JP3959403B2 - Purification method of organic acid - Google Patents

Purification method of organic acid Download PDF

Info

Publication number
JP3959403B2
JP3959403B2 JP2004090097A JP2004090097A JP3959403B2 JP 3959403 B2 JP3959403 B2 JP 3959403B2 JP 2004090097 A JP2004090097 A JP 2004090097A JP 2004090097 A JP2004090097 A JP 2004090097A JP 3959403 B2 JP3959403 B2 JP 3959403B2
Authority
JP
Japan
Prior art keywords
organic acid
acid
culture solution
salt
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004090097A
Other languages
Japanese (ja)
Other versions
JP2005270025A (en
Inventor
英明 湯川
益造 横山
景隆 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for the Earth RITE filed Critical Research Institute of Innovative Technology for the Earth RITE
Priority to JP2004090097A priority Critical patent/JP3959403B2/en
Publication of JP2005270025A publication Critical patent/JP2005270025A/en
Application granted granted Critical
Publication of JP3959403B2 publication Critical patent/JP3959403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、電気透析法による有機酸の精製技術に関する。さらに詳しくは、特定組成の培養液を特定の条件で電気透析することにより高い電流効率で有機酸に変換することを可能とした精製方法である。   The present invention relates to a technique for purifying organic acids by electrodialysis. More specifically, it is a purification method that enables a culture solution having a specific composition to be converted into an organic acid with high current efficiency by electrodialysis under a specific condition.

現在、有機酸およびその誘導体の多くは石油化学合成法で製造され、食品、医薬品、化粧品、化学薬品およびポリマー原料等広範な分野で使用されている。培養法有機酸は安価な炭素源から常温常圧法で製造できること等から、乳酸やアミノ酸等各種有機酸についても石油化学合成法に代えて培養法で製造する方法が検討されている。   Currently, many organic acids and their derivatives are produced by petrochemical synthesis and are used in a wide range of fields such as foods, pharmaceuticals, cosmetics, chemicals and polymer raw materials. Since organic acids can be produced from an inexpensive carbon source by a room temperature and atmospheric pressure method, various organic acids such as lactic acid and amino acids have been studied by a cultivation method instead of a petrochemical synthesis method.

培養法有機酸の製造方法は、有機酸産生微生物を培養し、該微生物を反応培地中でグルコース等の糖類に作用させて有機酸塩を生産する方法である。従来、好気性コリネ型細菌は、好気的条件下でアミノ酸等の有用物質を生産するために広く用いられているが、炭酸イオン、重炭酸イオンまたは炭酸ガスを含有する反応液中で嫌気的条件下に有機原料に作用させて含酸素化合物を生産するためにも用いられている(特許文献1参照)。   Culture Method An organic acid production method is a method in which an organic acid-producing microorganism is cultured, and the microorganism is allowed to act on sugars such as glucose in a reaction medium to produce an organic acid salt. Conventionally, aerobic coryneform bacteria have been widely used to produce useful substances such as amino acids under aerobic conditions, but are anaerobic in a reaction solution containing carbonate ion, bicarbonate ion, or carbon dioxide gas. It is also used to produce an oxygen-containing compound by acting on an organic raw material under conditions (see Patent Document 1).

培養法で生成した有機酸塩は、塩析法、再結晶法、有機溶媒抽出法、エステル化蒸留分離法、クロマトグラフィー分離法または電気透析法等で培養液から分離回収される。具体的には、有機酸カルシウムを生成して培養液から分離したのちに硫酸分解により有機酸を回収する方法や、培養液中の有機酸塩をエステル化して蒸留したのち加水分解により有機酸を回収する方法などあるが、これらの方法には副生物の生成や複雑な工程および操作等に起因する高コストの課題がある。   The organic acid salt produced by the culture method is separated and recovered from the culture solution by a salting-out method, a recrystallization method, an organic solvent extraction method, an esterification distillation separation method, a chromatographic separation method, an electrodialysis method, or the like. Specifically, organic acid is produced by separating the organic acid calcium from the culture solution and then recovering the organic acid by sulfuric acid decomposition, or by esterifying and distilling the organic acid salt in the culture solution and then hydrolyzing the organic acid. There are methods such as recovery, but these methods have high-cost problems due to generation of by-products and complicated processes and operations.

電気透析法を用いた有機酸分離回収技術は装置や工程が比較的単純で副生物の生成を伴わないこと等から近年盛んに検討され、一部の工業プロセスに導入されている。電気透析法には、有機酸塩等の電解質と非電解質を分離して電解質の濃縮または除去ができる脱塩電気透析と、水の分解により発生したプロトンと水酸イオンにより有機酸塩等の塩から酸とアルカリを生成する水分解電気透析がある。電気透析技術を培養法有機酸精製に用いる場合、培養法で生成した有機酸塩を脱塩電気透析法で培養液から分離回収したのち有機酸塩を水分解電気透析法で有機酸に変換する方法と、培養法有機酸塩を直接水分解電気透析装置に導入し有機酸に変換する方法がある。   In recent years, organic acid separation / recovery technology using electrodialysis has been actively studied in view of its relatively simple apparatus and process and no generation of by-products, and has been introduced into some industrial processes. The electrodialysis method includes desalting electrodialysis in which an electrolyte such as an organic acid salt and a non-electrolyte are separated to concentrate or remove the electrolyte, and a salt such as an organic acid salt by protons and hydroxide ions generated by the decomposition of water. There is a hydrolytic electrodialysis that produces acid and alkali from the water. When electrodialysis technology is used for culture method organic acid purification, the organic acid salt produced by the culture method is separated and recovered from the culture solution by desalting electrodialysis method, and then the organic acid salt is converted to organic acid by water splitting electrodialysis method There are a method and a culture method in which an organic acid salt is directly introduced into a water-splitting electrodialyzer and converted into an organic acid.

水分解電気透析装置は対向する陽極と陰極の間にバイポーラ膜(陽イオン交換膜と陰イオン交換膜を貼り合せた複合イオン交換膜)と陽イオン交換膜または陰イオン交換膜を交互に配列し、バイポーラ膜の陽極側に塩基室、陰極側に酸室を形成した構造となっている。バイポーラ膜/陽イオン交換膜からなる電気透析装置の場合は有機酸塩を酸室に導入することにより、一方バイポーラ膜/陰イオン交換膜からなる電気透析装置の場合には、有機酸塩を塩基室に導入することにより、有機酸と塩基が分離回収される。
水分解電気透析技術については、バイポーラ膜/陽イオン交換膜法による、酢酸等の弱酸よりなる塩から酸とアルカリ溶液の回収、および、バイポーラ膜/陰イオン交換膜法による、アンモニウム等の弱塩基よりなる塩から酸とアルカリ溶液の回収について提案がなされている(特許文献2参照)。
In the water-splitting electrodialysis apparatus, bipolar membranes (composite ion exchange membranes in which a cation exchange membrane and an anion exchange membrane are bonded) and cation exchange membranes or anion exchange membranes are alternately arranged between the anode and cathode facing each other. In this structure, a base chamber is formed on the anode side of the bipolar film and an acid chamber is formed on the cathode side. In the case of an electrodialyzer consisting of a bipolar membrane / cation exchange membrane, an organic acid salt is introduced into the acid chamber, while in the case of an electrodialyzer consisting of a bipolar membrane / anion exchange membrane, the organic acid salt is converted into a base. By introducing into the chamber, the organic acid and the base are separated and recovered.
Regarding water-splitting electrodialysis technology, recovery of acid and alkali solutions from salts of weak acids such as acetic acid by bipolar membrane / cation exchange membrane method, and weak bases such as ammonium by bipolar membrane / anion exchange membrane method A proposal has been made on the recovery of an acid and an alkali solution from a salt formed (see Patent Document 2).

水分解電気透析装置を用いて有機酸塩から有機酸を精製する場合、これまで専らバイポーラ膜/陽イオン交換膜法が用いられてきた(特許文献2〜6参照)。その理由は、有機酸塩等弱酸よりなる塩の場合、陽イオン交換膜による水酸イオンの酸室への移動阻止により良好な電流効率が得られることから、バイポーラ膜/陽イオン交換膜法が適していること、(特許文献2参照)、および、バイポーラ膜/陰イオン交換膜法では、酸室で生成する有機酸の電離度が非常に低いため、酸室の電気抵抗が増大し有機酸精製を進めることが困難になることによる。   When purifying an organic acid from an organic acid salt using a water-splitting electrodialyzer, a bipolar membrane / cation exchange membrane method has been used exclusively so far (see Patent Documents 2 to 6). The reason for this is that in the case of a salt made of a weak acid such as an organic acid salt, good current efficiency can be obtained by blocking the movement of hydroxide ions to the acid chamber by the cation exchange membrane, so the bipolar membrane / cation exchange membrane method is In the bipolar membrane / anion exchange membrane method, since the ionization degree of the organic acid generated in the acid chamber is very low, the electric resistance of the acid chamber is increased and the organic acid is increased. This is because it becomes difficult to proceed with purification.

バイポーラ膜/陰イオン交換膜電気透析法における酸室の電気抵抗増大の問題については、酸室に強酸または水中で解離する塩を含有する溶液を供給することにより電気抵抗を下げることが提案されており、生成した乳酸アンモニウムを塩基室に供給し、0.1N塩酸水溶液を酸室に供給して、効率よく乳酸に変換させることができたと記述されている(特許文献7参照)。   Regarding the problem of increasing the electrical resistance of the acid chamber in the bipolar membrane / anion exchange membrane electrodialysis method, it has been proposed to lower the electrical resistance by supplying the acid chamber with a solution containing a strong acid or a salt that dissociates in water. It is described that the produced ammonium lactate was supplied to the base chamber and a 0.1N hydrochloric acid aqueous solution was supplied to the acid chamber to efficiently convert it into lactic acid (see Patent Document 7).

なお、非特許文献1には、市販薬品の乳酸アンモニウムをバイポーラ膜/陰イオン交換膜電気透析法で電流効率90%で乳酸に変換したとの記載がある。ここでは酸室に供給するものは乳酸だけであり、酸室の電導度については全く言及されていない。
バイポーラ膜/陰イオン交換膜水分解電気透析については、電気透析培養への適用の提案がある(特許文献8〜9参照)。培養液を電気透析槽に導入し培養液から逐次有機酸を取り出すため、バイポーラ膜/陰イオン交換膜法を採用している。即ち、バイポーラ膜/陰イオン交換膜法の場合、塩基室に導入した有機酸塩が電離し、有機酸イオンが陰イオン交換膜を透過し酸室で有機酸を生成するので、微生物や非イオン性有機物、高分子化合物から有機酸を分離回収することができ、電気透析培養はこのようなバイポーラ膜/陰イオン交換膜法の特徴を利用している。しかし、これらのバイポーラ膜/陰イオン交換膜を用いた電気透析培養技術においては、有機酸塩からの有機酸への変換率が低かったり、電流効率改善のため酸室へ強酸を添加するなど課題が多い。
Non-Patent Document 1 describes that commercially available chemical ammonium lactate was converted to lactic acid at a current efficiency of 90% by bipolar membrane / anion exchange membrane electrodialysis. Here, only lactic acid is supplied to the acid chamber, and no mention is made of the conductivity of the acid chamber.
Bipolar membrane / anion exchange membrane water-splitting electrodialysis has been proposed for application to electrodialysis culture (see Patent Documents 8 to 9). The bipolar membrane / anion exchange membrane method is adopted to introduce the culture solution into the electrodialysis tank and sequentially extract the organic acid from the culture solution. That is, in the case of the bipolar membrane / anion exchange membrane method, the organic acid salt introduced into the base chamber is ionized, and the organic acid ions permeate the anion exchange membrane to produce an organic acid in the acid chamber. Organic acids can be separated and recovered from organic substances and polymer compounds, and electrodialysis culture utilizes the characteristics of the bipolar membrane / anion exchange membrane method. However, the electrodialysis culture technology using these bipolar membranes / anion exchange membranes has problems such as low conversion rate from organic acid salt to organic acid and addition of strong acid to acid chamber to improve current efficiency. There are many.

有機酸塩含有培養液は、微生物や反応培地等から混入する様々な物質を含んでいる。このような培養液から水分解電気透析装置を用いて有機酸を精製する場合、微生物等の固形物質がイオン交換膜に付着し膜機能の劣化を引き起こす原因となることがあり、このような場合は電気透析処理前に膜分離や遠心分離等の方法により培養液から固形物質を分離除去することが行われる(特許文献9参照)。   The organic acid salt-containing culture solution contains various substances mixed from microorganisms and reaction media. When purifying organic acid from such a culture solution using a hydrolyzed electrodialyzer, solid substances such as microorganisms may adhere to the ion exchange membrane and cause deterioration of the membrane function. Is performed by separating and removing solid substances from the culture solution by a method such as membrane separation or centrifugation before electrodialysis (see Patent Document 9).

また、培養液に含有されるMgやCa等の多価陽イオンがイオン交換膜を劣化させる場合には、電気透析処理前に培養液をキレート樹脂と接触させて多価陽イオンを吸着除去することが行われる(特許文献6、9参照)。
特開平11−113588号公報 特公昭33−2023号公報 特開平2−286090号公報 特許第2872723号公報 特開平8−24587号公報 特開平9−135698号公報 特許第3337587号公報 特開平11−137286号公報 米国特許第5814498号公報 月刊フードケミカル,6,p30−35(1996)
In addition, when a polyvalent cation such as Mg or Ca contained in the culture solution degrades the ion exchange membrane, the culture solution is brought into contact with a chelating resin before electrodialysis to adsorb and remove the polyvalent cation. (See Patent Documents 6 and 9).
JP-A-11-113588 Japanese Patent Publication No.33-2023 JP-A-2-286090 Japanese Patent No. 2872723 JP-A-8-24587 JP-A-9-135698 Japanese Patent No. 3337587 JP-A-11-137286 US Pat. No. 5,814,498 Monthly Food Chemical, 6, p30-35 (1996)

コリネ型細菌を用いた有機酸の製造において有機酸塩を含む培養液からバイポーラ膜/陽イオン交換膜電気透析を用いて有機酸を精製する場合、電流効率が低下し変換反応が停止することがある。この原因について検討した結果、これまでに報告されている固形物質およびMgやCa等の多価陽イオンによるイオン交換膜汚染以外に、培養液中の不純物質が有機酸精製を妨害していることが判明した。   In the production of organic acid using coryneform bacteria, when the organic acid is purified from a culture solution containing an organic acid salt using bipolar membrane / cation exchange membrane electrodialysis, the current efficiency may decrease and the conversion reaction may stop. is there. As a result of examining this cause, in addition to the solid substances reported so far and ion-exchange membrane contamination by polyvalent cations such as Mg and Ca, impurities in the culture solution prevent organic acid purification. There was found.

通常、反応培地には硫酸塩、硝酸塩、塩酸塩またはリン酸塩の強酸よりなる塩が配合されているため、有機酸塩を含有する培養液には強酸よりなる塩が存在している。このような培養液をバイポーラ膜/陽イオン交換膜電気透析法で処理する場合、培養液を酸室に導入すると培養液中の有機酸塩は酸室で有機酸を生成するが、同時に強酸よりなる塩も酸室で強酸を生成し、強酸は再び酸イオンとプロトンに電離して、プロトンは陽イオン交換膜を透過して塩基室で水酸イオンと結合し水を生成するため電流効率が低下するものと考えられた。強酸よりなる塩の含有量が多くなると電流効率は著しく悪化し、やがて有機酸塩の有機酸への変換反応が停止する。なお、ここで強酸とは、酸としての電離定数が1×
10−3以上のもの、あるいはpKが3以下のものを指し、具体的には硫酸、硝酸、塩酸またはリン酸のことである。
Usually, a salt made of a strong acid such as sulfate, nitrate, hydrochloride or phosphate is added to the reaction medium, and therefore a culture solution containing an organic acid salt contains a salt made of a strong acid. When such a culture solution is treated by a bipolar membrane / cation exchange membrane electrodialysis method, when the culture solution is introduced into the acid chamber, the organic acid salt in the culture solution generates an organic acid in the acid chamber. This salt also produces strong acid in the acid chamber, and the strong acid is ionized again into acid ions and protons, and the protons pass through the cation exchange membrane and combine with the hydroxide ions in the base chamber to generate water. It was thought to decline. When the content of the salt made of a strong acid increases, the current efficiency is remarkably deteriorated, and the conversion reaction of the organic acid salt to the organic acid is eventually stopped. Here, the strong acid means that the ionization constant as an acid is 1 ×.
This refers to those having 10 −3 or more, or those having a pK of 3 or less, specifically sulfuric acid, nitric acid, hydrochloric acid or phosphoric acid.

一方、有機酸塩含有培養液からバイポーラ膜/陰イオン交換膜電気透析法を用いて有機酸を精製しようとすると、酸室の電気抵抗値が増大し変換反応が停止する場合があったり、反応培地等に由来するアルカリ金属が塩基室で強塩基を生成し、電離した水酸イオンにより電流効率が低下して効率的な有機酸精製を妨げる問題がある。   On the other hand, when an organic acid is purified from a culture solution containing an organic acid salt using a bipolar membrane / anion exchange membrane electrodialysis method, the electric resistance value of the acid chamber increases and the conversion reaction may be stopped. There is a problem that alkali metal derived from a medium or the like generates a strong base in the base chamber, and current efficiency decreases due to ionized hydroxide ions, thereby hindering efficient organic acid purification.

本発明者は、かかる問題に対しその解決方法を検討した結果、反応培地中で糖類にコリネ型細菌を作用させて得られる有機酸塩含有培養液から水分解電気透析装置を用いて有機酸を精製する方法において、バイポーラ膜と陰イオン交換膜とからなる水分解電気透析装置を用いると共に、培養液中の強酸よりなる塩とアルカリ金属を特定濃度に調整することにより、酸室の電気抵抗値を下げて電流効率を向上させることができることを見出し、本発明を完成するに至った。   As a result of studying a solution to such a problem, the present inventor obtained an organic acid from a culture solution containing an organic acid salt obtained by reacting coryneform bacteria with saccharides in a reaction medium using a water-splitting electrodialyzer. In the purification method, a water-splitting electrodialysis apparatus composed of a bipolar membrane and an anion exchange membrane is used, and the acid resistance value of the acid chamber is adjusted by adjusting a salt made of a strong acid and an alkali metal in the culture solution to a specific concentration. The present inventors have found that the current efficiency can be improved by lowering the current and the present invention has been completed.

すなわち、本発明は、
(1)培養槽内の反応培地中で糖類にコリネ型細菌を作用させて有機酸塩を含む培養液を生成させたのち、該培養液から水分解電気透析装置を用いて有機酸を精製する方法において、
(A)水分解電気透析装置がバイポーラ膜と陰イオン交換膜とで構成されており、
(B)培養液が強酸からなる塩を含有し、その濃度が0.03モル/リットル〜0.5モル/リットルであり、かつ、
(C)培養液中のアルカリ金属濃度が0.03モル/リットル以下であること、
を特徴とする有機酸の精製方法。
(2)強酸からなる塩が硫酸塩、硝酸塩、塩酸塩およびリン酸塩の少なくとも一つを含むことを特徴とする(1)に記載の有機酸の精製方法。
(3)アルカリ金属がリチウム、ナトリウムおよびカリウムの少なくとも一つを含むことを特徴とする(1)に記載の有機酸の精製方法。
(4)培養液から菌体を分離除去したのち、水分解電気透析装置に導入することを特徴とする(1)に記載の有機酸の精製方法。
(5)コリネ型細菌がコリネバクテリウム属菌、ブレビバクテリウム属菌、アースロバクター属菌、マイコバクテリューム属菌またはマイクロコッカス属菌であることを特徴とする(1)に記載の有機酸の精製方法。
(6)生成する有機酸塩がコハク酸塩および乳酸塩から選ばれることを特徴とする(1)に記載の有機酸の精製方法。
That is, the present invention
(1) After producing a culture solution containing an organic acid salt by allowing coryneform bacteria to act on sugars in a reaction medium in a culture tank, the organic acid is purified from the culture solution using a water-splitting electrodialyzer. In the method
(A) The water splitting electrodialysis apparatus is composed of a bipolar membrane and an anion exchange membrane,
(B) the culture solution contains a salt composed of a strong acid, the concentration is 0.03 mol / liter to 0.5 mol / liter, and
(C) the alkali metal concentration in the culture solution is 0.03 mol / liter or less,
A method for purifying an organic acid characterized by the following.
(2) The method for purifying an organic acid according to (1), wherein the salt made of a strong acid contains at least one of sulfate, nitrate, hydrochloride and phosphate.
(3) The method for purifying an organic acid according to (1), wherein the alkali metal contains at least one of lithium, sodium and potassium.
(4) The method for purifying an organic acid according to (1), wherein the cells are separated and removed from the culture solution and then introduced into a water-splitting electrodialysis apparatus.
(5) The organic acid according to (1), wherein the coryneform bacterium is Corynebacterium, Brevibacterium, Arthrobacter, Mycobacterium, or Micrococcus Purification method.
(6) The method for purifying an organic acid according to (1), wherein the organic acid salt to be produced is selected from succinate and lactate.

本発明によれば、有機酸塩含有培養液から水分解電気透析装置で有機酸を精製するに際し、水分解電気透析装置がバイポーラ膜と陰イオン交換膜とからなっているので、培養液中の強酸よりなる塩から生成する強酸は酸室に留まることから電流効率が低下することがなく、逆に、有機酸の低電離度による酸室の電気抵抗増大が緩和され、電流効率が高まるという効果が得られる。更に、本発明では培養液中には強酸が含まれ、その濃度が特定濃度になっているので、反応培地への強酸よりなる塩の配合量を増やせば酸室の強酸量が増加し、低電圧で高電流密度による運転が可能となる酸室への強酸または水中で解離する塩を供給する等の特別な操作を必要としない。   According to the present invention, when purifying an organic acid from an organic acid salt-containing culture solution using a hydrolyzed electrodialyzer, the hydrolyzed electrodialyzer comprises a bipolar membrane and an anion exchange membrane. Strong acid produced from a salt made of a strong acid stays in the acid chamber, so the current efficiency does not decrease. Conversely, the increase in the electric resistance of the acid chamber due to the low ionization degree of the organic acid is mitigated, and the current efficiency is increased. Is obtained. Furthermore, in the present invention, the strong acid is contained in the culture solution, and the concentration thereof is a specific concentration. Therefore, if the amount of the salt composed of strong acid in the reaction medium is increased, the amount of strong acid in the acid chamber increases, and the low There is no need for special operations such as supplying a strong acid or a salt that dissociates in water into an acid chamber that can be operated at a high current density at a voltage.

一方、バイポーラ膜/陰イオン交換膜型水分解電気透析装置を用いる場合、アルカリ金属が強塩基を生成し電流効率を低下させることがあるが、本発明においては、培養液中のアルカリ金属濃度が特定濃度になっているので、高い電流効率を維持し有機酸を精製することが可能となる。   On the other hand, when using a bipolar membrane / anion exchange membrane water-splitting electrodialysis apparatus, alkali metal may generate a strong base and reduce current efficiency. However, in the present invention, the alkali metal concentration in the culture solution is low. Since it has a specific concentration, it is possible to purify organic acids while maintaining high current efficiency.

以上より、本発明においては、水分解電気透析処理前に強酸よりなる塩やアルカリ金属等の不純物質を除外するための操作が不要で精製工程を増やすことがなく安定して高効率に有機酸を精製することができ、安価な製品を提供することができる。   As described above, in the present invention, an organic acid is stably and highly efficient without requiring an operation for removing impurities such as a salt made of a strong acid or an alkali metal before water-splitting electrodialysis and without increasing the number of purification steps. Can be purified and an inexpensive product can be provided.

反応培地中で糖類にコリネ型細菌を作用させて精製する有機酸塩は、培養液中に存在する強酸からなる塩およびアルカリ金属を特定濃度とし、該培養液をバイポーラ膜/陰イオン交換膜型水分解電気透析装置を用いて有機酸に変換して精製される。   Organic acid salt purified by the action of coryneform bacteria on saccharides in the reaction medium has a specific concentration of strong acid salt and alkali metal present in the culture solution, and the culture solution is a bipolar membrane / anion exchange membrane type. It is purified by converting it into an organic acid using a water splitting electrodialyzer.

本発明で用いられるコリネ型細菌とは、バージーズ マニュアル オブ デターミネイティブ バクテリオロジー(Bargeys Manual of Determinative Bacteriology, 8, 599, 1974)に定義されている一群の微生物であり、通常の好気的条件で増殖し、還元状態下で目的とする有機酸塩を生成するものならば特に限定されるものではない。
具体的には、コリネ型細菌としては、コリネバクテリウム属菌、ブレビバクテリウム属菌、アースロバクター属菌、マイコバクテリューム属菌またはマイクロコッカス属菌等が挙げられる。
The coryneform bacterium used in the present invention is a group of microorganisms defined in the Bargeys Manual of Determinative Bacteriology (8, 599, 1974) under normal aerobic conditions. There is no particular limitation as long as it grows and produces the desired organic acid salt under reduced conditions.
Specific examples of coryneform bacteria include Corynebacterium, Brevibacterium, Arthrobacter, Mycobacterium, and Micrococcus.

さらに具体的には、コリネバクテリウム属菌としては、コリネバクテリウム グルタミカム(Corynebacterium glutamicum) FERM P−18976、ATCC13032、ATCC13058、ATCC13059、ATCC13060、ATCC13232、ATCC13286、ATCC13287、ATCC13655、ATCC13745、ATCC13746、ATCC13761、ATCC14020、ATCC31831等が挙げられる。   More specifically, Corynebacterium glutamicum FERM P-18976, ATCC13032, ATCC13058, ATCC13059, ATCC13060, ATCC13232, ATCC13286, ATCC13287, ATCC13745, ATCC13746, ATCC13746, ATCC13746, ATCC13746, , ATCC 31831 and the like.

ブレビバクテリウム属菌としては、ブレビバクテリウム ラクトファーメンタム(Brevibacterium lactofermentum) ATCC13869、ブレビバクテリウム フラバム(Brevibacterium flavum) MJ−233(FERM BP−1497)もしくはMJ−233AB−41(FERM BP−1498)、ブレビバクテリウム アンモニアゲネス(Brevibacterium ammoniagenes) ATCC6872等が挙げられる。
アースロバクター属菌としては、アースロバクター グロビフォルミス(Arthrobacter globiformis) ATCC8010、ATCC4336、ATCC21056、ATCC31250、ATCC31738、ATCC35698等が挙げられる。
Examples of the Brevibacterium include Brevibacterium lactofermentum ATCC 13869, Brevibacterium flavum MJ-233 (FERM BP-1497) or MJ-233AB-41 (FERM BP-1498), Brevibacterium ammoniagenes ATCC6872 etc. are mentioned.
Examples of the genus Arthrobacter include Arthrobacter globiformis ATCC8010, ATCC4336, ATCC21056, ATCC31250, ATCC31738, ATCC35698 and the like.

マイクロコッカス属菌としては、マイクロコッカス・フロイデンライヒ(Micrococcus freudenreichii) No.239(FERM P−13221)、マイクロコッカス・ルテウス(Micrococcus luteus) No.240(FERM P−13222)、マイクロコッカス ウレアエ(Micrococcus ureae) IAM1010、マイクロコッカス ロゼウス(Micrococcus roseus) IFO3764等が挙げられる。   As the genus Micrococcus, Micrococcus freudenreichii no. 239 (FERM P-13221), Micrococcus luteus No. 240 (FERM P-13222), Micrococcus ureae IAM1010, Micrococcus roseus IFO3764 and the like.

上記の各種コリネ型細菌のうち、特にコリネバクテリウム グルタミカム R(FERM P−18976)、コリネバクテリウム グルタミカム ATCC13032、コリネバクテリウム グルタミカム ATCC13869などが好ましい。   Of the various coryneform bacteria described above, Corynebacterium glutamicum R (FERM P-18976), Corynebacterium glutamicum ATCC13032, Corynebacterium glutamicum ATCC 13869 and the like are particularly preferable.

本発明で用いられるコリネ型細菌としては自然界に存在する野生株の変異株(例えば、FERM P−18977、FERM P−18978株など)であってもよく、また遺伝子組換え等のバイオテクノロジーを利用した人為株(例えば、FERM P−17887、FERM P−17888、FERM P−18979など)でもよい。   The coryneform bacterium used in the present invention may be a wild-type mutant strain (for example, FERM P-18777, FERM P-18978 strain, etc.) existing in nature, and uses biotechnology such as gene recombination. Artificial strains (for example, FERM P-17878, FERM P-17888, FERM P-18879, etc.) may be used.

コリネ型細菌の培養は、炭素源、窒素源および無機塩等を含む通常の栄養培地を用いて行うことができる。炭素源として、例えばグルコース、廃糖蜜等を、そして窒素源としては、例えばアンモニア、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、尿素等をそれぞれ単独もしくは混合して用いることができる。また、無機塩として、例えばリン酸一水素カリウム、リン酸二水素カリウム、硫酸マグネシウム、硫酸鉄、硫酸マンガン等を使用することができる。この他にも必要に応じて、ペプトン、肉エキス、酵母エキス、コーンスティ−プリカー、カザミノ酸、各種ビタミン(例えばビオチン、チアミン等)等の栄養素を培地に適宜添加することができる。   Coryneform bacteria can be cultured using a normal nutrient medium containing a carbon source, a nitrogen source, an inorganic salt, and the like. As the carbon source, for example, glucose, molasses and the like can be used, and as the nitrogen source, for example, ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, urea and the like can be used alone or in combination. In addition, as the inorganic salt, for example, potassium monohydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate, iron sulfate, manganese sulfate and the like can be used. In addition to these, nutrients such as peptone, meat extract, yeast extract, corn steep liquor, casamino acid, various vitamins (for example, biotin, thiamine, etc.) can be appropriately added to the medium.

培養は、通常、通気攪拌または振盪等の好気的条件下、約20℃〜約40℃、好ましくは約25℃〜約35℃の温度で行うことができる。培養時のpHは5〜10付近、好ましくは7〜8付近の範囲がよく、培養時のpH調整は酸またはアルカリを添加することにより行うことができる。培養開始時の炭素濃度は、約1〜20%(W/V)、好ましくは約2〜5%(W/V)である。また、培養期間は通常1〜7日間程度である。   Culturing can usually be performed at a temperature of about 20 ° C. to about 40 ° C., preferably about 25 ° C. to about 35 ° C. under aerobic conditions such as aeration stirring or shaking. The pH during the culture is in the range of about 5 to 10, preferably about 7 to 8. The pH during the culture can be adjusted by adding an acid or an alkali. The carbon concentration at the start of the culture is about 1 to 20% (W / V), preferably about 2 to 5% (W / V). The culture period is usually about 1 to 7 days.

ついで、上記の如くして得られる培養物からコリネ型細菌の培養菌体を分離回収する。培養菌体を分離回収する方法としては、特に限定されず、例えば遠心分離や膜分離等の公知の方法を用いることができる。   Subsequently, the cultured cells of coryneform bacteria are separated and recovered from the culture obtained as described above. The method for separating and recovering the cultured cells is not particularly limited, and for example, known methods such as centrifugation and membrane separation can be used.

回収された培養菌体は、通常そのまま次工程に用いられるが、該培養菌体に対して処理を加え、得られる菌体処理物を次工程に用いてもよい。前記菌体処理物としては、培養菌体に何らかの処理が加えられたものであればよく、例えば、菌体を生菌体のままアクリルアミドまたはカラギーナン等で固定した固定化菌体等が挙げられる。   The collected cultured microbial cells are usually used as they are in the next step, but the cultured microbial cells may be treated and the resulting treated microbial cells may be used in the next step. The microbial cell treated product may be any cultivated microbial cell that has been subjected to some kind of treatment. Examples thereof include an immobilized microbial cell in which the microbial cell is fixed with acrylamide, carrageenan, or the like while being alive.

ついで、上記の如くして得られる培養物から回収分離されたコリネ型細菌の培養菌体またはその菌体処理物は、還元状態下の反応培地での目的有機酸塩の生成反応に供せられる。有機酸塩生成方式は、回分式、連続式いずれの生成方式も可能である。   Next, the cultured cells of coryneform bacteria recovered or separated from the culture obtained as described above or the treated cells thereof are subjected to a reaction for producing a target organic acid salt in a reaction medium in a reduced state. . The organic acid salt production method can be either a batch production method or a continuous production method.

反応培地には、有機酸塩生成の原料となる糖類が含まれている。糖類としては、コリネ型細菌が代謝できるものであればよく、例えばグルコース、ガラクト−ス、フルクトース、マンノース等の単糖類、セルビオース、ショ糖、ラクトース、マルトース等の二糖類、デキストリン、可溶性澱粉等の多糖類等が挙げられる。なかでも、グルコースが好ましい。   The reaction medium contains saccharides that are raw materials for organic acid salt production. Any sugar can be used as long as it is metabolizable by coryneform bacteria. Examples thereof include polysaccharides. Of these, glucose is preferable.

より好ましくは、有機酸塩の生成反応に用いられる反応培地組成は、コリネ型細菌またはその処理物がその代謝機能を維持するために必要な成分、即ち、各種糖類の炭素源、蛋白質合成に必要な、例えばアンモニア、硫酸アンモニウム、塩化アンモニウムまたは硝酸アンモニウム等の窒素源を含み、また無機塩として、例えばリン酸一水素カリウム、リン酸二水素カリウム、硫酸マグネシウムまたは塩化ナトリウム等、さらにLi、Ca、Fe、Mn、CuまたはZn等の微量金属塩を含む。これらの添加量は所要反応時間、目的有機酸塩生産物の種類または用いられるコリネ型細菌の種類等により適宜定めることができる。用いるコリネ型細菌によっては特定のビタミン類の添加が好ましい場合もある。また、反応培地に二酸化炭素または各種の炭酸塩もしくは炭酸水素塩等の無機炭酸塩を糖類などの有機炭素源に加えて注入することが目的有機酸塩によっては有効な場合もある。   More preferably, the composition of the reaction medium used for the organic acid salt formation reaction is necessary for the coryneform bacterium or its processed product to maintain its metabolic function, that is, the carbon source of various sugars and protein synthesis. Including nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride or ammonium nitrate, and inorganic salts such as potassium monohydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate or sodium chloride, and also Li, Ca, Fe, Contains trace metal salts such as Mn, Cu or Zn. These addition amounts can be appropriately determined depending on the required reaction time, the type of target organic acid salt product, the type of coryneform bacterium used, and the like. Depending on the coryneform bacterium used, the addition of specific vitamins may be preferred. Further, depending on the target organic acid salt, it may be effective to add carbon dioxide or an inorganic carbonate such as various carbonates or bicarbonates to the reaction medium in addition to an organic carbon source such as a saccharide.

コリネ型細菌(培養細菌およびその菌体処理物を含む)と糖類との反応は、コリネ型細菌が活動できる温度条件下で行なわれることが好ましく、反応時のpHは5〜10付近、好ましくは7〜8付近の範囲がよく、反応時のpH調整はアンモニアまたはアミン等を添加することにより行うことができる。   The reaction between coryneform bacteria (including cultured bacteria and treated products thereof) and saccharides is preferably carried out under temperature conditions where coryneform bacteria can act, and the pH during the reaction is around 5 to 10, preferably The range near 7-8 is good, and pH adjustment during the reaction can be carried out by adding ammonia or amine.

コリネ型細菌と糖類との反応で製造することができる有機酸塩としては、コハク酸塩、乳酸塩、酢酸塩、リンゴ酸塩、フマル酸塩、クエン酸塩、マレイン酸塩、酒石酸塩、オキサロ酢酸塩、シスアコニット酸塩、イソクエン酸塩または2−オキソグルタル酸塩等が挙げられるが、本発明は、コハク酸塩または乳酸塩に特に好ましく適用することができる。   Organic salts that can be produced by the reaction of coryneform bacteria with sugars include succinate, lactate, acetate, malate, fumarate, citrate, maleate, tartrate, oxaloate. Examples thereof include acetate, cisaconite, isocitrate and 2-oxoglutarate, but the present invention can be particularly preferably applied to succinate or lactate.

糖類との反応で生成した有機酸塩を含む培養液を直接水分解電気透析装置に導入して有機酸を分離回収することができるが、培養液中の微生物菌体(固定化菌体を含む)等の固形物質が透析膜等に付着し汚染する場合は、培養液を電気透析装置に導入する前に、膜分離や遠心分離等を使用し固形物質を分離除去することが好ましい。また、予め脱塩電気透析法を用いて培養液から有機酸塩等の電解質物質だけを分離回収することもできる。分離した微生物等固形物質は再び培養槽に戻して利用できる。   The culture solution containing the organic acid salt produced by the reaction with the saccharide can be directly introduced into the water-splitting electrodialyzer to separate and recover the organic acid, but the microbial cells in the culture solution (including the immobilized cells) When solid substances such as) adhere to and contaminate the dialysis membrane or the like, it is preferable to separate and remove the solid substance using membrane separation or centrifugation before introducing the culture solution into the electrodialyzer. In addition, only an electrolyte substance such as an organic acid salt can be separated and recovered from the culture solution in advance using a desalting electrodialysis method. The separated solid matter such as microorganisms can be returned to the culture tank for use.

かくして、培養液から不純物質を適宜分離除去して得られた有機酸塩含有培養液を水分解電気透析処理に供することができるが、反応培地等由来の無機電解質物質は有機酸塩から分離除去することができず、通常、有機酸塩含有培養液には硫酸塩、硝酸塩、塩酸塩またはリン酸塩の強酸よりなる塩を含む。本発明で使用される培養液における、強酸よりなる塩の濃度は0.03M(モル/リットル)〜0.5M(モル/リットル)であり、アルカリ金属の濃度は0.03M(モル/リットル)以下である必要がある。   Thus, the organic acid salt-containing culture solution obtained by appropriately separating and removing impurities from the culture solution can be subjected to hydrolysis electrodialysis, but the inorganic electrolyte substance derived from the reaction medium and the like is separated and removed from the organic acid salt. Usually, the organic acid salt-containing culture solution contains a salt composed of a strong acid of sulfate, nitrate, hydrochloride or phosphate. In the culture medium used in the present invention, the concentration of the salt made of a strong acid is 0.03 M (mol / liter) to 0.5 M (mol / liter), and the alkali metal concentration is 0.03 M (mol / liter). Must be:

本発明で用いられる電気透析装置は、図1に示すバイポーラ膜と陰イオン交換膜とで構成される2室法水分解電気透析装置である。この電気透析装置は、陽極と陰極の間にバイポーラ膜1と陰イオン交換膜2を順に配列し、酸室3と塩基室4を形成した構造となっている。かかる電気透析装置では、塩基室4に供給された有機酸塩は、両極に印加された電圧で有機酸イオンと塩基イオンに電離し、有機酸イオンは陰イオン交換膜を透過して酸室3に入り、そこでバイポーラ膜1から供給されるプロトンと結合し有機酸を生成する。塩基イオンは、塩基室4に留まり、バイポーラ膜から供給される水酸イオンと結合し塩基を生成する。酸室3で生成した有機酸水溶液を酸室3に接続した酸溶液タンク8との間でポンプ11により循環し濃縮させ、一方、塩基室4に接続した塩溶液タンク7との間で有機酸塩と塩基の混合溶液をポンプ10により循環させながら電気透析を行なう方法が一般的に採用される。この間、電極室5、6には、電極室に接続した電極液タンク9から水酸化ナトリウム、硫酸ナトリウム、硫酸または塩化ナトリウム等の水溶液をポンプ12により供給し循環させる。   The electrodialysis apparatus used in the present invention is a two-chamber water splitting electrodialysis apparatus composed of a bipolar membrane and an anion exchange membrane shown in FIG. This electrodialyzer has a structure in which a bipolar membrane 1 and an anion exchange membrane 2 are arranged in order between an anode and a cathode to form an acid chamber 3 and a base chamber 4. In such an electrodialysis apparatus, the organic acid salt supplied to the base chamber 4 is ionized into an organic acid ion and a base ion at a voltage applied to both electrodes, and the organic acid ion permeates through the anion exchange membrane to form the acid chamber 3. And combines with protons supplied from the bipolar membrane 1 to generate an organic acid. The base ions remain in the base chamber 4 and combine with the hydroxide ions supplied from the bipolar membrane to generate a base. The organic acid aqueous solution generated in the acid chamber 3 is circulated and concentrated by the pump 11 between the acid solution tank 8 connected to the acid chamber 3 and the organic acid solution is connected to the salt solution tank 7 connected to the base chamber 4. Generally, a method of performing electrodialysis while circulating a mixed solution of a salt and a base with a pump 10 is employed. During this time, an aqueous solution such as sodium hydroxide, sodium sulfate, sulfuric acid, or sodium chloride is supplied to the electrode chambers 5 and 6 from the electrode liquid tank 9 connected to the electrode chamber by the pump 12 and circulated.

なお、本発明において使用されるバイポーラ膜は、陽イオン交換膜と陰イオン交換膜を貼り合せた構造をもつイオン交換膜であり、市販のイオン交換膜、例えば、(株)トクヤマ製ネオセプタBP−1を使用することができる。   The bipolar membrane used in the present invention is an ion exchange membrane having a structure in which a cation exchange membrane and an anion exchange membrane are bonded together, and is a commercially available ion exchange membrane such as Neocepta BP- manufactured by Tokuyama Corporation. 1 can be used.

また、本発明において使用される陰イオン交換膜は、市販のイオン交換膜、例えば、(株)トクヤマ製のネオセプタAHA等を使用することができる。
本発明における電気透析では、一般的には、セル電圧は1.5〜3.5V、電流密度は20〜200mA/cm、溶液温度は10〜50℃の範囲で行なうことが好ましい。
In addition, as the anion exchange membrane used in the present invention, a commercially available ion exchange membrane, for example, Neoceptor AHA manufactured by Tokuyama Corporation can be used.
In the electrodialysis according to the present invention, it is generally preferable that the cell voltage is 1.5 to 3.5 V, the current density is 20 to 200 mA / cm 2 , and the solution temperature is 10 to 50 ° C.

このような電気透析条件の下で、有機酸塩含有培養液を、上記バイポーラ膜/陰イオン交換膜電気透析装置に供給すると、酸室で有機酸が生成する。培養液に含有される反応培地由来の硫酸塩、硝酸塩、塩酸塩、リン酸塩などの強酸よりなる塩からも酸室で強酸が生成し、該強酸は再び酸イオンとプロトンに電離するが酸室に留まるため電流効率を低下させることはなく、むしろ酸室の電気抵抗値を下げて、低電圧かつ高電流反応による有機酸精製を可能とする。強酸により酸室の電気抵抗値を下げて有機酸精製を高効率に進めるためには、有機酸塩含有培養液中の強酸よりなる塩の濃度を0.03M以上にすることが必要である。更に電流効率を上げるためには強酸よりなる塩の濃度を0.05M以上にすることが好ましい。0.03M未満の場合は、バイポーラ膜/陰イオン交換膜法では、酸室の電気抵抗値が高くなり効率良く変換反応を進めることができなくなり、酸室に強酸等を添加し電気抵抗を下げる操作が必要となる。   When an organic acid salt-containing culture solution is supplied to the bipolar membrane / anion exchange membrane electrodialyzer under such electrodialysis conditions, an organic acid is generated in the acid chamber. A strong acid is also generated in the acid chamber from a salt composed of a strong acid such as sulfate, nitrate, hydrochloride, phosphate, etc. derived from the reaction medium contained in the culture solution, and the strong acid is ionized again into acid ions and protons. Since it stays in the chamber, the current efficiency is not lowered. Rather, the electric resistance value of the acid chamber is lowered, and the organic acid can be purified by a low voltage and high current reaction. In order to reduce the electric resistance value of the acid chamber with a strong acid and proceed with the purification of the organic acid with high efficiency, the concentration of the salt made of the strong acid in the organic acid salt-containing culture solution must be 0.03 M or more. In order to further increase the current efficiency, the concentration of the salt made of a strong acid is preferably 0.05M or more. In the case of less than 0.03M, in the bipolar membrane / anion exchange membrane method, the electric resistance value of the acid chamber becomes high and the conversion reaction cannot proceed efficiently, and a strong acid or the like is added to the acid chamber to lower the electric resistance. Operation is required.

強酸よりなる塩の濃度の上限値については有機酸精製効率の観点からは特に制限はないが、有機酸精製後に強酸を除去することを考慮すれば、0.5M程度あれば充分である。従って、本発明における有機酸塩含有培養液中の強酸よりなる塩の濃度は、0.03M〜0.5Mであり、より好ましくは0.05M〜0.5Mである。反応培地組成は培養に用いる微生物の種類と培養条件等によって異なることから、培養液中に含有される強酸よりなる塩の種類やその濃度も変わる。そして水分解電気透析において強酸よりなる塩から生成した硫酸、硝酸、塩酸、リン酸などの各強酸は酸室で同じ電導度を与えるものではないが、それぞれの酸による電導度上昇効果は加算され、高電流効率で有機酸を精製するためには、それぞれの強酸からなる塩の総和が0.03M〜0.5Mであり、0.05M〜0.5Mであることが好ましい。 強酸からなる塩の濃度を調整することは、反応培地調製の時に無機塩の種類や配合量を工夫することで可能である。   The upper limit of the concentration of the salt made of a strong acid is not particularly limited from the viewpoint of organic acid purification efficiency, but considering the removal of the strong acid after the organic acid purification, about 0.5M is sufficient. Therefore, the concentration of the salt consisting of the strong acid in the organic acid salt-containing culture solution in the present invention is 0.03M to 0.5M, more preferably 0.05M to 0.5M. Since the composition of the reaction medium varies depending on the type of microorganism used for culture, the culture conditions, and the like, the type and concentration of a salt made of a strong acid contained in the culture solution also changes. In addition, strong acids such as sulfuric acid, nitric acid, hydrochloric acid, and phosphoric acid produced from salts of strong acids in hydrolytic electrodialysis do not give the same conductivity in the acid chamber, but the effect of increasing the conductivity by each acid is added. In order to purify the organic acid with high current efficiency, the total sum of the salts composed of the strong acids is 0.03M to 0.5M, preferably 0.05M to 0.5M. It is possible to adjust the concentration of the salt composed of a strong acid by devising the kind and amount of the inorganic salt when preparing the reaction medium.

更に、バイポーラ膜/陰イオン交換膜電気透析を用いる場合、供給する培養液中のアルカリ金属濃度を0.03M以下にすることが必要である。即ち、Li、NaまたはK等のアルカリ金属は塩基室で強塩基を生成するが、強塩基は電離し易く、水酸イオンが陰イオン交換膜を透過し隣接する酸室でプロトンと反応して水を生成するため、電流効率を低下させる。培養液中のアルカリ金属濃度が高い場合、電気透析の過程で塩基室に培養液を追加供給したり塩基液を適宜系外に除去する等の方法で、塩基室のpHが高くならないよう管理することにより、電流効率低下をある程度防ぐことができるが、電気透析の安定した操作は困難である。従って、バイポーラ膜/陰イオン交換膜電気透析に導入する培養液中のアルカリ金属を低濃度に保つことが必要であり、好適なアルカリ金属濃度は0.03M以下、より好ましくは0.02M以下であり、高い電流効率で安定した精製が行われる限りにおいては、その下限は特に限定されない。該アルカリ金属濃度に調整することは、反応培地調製の時に無機塩の種類や配合量を工夫することで可能である。   Furthermore, when bipolar membrane / anion exchange membrane electrodialysis is used, the alkali metal concentration in the culture medium to be supplied must be 0.03 M or less. That is, alkaline metals such as Li, Na or K generate strong bases in the base chamber, but strong bases are easily ionized, and hydroxide ions permeate the anion exchange membrane and react with protons in the adjacent acid chamber. Reduces current efficiency to produce water. If the alkali metal concentration in the culture solution is high, control the pH of the base chamber so that it does not increase by supplying the culture solution to the base chamber in the course of electrodialysis or removing the base solution from the system. As a result, it is possible to prevent a decrease in current efficiency to some extent, but stable operation of electrodialysis is difficult. Therefore, it is necessary to keep the alkali metal in the culture medium introduced into the bipolar membrane / anion exchange membrane electrodialysis at a low concentration, and the preferable alkali metal concentration is 0.03M or less, more preferably 0.02M or less. As long as stable purification is performed with high current efficiency, the lower limit is not particularly limited. Adjustment to the alkali metal concentration is possible by devising the kind and blending amount of the inorganic salt when preparing the reaction medium.

なお、アンモニウム塩はアンモニアがガス化してバイポーラ膜の膨れを引き起こすことがあるので、塩基液中のアンモニア濃度を余り高めないよう調節することが必要である。
これらの電気透析による有機酸の分離回収は回分式、連続式のいずれの方法でも可能であり、電気透析培養として使用することもできる。
In addition, since ammonium salt may gasify ammonia and cause swelling of the bipolar membrane, it is necessary to adjust so that the ammonia concentration in the base solution is not increased too much.
The organic acid can be separated and recovered by electrodialysis by either a batch or continuous method, and can be used as an electrodialysis culture.

かくして、バイポーラ膜/陰イオン交換膜法電気透析により有機酸塩から有機酸と塩基を分離し、有機酸を回収することができる。回収した有機酸は、用途に応じて要求される品質を満たすように、含有する不純物成分をキレート樹脂処理やイオン交換法または結晶化法等を用いて除去することができる。分離した塩基は、培養法有機酸生産におけるpH調整剤として再利用することができる。   Thus, the organic acid and the base can be separated from the organic acid salt by the bipolar membrane / anion exchange membrane method electrodialysis, and the organic acid can be recovered. The recovered organic acid can be removed by using a chelate resin treatment, an ion exchange method, a crystallization method, or the like so as to satisfy the required quality depending on the application. The separated base can be reused as a pH adjuster in culturing organic acid production.

(実施例1)
以下、実施例でもって本発明を説明するが、本発明はこのような実施例に限定されるものではない。
(1)コリネ型細菌 コリネバクテリウム・グルタミカムR(FERM P−18976)の好気的条件による培養
(培養基の調製):尿素 2g、(NHSO 7g、KHPO 0.5g、KHPO 0.5g、MgSO・7HO 0.5g、FeSO・7HO 6mg、MnSO・7HO 5mg、ビオチン 200μg、塩酸チアミン 200μg、酵母エキス 2g、カザミノ酸 7g、蒸留水1000mlからなる培地500mlを容量1lフラスコに分注し、120℃で10分間加熱減菌後、室温に冷却した該フラスコを種培養基とした。同じく同組成の培地1000mlを2l容ガラス製ジャーファーメンターに入れ、120℃、10分間加熱滅菌し、本培養基とした。
Example 1
EXAMPLES Hereinafter, although this invention is demonstrated with an Example, this invention is not limited to such an Example.
(1) Corynebacterium glutamicum R (FERM P-18976) cultured under aerobic conditions (preparation of culture medium): urea 2 g, (NH 4 ) 2 SO 4 7 g, KH 2 PO 4 0.5 g , K 2 HPO 4 0.5 g, MgSO 4 · 7H 2 O 0.5 g, FeSO 4 · 7H 2 O 6 mg, MnSO 4 · 7H 2 O 5 mg, biotin 200 μg, thiamine hydrochloride 200 μg, yeast extract 2 g, casamino acid 7 g, 500 ml of a medium consisting of 1000 ml of distilled water was dispensed into a 1 liter flask, heated and sterilized at 120 ° C. for 10 minutes, and then cooled to room temperature as a seed culture medium. Similarly, 1000 ml of the medium having the same composition was placed in a 2 liter glass jar fermenter and sterilized by heating at 120 ° C. for 10 minutes to obtain a main culture medium.

(培養):上記種培養基1ケに、コリネ型細菌 コリネバクテリウム・グルタミカムR(FERM P−18976)を無菌条件下にて接種し、33℃にて12時間好気的振盪培養を行い、種培養液とした。この種培養液50mlを上記ジャーファーメンターに接種し、通気量1vvm(Volume/Volume/Minute)、温度33℃で一昼夜、本培養を実施した。好気的培養に起因する影響を除去するため培養液を約3時間窒素ガス雰囲気下で静置した後、培養液200mlを遠心分離機にかけ(5000回転、15分)、上澄み液を除去した。このようにして得られたウェット(湿潤)菌体を、以下の反応に用いた。 (Cultivation): One seed culture medium is inoculated with coryneform bacteria Corynebacterium glutamicum R (FERM P-18976) under aseptic conditions, and aerobic shaking culture is performed at 33 ° C. for 12 hours. A culture solution was obtained. 50 ml of this seed culture solution was inoculated into the jar fermenter, and main culture was carried out overnight at a temperature of 33 ° C. with an aeration rate of 1 vvm (Volume / Volume / Minute). In order to remove the influence caused by aerobic culture, the culture solution was allowed to stand in a nitrogen gas atmosphere for about 3 hours, and then 200 ml of the culture solution was centrifuged (5000 rpm, 15 minutes) to remove the supernatant. The wet (wet) cells thus obtained were used for the following reaction.

(2)反応用還元状態反応培養液の調製:
(NHSO 7g、KHPO 0.5g、KHPO 0.5g、MgSO・7HO 0.5g、FeSO・7HO 6mg、MnSO・7HO 5mg、ビオチン 200μg、塩酸チアミン 200μg、蒸留水 1000mlからなる反応原液を調製し、120℃で10分加熱後、直ちに減圧条件(〜3mmHg)にて20分間、溶解している酸素の除去を行なった。反応原液の還元状態の確認は減圧開始時に反応原液に加えた還元状態指示薬レサズリン色調変化(青色から無色への変化)にて行った。この反応原液1000mlを容器2lの窒素雰囲気下のガラス製反応容器に導入した。この反応容器はpH調整装置、温度維持装置、容器内反応液攪拌装置および酸化還元電位測定装置を備えている。
(2) Preparation of reduced reaction culture for reaction:
(NH 4 ) 2 SO 4 7 g, KH 2 PO 4 0.5 g, K 2 HPO 4 0.5 g, MgSO 4 .7H 2 O 0.5 g, FeSO 4 .7H 2 O 6 mg, MnSO 4 .7H 2 O 5 mg A reaction stock solution consisting of 200 μg of biotin, 200 μg of thiamine hydrochloride, and 1000 ml of distilled water was prepared, heated at 120 ° C. for 10 minutes, and immediately dissolved oxygen was removed under reduced pressure conditions (˜3 mmHg) for 20 minutes. The reduction state of the reaction stock solution was confirmed by changing the color tone of the reduction state indicator resazurin (change from blue to colorless) added to the reaction stock solution at the start of decompression. 1000 ml of this reaction stock solution was introduced into a 2 liter glass reaction vessel under a nitrogen atmosphere. This reaction vessel is equipped with a pH adjusting device, a temperature maintaining device, a reaction liquid stirring device in the vessel, and a redox potential measuring device.

(3)反応の実施:
前記培養後調製されたコリネ型細菌菌体(ウェット菌体)を窒素ガス雰囲気下にある反応容器内の反応原液1000mlに加えた。グルコース600mMを分割して加え、反応温度33℃に維持し、5Mアンモニア水を用いてpHを7.5に制御して、有機酸生成反応を行った。10時間反応後、反応培養液を液体クロマトグラフィーを用いて分析したところ、乳酸アンモニウム986mM(105g/l)が生成していた。
(3) Implementation of reaction:
The coryneform bacterial cells (wet cells) prepared after the culture were added to 1000 ml of a reaction stock solution in a reaction vessel under a nitrogen gas atmosphere. Glucose 600 mM was added in portions, the reaction temperature was maintained at 33 ° C., and the pH was controlled at 7.5 using 5 M aqueous ammonia to carry out an organic acid production reaction. After the reaction for 10 hours, the reaction medium was analyzed using liquid chromatography. As a result, 986 mM (105 g / l) of ammonium lactate was produced.

(4)水分解電気透析による乳酸生成
上記反応培養液をマイクロフィルターを用いてろ過し、固形物質を分離除去した乳酸アンモニウム含有培養液を得た。イオンクロマトグラフィーを用いて分析したところ、乳酸アンモニウム含有培養液中の硫酸塩とリン酸塩の総濃度は0.06M、カリウム濃度は0.01Mであった。次いで、電気透析法で乳酸アンモニウム含有培養液から乳酸を精製した。用いた電気透析装置は、図1に示す有効膜面積100cm/枚のバイポーラ膜((株)トクヤマ製ネオセプタBP−1)6枚、陰イオン交換膜((株)トクヤマ製ネオセプタAHA)5枚で構成される透析槽を持つ水分解電気透析装置(陽極金属、陰極金属ともにニッケルを使用)である。この装置の塩基室に上記の乳酸アンモニウム含有培養液800mlを、酸室には0.5M乳酸水溶液800mlを、陽極室および陰極室には1N水酸化ナトリウム溶液1000mlを、それぞれに付属するタンクから供給し循環させながら、セル電圧を2.5Vに調整し1時間通電した結果、乳酸104g(乳酸アンモニウムからの変換分68g 変換率96%)を得た。電流効率は90%であった。
(4) Production of lactic acid by hydrolytic electrodialysis The above-mentioned reaction culture solution was filtered using a microfilter to obtain an ammonium lactate-containing culture solution from which solid substances were separated and removed. When analyzed using ion chromatography, the total concentration of sulfate and phosphate in the ammonium lactate-containing culture solution was 0.06 M, and the potassium concentration was 0.01 M. Next, lactic acid was purified from the ammonium lactate-containing culture solution by electrodialysis. The electrodialyzer used is composed of 6 bipolar membranes (Neocepta BP-1 manufactured by Tokuyama Co., Ltd.) and 5 anion exchange membranes (Neocepta AHA manufactured by Tokuyama Co., Ltd.) having an effective membrane area of 100 cm 2 / sheet shown in FIG. A water-splitting electrodialyzer having a dialysis tank composed of (Anode metal and cathode metal use nickel). 800 ml of the above ammonium lactate-containing culture solution is supplied to the base chamber of this apparatus, 800 ml of 0.5 M lactic acid aqueous solution is supplied to the acid chamber, and 1000 ml of 1N sodium hydroxide solution is supplied to the anode chamber and the cathode chamber from the tanks attached to each. As a result of adjusting the cell voltage to 2.5 V and supplying electricity for 1 hour while circulating, 104 g of lactic acid (68 g of conversion from ammonium lactate, conversion rate of 96%) was obtained. The current efficiency was 90%.

(実施例2)
実施例1と同様にして得られた菌体および反応条件により、反応中に炭酸アンモニウムを添加すること以外は実施例1と同様の反応を行った。10時間反応後、反応培養液を液体クロマトグラフィーを用いて分析したところ、乳酸アンモニウム510mM(55g/l)、コハク酸アンモニウム370mM(56g/l)が生成していた。
次いで、実施例1と同様にして反応培養液から固形物質を分離除去した有機酸塩含有培養液を得た。イオンクロマトグラフィーで分析したところ、有機酸塩含有培養液中の硫酸塩とリン酸塩の総濃度は0.06M、カリウム濃度は0.01Mであった。該有機酸塩含有培養液を実施例1と同条件で電気透析処理し、乳酸72g(乳酸アンモニウムからの変換分36g 変換率97%)、コハク酸33g(変換率98%)を得た。電流効率は92%であった。
(Example 2)
The same reaction as in Example 1 was carried out except that ammonium carbonate was added during the reaction according to the cells and reaction conditions obtained in the same manner as in Example 1. After reaction for 10 hours, the reaction medium was analyzed using liquid chromatography. As a result, ammonium lactate 510 mM (55 g / l) and ammonium succinate 370 mM (56 g / l) were produced.
Next, in the same manner as in Example 1, an organic acid salt-containing culture solution in which solid substances were separated and removed from the reaction culture solution was obtained. When analyzed by ion chromatography, the total concentration of sulfate and phosphate in the culture solution containing organic acid salt was 0.06M, and the potassium concentration was 0.01M. The organic acid salt-containing culture solution was electrodialyzed under the same conditions as in Example 1 to obtain 72 g of lactic acid (conversion amount from ammonium lactate: 36 g, conversion rate: 97%) and succinic acid: 33 g (conversion rate: 98%). The current efficiency was 92%.

(比較例1)
実施例1と同条件で乳酸アンモニウムを生成し、乳酸アンモニウム濃度が943mM(101g/l)の反応培養液を得た。固形物質を分離除去したのち乳酸アンモニウム含有培養液をイオンクロマトグラフィーで分析したところ、硫酸塩とリン酸塩の総濃度は0.06M、カリウム濃度は0.01Mであった。実施例1に示した電気透析装置で透析槽のイオン交換膜を陰イオン交換膜から陽イオン交換膜((株)トクヤマ製ネオセプタCMB)に変更し、バイポーラ膜6枚と陽イオン交換膜5枚の構成にして、酸室に乳酸アンモニウム含有培養液800mlを、塩基室に2%水酸化ナトリウム水溶液800mlをそれぞれに付属するタンクから供給し循環させながら、電流密度100mA/cmで通電を開始した。反応途中で変換反応が停止し、1時間後の変換率は72%であった。
(Comparative Example 1)
Ammonium lactate was produced under the same conditions as in Example 1 to obtain a reaction culture solution having an ammonium lactate concentration of 943 mM (101 g / l). After the solid substance was separated and removed, the ammonium lactate-containing culture was analyzed by ion chromatography. The total concentration of sulfate and phosphate was 0.06M, and the potassium concentration was 0.01M. In the electrodialysis apparatus shown in Example 1, the ion exchange membrane of the dialysis tank was changed from an anion exchange membrane to a cation exchange membrane (Neocepta CMB manufactured by Tokuyama Corporation), and 6 bipolar membranes and 5 cation exchange membranes were used. In this configuration, 800 ml of an ammonium lactate-containing culture solution was supplied to the acid chamber, and 800 ml of a 2% aqueous sodium hydroxide solution was supplied to the base chamber from the tank attached to each of them, and energization was started at a current density of 100 mA / cm 2 . . The conversion reaction was stopped during the reaction, and the conversion rate after 1 hour was 72%.

(比較例2)
実施例1の反応培地組成にKHPOとKHPOを追加添加し、それぞれの配合量を2.0g/lとした以外は実施例1と同条件で乳酸アンモニウムを生成し、962mM(103g/l)の乳酸アンモニウムを含有する反応培養液を得た。固形物質を分離除去したのち乳酸アンモニウム含有培養液をイオンクロマトグラフィーで分析したところ、硫酸塩およびリン酸塩総濃度は0.08M、カリウム濃度は0.04Mであった。実施例1と同条件で電気透析処理を実施したが、反応途中で変換反応が停止し、1時間後の変換率は77%であった。
(Comparative Example 2)
Ammonium lactate was produced under the same conditions as in Example 1 except that KH 2 PO 4 and K 2 HPO 4 were additionally added to the reaction medium composition of Example 1 and the respective blending amounts were 2.0 g / l. 962 mM A reaction culture solution containing (103 g / l) ammonium lactate was obtained. After the solid substance was separated and removed, the ammonium lactate-containing culture solution was analyzed by ion chromatography. The total concentration of sulfate and phosphate was 0.08M, and the potassium concentration was 0.04M. The electrodialysis treatment was carried out under the same conditions as in Example 1, but the conversion reaction was stopped during the reaction, and the conversion rate after 1 hour was 77%.

本発明の精製法は、培養液に含まれる有機酸塩(例えば、乳酸塩、コハク酸塩など)から有機酸を容易に精製できるので、工業的精製法として有用である。   The purification method of the present invention is useful as an industrial purification method because an organic acid can be easily purified from an organic acid salt (eg, lactate, succinate, etc.) contained in a culture solution.

バイポーラ膜/陰イオン交換膜により構成される2室法水分解電気透析装置を概略的に表した図面である。It is drawing which represented roughly the two-chamber method water-splitting electrodialysis apparatus comprised by a bipolar membrane / anion exchange membrane.

符号の説明Explanation of symbols

1…バイポーラ膜、 2…陰イオン交換膜、 3…酸室、 4…塩基室、 5…陽極室
6…陰極室、 7…塩溶液タンク、 8…酸溶液タンク、 9…電極液タンク、
10…塩溶液ポンプ、 11…酸溶液ポンプ、 12…電極液ポンプ、
13…塩溶液配管、 14…酸溶液配管、 15…電極液配管、 16…電気透析槽
DESCRIPTION OF SYMBOLS 1 ... Bipolar membrane, 2 ... Anion exchange membrane, 3 ... Acid chamber, 4 ... Base chamber, 5 ... Anode chamber 6 ... Cathode chamber, 7 ... Salt solution tank, 8 ... Acid solution tank, 9 ... Electrode solution tank,
10 ... Salt solution pump, 11 ... Acid solution pump, 12 ... Electrode solution pump,
13 ... Salt solution piping, 14 ... Acid solution piping, 15 ... Electrode solution piping, 16 ... Electrodialysis tank

Claims (6)

培養槽内の反応培地中で糖類にコリネ型細菌を作用させて有機酸塩を含む培養液を生成させたのち、該培養液から水分解電気透析装置を用いて有機酸を精製する方法において、
(A)水分解電気透析装置がバイポーラ膜と陰イオン交換膜とで構成されており、
(B)培養液が強酸からなる塩を含有し、その濃度が0.03モル/リットル乃至0.06モル/リットルであり、かつ
(C)培養液中のアルカリ金属濃度が0.03モル/リットル以下であること、ならびに
(D)有機酸塩を含む培養液を該水分解電気透析装置の塩基室に導入すること
を特徴とする有機酸の精製方法。
In a method of purifying an organic acid from the culture solution using a water-decomposing electrodialyzer after generating a culture solution containing an organic acid salt by allowing coryneform bacteria to act on sugars in a reaction medium in a culture tank,
(A) The water splitting electrodialysis apparatus is composed of a bipolar membrane and an anion exchange membrane,
(B) The culture solution contains a salt composed of a strong acid, the concentration thereof is 0.03 mol / liter to 0.06 mol / liter , and (C) the alkali metal concentration in the culture solution is 0.03 mol / liter. Less than a liter, and
(D) A method for purifying an organic acid, which comprises introducing a culture solution containing an organic acid salt into a base chamber of the water-splitting electrodialysis apparatus .
強酸からなる塩が硫酸塩、硝酸塩、塩酸塩およびリン酸塩の群から選ばれる少なくとも一つを含むことを特徴とする請求項1に記載の有機酸の精製方法。   The method for purifying an organic acid according to claim 1, wherein the salt comprising a strong acid contains at least one selected from the group consisting of sulfate, nitrate, hydrochloride and phosphate. アルカリ金属がリチウム、ナトリウムおよびカリウムの群から選ばれる少なくとも一つを含むことを特徴とする請求項1に記載の有機酸の精製方法。 The method for purifying an organic acid according to claim 1, wherein the alkali metal contains at least one selected from the group consisting of lithium, sodium and potassium. 培養液から菌体を分離除去したのち、水分解電気透析装置に導入することを特徴とする請求項1に記載の有機酸の精製方法。   The method for purifying an organic acid according to claim 1, wherein the cells are separated and removed from the culture solution and then introduced into a water-splitting electrodialysis apparatus. コリネ型細菌がコリネバクテリウム属菌、ブレビバクテリウム属菌、アースロバクター属菌、マイコバクテリューム属菌またはマイクロコッカス属菌であることを特徴とする請求項1に記載の有機酸の精製方法。   The method for purifying an organic acid according to claim 1, wherein the coryneform bacterium is Corynebacterium, Brevibacterium, Arthrobacter, Mycobacterium, or Micrococcus. . 生成する有機酸塩がコハク酸塩および乳酸塩から選ばれることを特徴とする請求項1に記載の有機酸の精製方法。
The method for purifying an organic acid according to claim 1, wherein the organic acid salt to be produced is selected from succinate and lactate.
JP2004090097A 2004-03-25 2004-03-25 Purification method of organic acid Expired - Fee Related JP3959403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004090097A JP3959403B2 (en) 2004-03-25 2004-03-25 Purification method of organic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090097A JP3959403B2 (en) 2004-03-25 2004-03-25 Purification method of organic acid

Publications (2)

Publication Number Publication Date
JP2005270025A JP2005270025A (en) 2005-10-06
JP3959403B2 true JP3959403B2 (en) 2007-08-15

Family

ID=35170324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090097A Expired - Fee Related JP3959403B2 (en) 2004-03-25 2004-03-25 Purification method of organic acid

Country Status (1)

Country Link
JP (1) JP3959403B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8519185B2 (en) 2005-10-26 2013-08-27 Mitsui Chemicals, Inc. Process for producing glycolic acid
CN101410526B (en) * 2006-03-29 2015-08-12 生物能源株式会社 From separation method and the separating component of the lactic component of lactic acid fermentation liquid
AU2008272239A1 (en) 2007-06-29 2009-01-08 Toray Industries, Inc. Lactic acid production method
EP2349541B1 (en) * 2008-09-08 2021-11-24 Carlsberg A/S Process for controlling the ph and level of target ions of a liquid composition
JP2010130908A (en) * 2008-12-02 2010-06-17 National Institute Of Advanced Industrial Science & Technology Method for producing glycerate
CA2748354A1 (en) 2008-12-26 2010-07-01 Toray Industries, Inc. Method for producing lactic acid and method for producing polylactic acid
JP5704438B2 (en) * 2010-12-22 2015-04-22 栗田工業株式会社 Method and apparatus for regenerating amine liquid
JP5817123B2 (en) * 2011-01-18 2015-11-18 栗田工業株式会社 Apparatus for recovering oxalate ions from indium oxalate aqueous solution, and method for recovering oxalate ions from indium oxalate aqueous solution
JP2015080744A (en) * 2013-10-22 2015-04-27 三菱化学株式会社 Method for producing aliphatic dicarboxylic acid-containing liquid
BR112020006001A2 (en) * 2017-10-02 2020-10-13 Metabolic Explorer method for producing organic acid salts from fermentation broth

Also Published As

Publication number Publication date
JP2005270025A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US7833763B2 (en) Method for producing organic acid
JP4631706B2 (en) Method for purifying succinic acid from fermentation broth
JP2872723B2 (en) Method for producing and purifying succinic acid
Hongo et al. Novel method of lactic acid production by electrodialysis fermentation
US5518906A (en) Production of d-pantoic acid and d-pantothenic acid
JP3109884B2 (en) Method for producing D-pantothenic acid
JP4197754B2 (en) Method for producing lactic acid or succinic acid
EP1930408A2 (en) Acid-tolerant homolactic bacteria
JP3959403B2 (en) Purification method of organic acid
JP4554277B2 (en) Method for producing succinic acid by microorganism
JP4032765B2 (en) Method for producing organic acid
JP2003235592A (en) Method for producing organic acid
US6001255A (en) Process for the production of water-soluble salts of carboxylic and amino acids
JP4742610B2 (en) Process for producing fumaric acid
JP4647391B2 (en) Highly efficient production method of dicarboxylic acid by coryneform bacteria
JP4198147B2 (en) Method for producing organic acid
JP2004194570A (en) Method for producing organic compound using coryneform bacterium
JP2010130908A (en) Method for producing glycerate
EP0725847B1 (en) A process for the production of water-soluble salts of carboxylic and amino acids
JP2502990B2 (en) <1> -Process for producing malic acid
WO2006133898A2 (en) Improved biosyntetic production of 2, 3-trans-chd
JPWO2003062437A1 (en) Method for producing α-hydroxy acid ammonium salt
JPH05271147A (en) Method for separating and recovering d-malic acid
JPH0739368A (en) Dialysis fermentation
WO1988006188A1 (en) Process for preparing d-alanine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3959403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees