨朗电子集团有限公司 Transformer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528058B2 (en) * 2004-08-20 2010-08-18 アルプス電気株式会社 Coiled powder magnetic core
JP4875991B2 (en) 2006-02-28 2012-02-15 日特エンジニアリング株式会社 Chip coil manufacturing apparatus and manufacturing method
JP6004568B2 (en) * 2012-07-25 2016-10-12 日特エンジニアリング株式会社 Chip coil manufacturing method
TWI624845B (en) 2016-11-08 2018-05-21 Alps Electric Co Ltd Inductive element and manufacturing method thereof
KR20180079808A (en) * 2017-01-02 2018-07-11 삼성전기주식회사 Coil component
JP7404744B2 (en) 2019-09-30 2023-12-26 株式会社村田製作所 Manufacturing method of coil parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405610A (en) * 2015-12-28 2016-03-16 江苏晨朗电子集团有限公司 Transformer

Also Published As

Publication number Publication date
JP2003272922A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
JP4049246B2 (en) Coil-enclosed magnetic component and method for manufacturing the same
US6882261B2 (en) Coil-embedded dust core and method for manufacturing the same, and coil and method for manufacturing the same
TW507221B (en) Inductor and manufacturing method therefor
JP3593986B2 (en) Coil component and method of manufacturing the same
JP4099340B2 (en) Manufacturing method of coil-embedded dust core
JP2003282333A (en) Coil-sealed dust core
KR20180073488A (en) Surface-mount inductor
CN103680850B (en) surface mounting inductor
CN108231340A (en) surface mounting inductor
JP2003168610A (en) Inductance element
KR102214223B1 (en) Coil component
US11495396B2 (en) Surface mount inductor
JP2012099739A (en) Core segment, annular coil core and annular coil
JP3960090B2 (en) Manufacturing method of coil-embedded dust core
JP2003188023A (en) Electronic circuit module
CN112562968A (en) Inductor and method for manufacturing the same
JP2003217941A (en) Inductance element
JP2006019706A (en) Coil-encapsulated dust core manufacturing method and coil encapsulated dust core
JP7463837B2 (en) Electronic Components
KR20160134633A (en) Wire wound inductor and manufacturing method thereof
US11387032B2 (en) Coil component manufacturing method, coil component, and DC-to-DC converter
JPH06112034A (en) Winding integrated magnetic element and manufacture thereof
JP2002334813A (en) Coil assembly method of manufacturing the same, and chip bead inductor
CN117637313A (en) Inductor and method for manufacturing inductor
US20220277884A1 (en) Coil component, circuit board, electronic device, and method of manufacturing coil component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Ref document number: 3960090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

EXPY Cancellation because of completion of term