JP3958610B2 - 高分子結晶化容器 - Google Patents

高分子結晶化容器 Download PDF

Info

Publication number
JP3958610B2
JP3958610B2 JP2002080731A JP2002080731A JP3958610B2 JP 3958610 B2 JP3958610 B2 JP 3958610B2 JP 2002080731 A JP2002080731 A JP 2002080731A JP 2002080731 A JP2002080731 A JP 2002080731A JP 3958610 B2 JP3958610 B2 JP 3958610B2
Authority
JP
Japan
Prior art keywords
crystallization
solution
area
holding area
precipitant solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002080731A
Other languages
English (en)
Other versions
JP2003277198A (ja
Inventor
信久 渡邉
幸男 丸田
Original Assignee
株式会社 ラボ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ラボ filed Critical 株式会社 ラボ
Priority to JP2002080731A priority Critical patent/JP3958610B2/ja
Publication of JP2003277198A publication Critical patent/JP2003277198A/ja
Application granted granted Critical
Publication of JP3958610B2 publication Critical patent/JP3958610B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子結晶化容器に関し、特に、タンパク質や核酸等の生体高分子およびそれらの複合体を含む高分子を蒸気拡散法により結晶化させて、その結晶構造をX線解析するのに好適な技術に関するものである。
【0002】
【従来の技術】
タンパク質をはじめとする生体高分子やそれらの複合体における特異的性質および機能を理解する上で、立体構造を詳細に解明することは不可欠である。たとえば、基礎化学的な観点からは、タンパク質等の3次元構造の情報が、酵素やホルモン等による生化学系における機能発現のメカニズムを理解するための基礎となる。また、特に薬学、遺伝子工学および化学工学の分野においては、3次元構造はドラッグデザインやプロテインエンジニアリング、生化学的合成等を進める上で合理的な分子設計に欠かせない情報を提供する。
【0003】
生体高分子の原子レベルでの3次元立体構造情報を得る方法には、X線結晶構造解析や核磁気共鳴(NMR:Nuclear Magnetic Resonance)または電子顕微鏡などが用いられるが、現在のところX線結晶構造解析が最も利用度が高く高精度な手段である。X線結晶構造解析により生体高分子の3次元構造を決定するためには、目的とする物質を抽出・精製後、結晶化することが必須となる。しかし、現在のところ、どの物質に対しても適用すれば必ず結晶化できるといった手法および装置がないため、勘と経験に頼って試行錯誤を繰返しながら結晶化を進めているのが実状である。
【0004】
タンパク質等の生体高分子の結晶化は、高分子を含む水または非水溶液に沈澱剤を添加し高分子の溶解度を下げる処理を施すことにより、過飽和状態にして、結晶を成長させるのが基本となっている。このための代表的な方法として、バッチ法、透析法、蒸気拡散法などがあり、試料の種類、量、性質等によって使い分けられているが、現在のところ蒸気拡散法が一般的な手段として利用されることが多い。
【0005】
蒸気拡散法には、さらにハンギングドロップ法、シッティングドロップ法およびサンドイッチドロップ法が知られている。このうちハンギングドロップ法は図9に示すように、たとえば、硫酸アンモニウム等の沈殿剤溶液Aを分注用針24を使って結晶化プレート21のウェルw内に注入する(図9(a))。つぎに、タンパク質等の高分子溶液Bの液滴をガラスプレート22に載せるとともに(図9(b))、これに前記沈殿剤溶液Aの液滴を加えることで結晶化ドロップCを作製する(図9(c))。そして、沈殿剤溶液Aの入ったウェルwの上面縁にグリース等のシール剤Sを塗布し(図9(d))、前記ガラスプレート22を180°反転させて(図9(e))、前記容器に蓋をするようにかぶせて密閉する(図9(f))。これにより、容器内では、下方に沈殿剤溶液Aが貯蔵され、上方に結晶化ドロップCが垂下する状態になる。このような条件下において、結晶化ドロップC中の濃度は、容器中の沈殿剤溶液Aの濃度に比べて薄いため、それらの濃度差により蒸気圧に差が生じ、結晶化ドロップC中の揮発成分が徐々に沈殿剤溶液Aに移動し結晶化ドロップC中の高分子および沈澱剤が濃縮される。これにより前記結晶化ドロップC内における高分子の結晶化が促進される。
【0006】
また、シッティングドロップ法は図10に示すように、沈殿剤溶液Aを分注用針24を使って結晶化プレート21のウェルw内に注入する(図10(a))。つぎに、タンパク質等の高分子溶液Bの液滴を補助ブリッジ23に載せるとともに(図10(b))、前記沈殿剤溶液Aを加えて結晶化ドロップCを作製する(図10(c))。そして、その結晶化ドロップCが載せられた補助ブリッジ23を前記ウェルw内に載置した後、シーリングテープ等により密閉する(図10(d))。これにより、前記ハンギングドロップ法と同様の作用が生じ、蒸気圧が平衡になるまで結晶化ドロップCから沈殿剤溶液Aへ揮発成分が移動し、高分子の結晶化を促進させるようになっている。
【0007】
また、図11に示すように、前述したハンギングドロップ法では、24本や96本の分注用針24を備えた図示しない多連式分注器を用いて一度に多数の高分子を結晶化させる場合がある。この場合、多連式分注器の分注用針24によりウェルwに沈殿剤溶液Aを注入し(図11(a))、さらにガラスプレート22に前記ウェルwと同数の結晶化ドロップCを作製する(図11(b))。そして、前記ガラスプレート22を180°反転して前記結晶化プレート21のウェルw上にかぶせるようになっている(図11(c))。このとき、単純にガラスプレート22を結晶化プレート21に反転させると、A4結晶化ドロップCがA’1’ウェルwに組み合わされてしまい、結晶化ドロップCと沈殿剤溶液Aとの組合せがずれてしまう。このため、図11(d)に示すように、ガラスプレート22の結晶化ドロップCを作製する際に、あらかじめ180°反転させることを考慮し、沈殿剤溶液Aと結晶化ドロップCとが鏡像関係となるように滴下する。
【0008】
さらに、生成・成長した高分子結晶について上述のX線結晶構造解析やその他の評価を行う場合、先端がループ状になった精密器具等により結晶化ドロップC中から任意の1個の結晶を慎重に取り出すようになっている。
【0009】
【発明が解決しようとする課題】
しかしながら、従来の結晶化プレート21では、ハンギングドロップ法を行う場合、別途、ガラスプレート22が必要であるし、シッティングドロップ法をハンギングドロップ法用の結晶化プレート21で行う場合、補助用ブリッジが必要であるため、不便であり作業が複雑になる。
【0010】
また、多連式分注器を使ってハンギングドロップ法により多数の結晶化を行う場合、沈殿剤溶液Aおよび結晶化ドロップCを正しく組合せるために、結晶化ドロップCの作製位置をウェルwの沈殿剤溶液Aと鏡像関係となるように注意しなければならず、しかも2台の多連式分注器およびは鏡像関係にある2つの溶液溜を準備する必要があり煩雑である。
【0011】
さらに、従来の結晶化プレート21では、結晶の評価の際に先端がループ状の精密器具等により結晶化ドロップCから1個の高分子の結晶を取り出す必要があるが、この操作は高分子の結晶に物理的なダメージを与え易いし、その操作に熟練された技と時間を要する。したがって、多数の条件下で生成した結晶のX線回折能を迅速に評価し、その結果を比較して結晶化条件にフィードバックするには時間がかかり過ぎるという問題がある。特に、結晶の作製は、タンパク質に加えるイオンやリガンドの有無ばかりでなく、pH、温度、タンパク質濃度、溶媒や沈殿剤の性質など、多くのパラメータに依存する。このため、X線回折に適した結晶が得られるようなパラメータの組合せを見つけるために結晶化実験を何度も行わなければならず、できるだけ時間ロスのない、効率的な実験が求められている。
【0012】
本発明は前述のような課題に鑑みてなされたものであって、その目的の1つは、蒸気拡散法のハンギングドロップ法およびシッティングドロップ法を任意に選択して簡単かつ少ない作業数で高分子の結晶化を効率的に進めることにある。また、結晶化ドロップから高分子結晶を取り出さずにX線照射実験を行うことができるため、熟練度も必要なく、結晶に物理的ダメージを与えず、しかも強力もしくは波長が短く透過力の高いX線を照射しなくても良好なX線回折像を得ることができる高分子結晶化容器を提供することを目的としている。
【0013】
【課題を解決するための手段】
本発明に係る高分子結晶化容器の特徴は、沈殿剤溶液を保持する沈殿剤溶液保持エリアと、高分子溶液に沈殿剤溶液を加えた結晶化ドロップを保持する結晶化ドロップ保持エリアと、前記結晶化ドロップ保持エリアに対向する位置に設けられ、前記沈殿剤溶液あるいは前記高分子溶液を前記沈殿剤溶液保持エリアおよび前記結晶化ドロップ保持エリアに注入するための開口部を備えた溶液注入エリアと、高分子結晶化容器を上下反転させたときに前記沈殿剤溶液が前記沈殿剤溶液保持エリアから前記結晶化ドロップ保持エリアおよび前記溶液注入エリアに流出するのを防止する沈殿剤溶液流出防止手段とを有する点にある。
【0014】
そして、このような構成を採用したことにより、高分子結晶化容器を上下反転させても沈殿剤溶液流出防止手段によって沈殿剤溶液が結晶化ドロップ保持エリアや溶液注入エリアに流出するのを防止するため、1つの高分子結晶化容器でハンギングドロップ法およびシッティングドロップ法のいずれかを高分子試料の種類や量、目的等に応じて任意に選択して簡単に行うことができる。
【0015】
また、本発明に係る高分子結晶化容器の一態様は、相互に対向する第1底面および第2底面を有するとともに、前記第1底面および前記第2底面の間の空間を取り囲む壁部を有しており、前記結晶化ドロップ保持エリアを前記第1底面に形成し、前記溶液注入エリアを前記第2底面に形成し、前記沈殿剤溶液保持エリアを前記第1底面または前記壁部に形成するように構成されることが好ましい。これによれば、第2底面の溶液注入エリアから沈殿剤溶液や高分子溶液を注入した後、高分子結晶化容器を上下反転させても沈殿剤溶液保持エリアの沈殿剤溶液流出防止手段によって前記沈殿剤溶液が結晶化ドロップ保持エリアや溶液注入エリアに流出するのを防止するため、1つの高分子結晶化容器でハンギングドロップ法およびシッティングドロップ法のいずれかを任意に選択して簡単に行うことができる。
【0016】
また、本発明に係る高分子結晶化容器の特徴は、沈殿剤溶液を保持する第1沈殿剤溶液保持エリア、および高分子溶液に沈殿剤溶液を加えた結晶化ドロップを保持する結晶化ドロップ保持エリアを備えた第1底面と、前記第1底面と互いに対向する位置に設けられ、前記沈殿剤溶液あるいは前記高分子溶液を前記第1沈殿剤溶液保持エリアおよび前記結晶化ドロップ保持エリアに注入するための開口部を備えた溶液注入エリア、および高分子結晶化容器を上下反転させたときに前記沈殿剤溶液を保持可能な第2沈殿剤溶液保持エリアを備えた第2底面と、前記第1底面および前記第2底面の間の空間を取り囲む壁部とを有する点にある。
【0017】
そして、このような構成を採用したことにより、高分子結晶化容器を上下反転させたときに沈殿剤溶液を保持する第2沈殿剤溶液保持エリアを設けているため、沈殿剤溶液を保持するエリアとして相互に対向する面に存在する第1沈殿剤溶液保持エリアおよび第2沈殿剤溶液保持エリアを任意に選択することができ、1つの高分子結晶化容器でハンギングドロップ法およびシッティングドロップ法のいずれかを高分子試料の種類や量、目的に応じて選択的に行うことができる。
【0018】
また、本発明の一態様として、前記結晶化ドロップ保持エリアおよび前記溶液注入エリアと、前記沈殿剤溶液保持エリアとの境界に沈殿剤溶液流出防止手段たる流出防止板を設けたり、あるいは前記結晶化ドロップ保持エリアおよび前記溶液注入エリアと、前記第1沈殿剤溶液保持エリアおよび前記第2沈殿剤溶液保持エリアとの境界に流出防止板を設けるようにしてもよい。これによれば、流出防止板によって各エリアを確実に区分けし、高分子結晶化容器が上下反転されても沈殿剤溶液が結晶化ドロップ保持エリアや溶液注入エリアに流出するのを防止でき、より確実にハンギングドロップ法およびシッティングドロップ法を不備なく実行できる。
【0019】
また、本発明の一態様として、前記沈殿剤溶液保持エリアに前記沈殿剤溶液を保持する沈殿剤溶液保持部材を備えたり、あるいは前記第1沈殿剤溶液保持エリアおよび前記第2沈殿剤溶液保持エリアの少なくとも一方のエリアに前記沈殿剤溶液保持部材を備えるようにしてもよい。これによれば、多孔質吸収材や格子構造部材、網目構造部材などの沈殿剤溶液保持部材によって沈殿剤溶液を確実に保持するため、高分子結晶化容器が上下反転されても沈殿剤溶液の流動を抑制して結晶化ドロップ保持エリアや溶液注入エリアに流出するのを防止できる。したがって、沈殿剤溶液保持エリアの形成位置や第1沈殿剤溶液保持エリアおよび第2沈殿剤溶液保持エリアの形成位置の選択が自由になり、ひいては高分子結晶化容器の形状について選択の自由度を増やすことができる。
【0020】
さらに、本発明の一態様では、前記溶液注入エリアおよび前記結晶化ドロップ保持エリアの底面間隔を、前記溶液注入エリアおよび前記沈殿剤溶液保持エリアの底面間隔より小さくなるように形成したり、あるいは前記溶液注入エリアおよび前記結晶化ドロップ保持エリアの底面間隔を、前記第1沈殿剤溶液保持エリアおよび前記第2沈殿剤溶液保持エリアの底面間隔よりも小さくなるように形成することが好ましい。これによれば、沈殿剤溶液を必要な容量で保持するスペースを確保しつつ、溶液注入エリアと結晶化ドロップ保持エリアとの間隔を狭めるようになっているため、高分子結晶に照射するX線の入射角度を大きく拡げられるし、必要に応じて高分子結晶を取り出すことも容易にできる。
【0021】
さらに、本発明の一態様として、前記結晶化ドロップ保持エリアおよび前記溶液注入エリアは、互いに対向する位置に形成されており、前記結晶化ドロップ保持エリアの底面側には開口部が形成されていることが好ましい。これによれば、結晶化ドロップ保持エリアの底面開口部にX線および可視光を透過するシーリングテープ等の薄膜状の部材を任意に貼り付けることができる。したがって、ハンギングドロップ法またはシッティングドロップ法により結晶化した高分子結晶を別途取り出さなくても、X線や可視光を溶液注入エリアから照射して結晶化ドロップ保持エリアの底面へと透過させられるため、高分子結晶を物理的に損傷することもないし、顕微鏡観察やX線回折実験を簡単かつ確実に行うことができる。
【0022】
また、本発明の一態様として、前記結晶化ドロップ保持エリアおよび前記溶液注入エリアは、互いに対向する位置に形成されており、前記結晶化ドロップ保持エリアの底面部にはX線および可視光を透過する薄膜状の薄膜底部が形成されていることが望ましい。これによれば、ハンギングドロップ法またはシッティングドロップ法により結晶化した高分子結晶を別途取り出さなくても、X線や可視光を溶液注入エリアから照射して結晶化ドロップ保持エリアの薄膜底部へと透過させられるため、高分子結晶を物理的に損傷することもないし、顕微鏡観察やX線回折実験を簡単かつ確実に行うことができる。
【0023】
さらに、本発明の一態様として、前記結晶化ドロップ保持エリアや前記溶液注入エリアに形成された開口部に、X線および可視光を透過する薄膜部材を貼付することにより高分子結晶化容器内を密閉状態にすることが好ましい。これにより、高分子結晶化容器内で蒸気拡散法により確実に高分子の結晶を成長させることができるし、成長した高分子結晶を取り出すことなく、溶液注入エリアから結晶化ドロップ保持エリアへとX線および可視光を透過させて簡単かつ確実にX線回折像や顕微鏡写真を撮影することができる。
【0024】
また、本発明の一態様では、前記薄膜部材および前記薄膜底部は、1μm〜1mmの厚さに形成されることが望ましい。これによれば、X線および可視光が薄膜部材や薄膜底部をより容易かつ確実に透過することができて良好なX線回折像や顕微鏡写真を撮影することができる。
【0025】
また、本発明の一態様では、前記結晶化ドロップ保持エリアに、結晶化ドロップが横方向に流れるのを防止するための結晶化ドロップ収容部を設けることが好ましい。これによれば、結晶化ドロップが結晶化ドロップ収容部に収容されるため、壁部などに付着するのを防止でき確実に高分子の結晶化を図ることができる。
【0026】
【発明の実施の形態】
以下、本発明に係る高分子結晶化容器1aの実施形態の一例を図面を用いて説明する。
【0027】
本発明の第1実施形態は、図1に示すように、複数の高分子結晶化容器1aが連ねられて1つのプレートを構成している。図2に高分子結晶化容器1aの斜視図を示す。本第1実施形態の高分子結晶化容器1aは、蒸気拡散法のハンギングドロップ法およびシッティングドロップ法のいずれも選択できるようになっている。このため、本第1実施形態は、主として第1底面2と、第2底面3と、前記第1底面2および前記第2底面3の間の空間を密閉状態に取り囲む壁部4とから構成されている。
【0028】
第1底面2は、沈殿剤溶液Aを保持する第1沈殿剤溶液保持エリア5と、タンパク質等の生体高分子溶液Bに沈殿剤溶液Aを加えた結晶化ドロップCを保持する結晶化ドロップ保持エリア6とを備えている。結晶化ドロップ保持エリア6は、第1底面2の隅部に形成されており、壁部4と断面L字状の第1流出防止板7によって囲まれている。結晶化ドロップ保持エリア6と第1沈殿剤溶液保持エリア5とは、前記第1流出防止板7によって仕切られており、沈殿剤溶液Aが第1沈殿剤溶液保持エリア5から結晶化ドロップ保持エリア6へと流出するのを防止している。
【0029】
なお、本第1実施形態では、結晶化ドロップ保持エリア6を第1底面2の隅部に形成しているが、この位置に限定されるものではなく、第1底面2の中央位置に形成するようにしてもよい。また、第1沈殿剤溶液保持エリア5の底面は開口されているが、製造上の都合によるものであり、必須の条件ではない。
【0030】
第2底面3は、第1底面2と互いに対向する位置に設けられている。そして、第2底面3は、沈殿剤溶液Aあるいは生体高分子溶液Bを第1沈殿剤溶液保持エリア5および結晶化ドロップ保持エリア6に注入するための開口部8aを備えた溶液注入エリア8と、前記沈殿剤溶液Aを保持可能な第2沈殿剤溶液保持エリア9とを備えている。溶液注入エリア8と第2沈殿剤溶液保持エリア9とは、平板状の第2流出防止板10により区分けされている。溶液注入エリア8の開口部8aは、各溶液A,Bの注入にのみ使用されるのであれば、分注用針14が挿入できる大きさに形成すればよいが、本第1実施形態では、後述するようにX線を結晶に照射したり、可視光を透過する目的でも使用する。このため、結晶化ドロップ保持エリア6で生成される結晶に対して少なくともX線を照射することができる大きさに開口されている。
【0031】
第1底面2の結晶化ドロップ保持エリア6および第2底面3の溶液注入エリア8は、互いに対向する位置に形成されており、前記結晶化ドロップ保持エリア6の底面側には開口部6aが形成されている。そして、結晶化ドロップ保持エリア6の開口部6aには、X線を透過可能な薄膜部材11が予め貼付されている。一方、溶液注入エリア8の開口部8aは、沈殿剤溶液Aおよび生体高分子溶液Bを注入し終えた後に、X線を透過可能な薄膜部材11が貼付される。これにより高分子結晶化容器1aの内部が密閉状態になり、蒸気平衡による結晶化を促進できるようになっている。各エリア6,8の開口部6a,8aを閉じるのに使用される薄膜部材11は、例えばシーリングテープやフィルム、薄い透明プレート等を適用することができるが、耐薬品性に優れ、かつX線および可視光を透過しやすい素材が好ましい。また、必ずしもX線透過性に優れているとは言えないが、密閉性を確保する点から、プラスチック素材との接着性に優れたポリオレフィン製シーリングテープを用いてもよい。その他、ポリエステルやポリイミド等のプラスチック素材を適用することもできる。
【0032】
また、薄膜部材11の厚さは、1μm〜1mmであればX線や可視光を透過しやすいが、より好ましくは10μm〜100μmの厚さがよい。厚すぎると、より強いX線もしくはより短波長で透過性の高いX線を照射しなければ透過できなくなるからである。つまり、タンパク質などの高分子結晶によるX線の回折能は波長の3乗に比例するため、ごく短波長では回折能が低下してしまうし、それを補うためにX線の照射強度を大きくすると、それに応じて装置等のコストが高くなるという問題が生じるからである。したがって、回折能の高いが透過性の低い長波長のX線を使用できるようにするためには、薄膜部材11の厚さを薄くし、X線の吸収量が少ない素材を選択することが好ましい。
【0033】
なお、本第1実施形態における結晶化ドロップ保持エリア6の底面側には、開口部6aが形成されて薄膜部材11が貼付されるようになっているが、その開口部6aを形成せずに、その底面部分をX線および可視光が透過しやすい薄膜状の薄膜底部(図示せず)に形成してもよい。このように薄膜底部を形成すれば、その都度、シーリングテープ等を貼付する手間を省くことができる。このとき形成する薄膜底部もX線および可視光を透過しやすい素材を用いることが好ましいし、厚さは1μm〜1mm、より望ましくは10μm〜100μmがよい。
【0034】
また、本第1実施形態では、複数の高分子結晶化容器1aを一体的に形成しているが、個々の高分子結晶化容器1aを適当な数で縦横位置に並べて配置する構成にしてもよい。このとき、各高分子結晶化容器1aの間隔は図示しない多連式分注器に備えられた複数の分注用針14の間隔と一致するように形成されている。具体的には、標準96穴プレートの間隔に等しく、約9mm間隔である。
【0035】
つぎに、本第1実施形態の高分子結晶化容器1aを使用してタンパク質の結晶を促進させる方法について説明する。
【0036】
図3に示すように、まず、高分子結晶化容器1aの第1底面2に予めプラスチック等のシーリングテープ11を貼付しておき、その第1底面2を下側にし、第2底面3を上側にして作業台上に配置する(図3(a))。そして、溶液注入エリア8から結晶化ドロップ保持エリア6に分注用針14を挿入して、その底面に貼付されたシーリングテープ11上にタンパク質溶液Bを滴下する(図3(b))。つづいて結晶化ドロップ保持エリア6に分注用針14を使用して沈殿剤溶液Aを滴下し、タンパク質溶液Bに混ぜて結晶化ドロップCを作製する(図3(c))。そして、溶液注入エリア8から分注用針14を挿入して第1沈殿剤溶液保持エリア5に沈殿剤溶液Aを注入する(図3(d))。その後、溶液注入エリア8にシーリングテープ11を貼付して高分子結晶化容器1aの内部を密閉状態にする(図3(e))。この状態を保持すれば、シッティングドロップ法によるタンパク質の結晶化を進めることができる。
【0037】
一方、ハンギングドロップ法を行うには、高分子結晶化容器1aを図3(f)に示すような方向に180°反転させて、第2底面3を下側にする(図3(g))。このとき、沈殿剤溶液Aは、その表面張力によって壁部4に沿って伝わり、第2沈殿剤溶液保持エリア9に移動する。もし沈殿剤溶液Aの表面張力が弱かったり、回転方向を誤ったとしても、第1流出防止板7および第2流出防止板10が設けられているため、沈殿剤溶液Aが結晶化ドロップ保持エリア6や溶液注入エリア8へ流出することはない。このように沈殿剤溶液Aの流出を防ぐことでX線を照射する場合、そのX線が余計な沈殿剤溶液Aに吸収されてしまうことを未然に防止できる。そして、結晶化ドロップCは、結晶化ドロップ保持エリア6内のシーリングテープ11に垂下するように保持される。この状態を保持することによりハンギングドロップ法によるタンパク質の結晶化を進めることができる。
【0038】
以上のような方法により、結晶化ドロップ保持エリア6内でタンパク質の結晶化に成功した場合、図4に示すように、結晶化ドロップ保持エリア6内に沈殿剤溶液Aが入り込まない方向へ高分子結晶化容器1aを90°回転させる。そして、溶液注入エリア8から結晶化ドロップ保持エリア6に向けて図示しないX線解析装置を用いてX線を照射する。このとき、溶液注入エリア8および結晶化ドロップ保持エリア6の各開口部6a,8aには、シーリングテープ11が貼付されているが、このシーリングテープ11は薄膜状であってX線および可視光を透過する素材であるため、X線および可視光を容易かつ確実に透過し、X線回折能および顕微鏡観察結果等の評価を十分に得ることができる。
【0039】
以上のように本第1実施形態によれば、実験に用いられるタンパク質の種類や実験目的に応じてハンギングドロップ法およびシッティングドロップ法のいずれの手法も任意に選択することができる。しかもハンギングドロップ法で従来必要とされたガラスプレートや、シッティングドロップ法で従来必要とされた補助ブリッジを使用しなくて済むため、簡単かつ少ない作業数で蒸気拡散法を実施することができる。
【0040】
また、X線結晶構造解析を行う場合に、タンパク質の結晶を結晶化ドロップCから取り出す必要がないため、精密器具等を使うための熟練技術や経験が不要となり、効率的に実験を繰り返すことができるし、結晶取り出しの際に結晶を物理的に損傷させるおそれもない。
【0041】
さらに、X線および可視光の透過性が高い薄膜部材や薄膜底部を使用し、かつ、沈殿剤溶液Aの流入による吸収もないため、特に短波長のX線や強いX線および可視光を照射しなくても必要なX線回折像や顕微鏡写真を撮影できて高価なX線解析装置等が不要でありコストを低減できる。
【0042】
つぎに、本発明に係る高分子結晶化容器1bの第2実施形態について図5を参照しつつ説明する。なお、本第2実施形態の構成のうち前述した第1実施形態の構成と同一もしくは相当する構成については同一の符号を付して再度の説明を省略する。
【0043】
本第2実施形態における高分子結晶化容器1bの特徴は、図5に示すように、結晶化ドロップ保持エリア6の底面が底上げされて、溶液注入エリア8に近づけられている点にある。つまり、溶液注入エリア8および結晶化ドロップ保持エリア6の底面間隔が、第1沈殿剤溶液保持エリア5および第2沈殿剤溶液保持エリア9の底面間隔よりも小さく形成されている。結晶化ドロップ保持エリア6の底面は、開口部6aとしてもよいが、本第2実施形態では薄膜底部6bが形成されている。
【0044】
これにより、溶液注入エリア8からX線を照射する場合に、真上から照射するだけでなく左右方向、すなわち図5では紙面と垂直の方向に入射角度を拡げられるため、様々な角度から結晶にX線を入射することができ、より適当なX線回折像を得ることができる。なお、第1沈殿剤溶液保持エリア5および第2沈殿剤溶液保持エリア9の底面間隔は、沈殿剤溶液Aの必要な容量を確保するために十分な大きさに形成されている。
【0045】
つぎに、本発明に係る高分子結晶化容器1cの第3実施形態について説明する。なお、本第3実施形態の構成のうち前述した第1実施形態の構成と同一もしくは相当する構成については同一の符号を付して再度の説明を省略する。
【0046】
本第3実施形態における高分子結晶化容器1cの特徴は、内部に沈殿剤溶液Aを保持可能な沈殿剤溶液保持部材12を備えた点にある。つまり、第1沈殿剤溶液保持エリア5および第2沈殿剤溶液保持エリア9の少なくとも一方に沈殿剤溶液Aを保持する沈殿剤溶液保持部材12が配置されている。前記沈殿剤溶液保持部材12の一例として、沈殿剤溶液Aを吸収保持するスポンジ等の多孔質部材が挙げられるが、これ以外に格子状構造部材や網目状構造部材等が適用できる。これらの部材は、沈殿剤溶液Aの表面張力を利用して構造内に保持し流出するのを防止する。
【0047】
このような沈殿剤溶液保持部材12に沈殿剤溶液Aを保持させることにより、その流動性を抑制できるため、沈殿剤溶液Aが結晶化ドロップ保持エリア6や溶液注入エリア8に流出するのを一層確実に防止できる。したがって、第1沈殿剤溶液保持エリア5や第2沈殿剤溶液保持エリア9を形成する位置が自由に選択できるようになるし、高分子結晶化容器1cの形状選択の自由度も増すことになる。
【0048】
例えば、図6に示すように、結晶化ドロップ保持エリア6を第1底面2の中央位置に形成して、その周囲にドーナツ状に沈殿剤溶液保持部材12を配置するようにしてもよい。つまり、第1底面2の中央位置に円形状の開口部6aを形成し、その開口部6aの周囲に沿って第1流出防止板7配置する。これにより、結晶化ドロップ保持エリア6および第1沈殿剤溶液保持エリア5の境界とする。そして、その第1沈殿剤溶液保持エリア5にスポンジ等の沈殿剤溶液保持部材12をドーナツ状に配置する。さらに、第2底面3には、第2沈殿剤溶液保持エリア9を設けずに、全面的に開口して溶液注入エリア8を大きく形成する。
【0049】
このようにすれば、第2底面3が大きく開口されているため、結晶に入射させるX線の角度をより大きく振ることができるし、必要であれば、タンパク質の結晶を容易に取り出すことができる。なお、図6には、第2沈殿剤溶液保持エリア9を形成しない構成としているが、これに限る必要はなく、図1に示すような構造の高分子結晶化容器1aにおいて、第1沈殿剤溶液保持エリア5や第2沈殿剤溶液保持エリア9に沈殿剤溶液保持部材12を配置するようにしてもよい。また、第1沈殿剤溶液保持エリア5および第2沈殿剤溶液保持エリア9の形成位置は、第1底面2および第2底面3に限定されるものではなく、結晶化ドロップC上でなければ、壁部4などの他の部分に形成するようにしてもよい。
【0050】
さらに、図7に示すように、第3実施形態の高分子結晶化容器1cに前述した第2実施形態の特徴を加えるようにしてもよい。つまり、結晶化ドロップ保持エリア6を第1底面2の中央位置に形成するとともに、溶液注入エリア8および結晶化ドロップ保持エリア6の底面間隔を、前記溶液注入エリア8および第1沈殿剤溶液保持エリア5の底面間隔よりも小さく形成する。そして、前記第1沈殿剤溶液保持エリア5には、ドーナツ状にスポンジ等の沈殿剤溶液保持部材12を配置する。これにより、より一層タンパク質の結晶に可視光やX線を照射させ易いし、入射角度を大きく振れ、かつ、結晶の取り出しも容易である。
【0051】
なお、本発明の本実施形態の各構成は前述したものに限るものではなく、適宜変更することができる。
【0052】
例えば、本実施形態における結晶化ドロップ保持エリア6は、壁部4と第1流出防止板7により囲われているが、結晶化ドロップCが横方向に流れて前記壁部4や第1流出防止板7に付着してしまうおそれがある。このように付着してしまうと、顕微鏡による観察が困難かつX線回折結果が適正に得られない。特に、結晶化ドロップCが有機溶媒の場合は表面張力が弱く、左右方向にだれてしまいやすい。
【0053】
そこで、壁部4および第1流出防止板7の内側に結晶化ドロップCを適量収容できる結晶化ドロップ収容部13を設けるようにしてもよい。結晶化ドロップ収容部13としては、図8に示すように、方形状の収容壁15により狭い範囲を囲むようにしてもよいし、別途、収容リングを配置するようにしてもよい。これにより、結晶化ドロップが結晶化ドロップ収容部に適量収容されて、第1流出防止板7や壁部4に付着するのを防止でき、確実に高分子の結晶化を図ることができる。
【0054】
【発明の効果】
以上説明したように本発明によれば、蒸気拡散法のハンギングドロップ法およびシッティングドロップ法を任意に選択して簡単かつ少ない作業数で実施することができる。また、結晶化ドロップから高分子結晶を取り出さずに顕微鏡観察やX線照射実験を行うことができるため、従来のような結晶を取り出すことによって結晶に物理的ダメージを与えてしまうこともなく、熟練技術を必要としないため時間ロスも生じない。さらに、強力でごく短波長のX線でなくても良好なX線回折像が得られるため高価な装置が不要であり、コスト低減を図ることができる。
【図面の簡単な説明】
【図1】 本発明に係る高分子結晶化容器の実施形態の一例を示す正面側断面図である。
【図2】 本発明に係る高分子結晶化容器の第1実施形態を示す斜視図である。
【図3】 本第1実施形態の高分子結晶化容器を用いた蒸気拡散法を示す図であり、(a)は所定の作業台に配置した図、(b)は結晶化ドロップ保持エリアにタンパク質溶液を滴下した図、(c)は結晶化ドロップ保持エリアに沈殿剤溶液を滴下した図、(d)は第1沈殿剤溶液保持エリアに沈殿剤溶液を注入した図、(e)は溶液注入エリアの開口部にシーリングテープを貼付してシッティングドロップ法を行える状態にした図、(f)はハンギングドロップ法を行うために高分子結晶化容器を反転させる図、(g)は180°反転後にハンギングドロップ法を行える状態にした図である。
【図4】 結晶化した高分子結晶にX線解析装置によりX線を照射する状態を示す図である。
【図5】 本発明に係る高分子結晶化容器の第2実施形態を示す正面側断面図である。
【図6】 本発明に係る高分子結晶化容器の第3実施形態を示す正面側断面図である。
【図7】 本発明に係る高分子結晶化容器の第3実施形態の他の実施例を示す正面側断面図である。
【図8】 本実施形態における結晶化ドロップ収容部の一例を示す図である。
【図9】 従来の結晶化プレートを使用したハンギングドロップ法の手順を示す図であり、(a)は結晶化プレートの1ウェルに沈殿剤溶液を注入する図、(b)はガラスプレートに高分子溶液を滴下する図、(c)はガラスプレートに沈殿剤溶液を滴下する図、(d)はウェルの上端縁にグリースを塗布する図、(e)は前記ガラスプレートを反転させる図、(f)はウェルにガラスプレートで蓋をして密閉した図である。
【図10】 従来の結晶化プレートを使用したシッティングドロップ法の手順を示す図であり、(a)は結晶化プレートの1ウェルに沈殿剤溶液を注入する図、(b)は補助ブリッジに高分子溶液を滴下する図、(c)は補助ブリッジに沈殿剤溶液を滴下する図、(d)はウェル内に補助ブリッジを入れて蓋をして密閉した図である。
【図11】 従来の結晶化プレートを使用したハンギングドロップ法において複数の高分子結晶を一度に生成するための手順を示す図であり、(a)は結晶化プレート上に多連式分注針を用いて沈殿剤溶液を注入する図、(b)はガラスプレートに多連式分注針を用いて結晶化ドロップを滴下する図、(c)は結晶化プレートにガラスプレートをかぶせる図、(d)は結晶化プレートと鏡像関係になるガラスプレートを示す図である。
【符号の説明】
1a,1b,1c 高分子結晶化容器
2 第1底面
3 第2底面
4 壁部
5 第1沈殿剤溶液保持エリア
6 結晶化ドロップ保持エリア
6a 開口部
7 第1流出防止板
8 溶液注入エリア
8a 開口部
9 第2沈殿剤溶液保持エリア
10 第2流出防止板
11 薄膜部材
12 沈殿剤溶液保持部材
13 結晶化ドロップ収容部
14 分注用針
15 収容壁

Claims (16)

  1. 所定の沈殿剤溶液を用いて蒸気拡散法により高分子溶液中の高分子を結晶化させるための高分子結晶化容器であって、
    前記沈殿剤溶液を保持する沈殿剤溶液保持エリアと、
    前記高分子溶液に沈殿剤溶液を加えた結晶化ドロップを保持する結晶化ドロップ保持エリアと、
    前記結晶化ドロップ保持エリアに対向する位置に設けられ、前記沈殿剤溶液あるいは前記高分子溶液を前記殿剤溶液保持エリアおよび前記結晶化ドロップ保持エリアに注入するための開口部を備えた溶液注入エリアと、
    高分子結晶化容器を上下反転させたときに前記沈殿剤溶液が前記沈殿剤溶液保持エリアから前記結晶化ドロップ保持エリアおよび前記溶液注入エリアに流出するのを防止する沈殿剤溶液流出防止手段と
    を有することを特徴とする高分子結晶化容器。
  2. 請求項1において、相互に対向する第1底面および第2底面を有するとともに、前記第1底面および前記第2底面の間の空間を取り囲む壁部を有しており、前記結晶化ドロップ保持エリアを前記第1底面に形成し、前記溶液注入エリアを前記第2底面に形成し、前記沈殿剤溶液保持エリアを前記第1底面または前記壁部に形成したことを特徴とする高分子結晶化容器。
  3. 請求項1または請求項2において、前記結晶化ドロップ保持エリアおよび前記溶液注入エリアと、前記沈殿剤溶液保持エリアとの境界に沈殿剤溶液流出防止手段たる流出防止板を設けたことを特徴とする高分子結晶化容器。
  4. 請求項1または請求項2において、前記沈殿剤溶液保持エリアに前記沈殿剤溶液を保持する沈殿剤溶液保持部材を備えていることを特徴とする高分子結晶化容器。
  5. 請求項2から請求項4のいずれかにおいて、前記溶液注入エリアおよび前記結晶化ドロップ保持エリアの底面間隔を、前記溶液注入エリアおよび前記沈殿剤溶液保持エリアの底面間隔よりも小さくなるように形成したことを特徴とする高分子結晶化容器。
  6. 所定の沈殿剤溶液を用いて蒸気拡散法により高分子溶液中の高分子を結晶化させるための高分子結晶化容器であって、
    前記沈殿剤溶液を保持する第1沈殿剤溶液保持エリア、および前記高分子溶液に沈殿剤溶液を加えた結晶化ドロップを保持する結晶化ドロップ保持エリアを備えた第1底面と、
    前記第1底面と互いに対向する位置に設けられ、前記沈殿剤溶液あるいは前記高分子溶液を前記第1沈殿剤溶液保持エリアおよび前記結晶化ドロップ保持エリアに注入するための開口部を備えた溶液注入エリア、および高分子結晶化容器を上下反転させたときに前記沈殿剤溶液を保持可能な第2沈殿剤溶液保持エリアを備えた第2底面と、
    前記第1底面および前記第2底面の間の空間を取り囲む壁部とを有することを特徴とする高分子結晶化容器。
  7. 請求項6において、前記結晶化ドロップ保持エリアおよび前記溶液注入エリアと、前記第1沈殿剤溶液保持エリアおよび前記第2沈殿剤溶液保持エリアとの境界に沈殿剤溶液が流出するのを防止する流出防止板を設けたことを特徴とする高分子結晶化容器。
  8. 請求項6において、前記第1沈殿剤溶液保持エリアおよび前記第2沈殿剤溶液保持エリアの少なくとも一方のエリアに、前記沈殿剤溶液を保持する沈殿剤溶液保持部材を備えていることを特徴とする高分子結晶化容器。
  9. 請求項6から請求項8のいずれかにおいて、前記溶液注入エリアおよび前記結晶化ドロップ保持エリアの底面間隔を、前記第1沈殿剤溶液保持エリアおよび前記第2沈殿剤溶液保持エリアの底面間隔よりも小さくなるように形成したことを特徴とする高分子結晶化容器。
  10. 請求項1から請求項9のいずれかにおいて、前記結晶化ドロップ保持エリアおよび前記溶液注入エリアは、互いに対向する位置に形成されており、前記結晶化ドロップ保持エリアの底面側には開口部が形成されていることを特徴とする高分子結晶化容器。
  11. 請求項10において、前記結晶化ドロップ保持エリアおよび前記溶液注入エリアに形成された開口部に、X線および可視光を透過する薄膜部材を貼付することにより高分子結晶化容器内を密閉状態にすることを特徴とする高分子結晶化容器。
  12. 請求項11において、前記薄膜部材は1μm〜1mmの厚さに形成されることを特徴とする高分子結晶化容器。
  13. 請求項1から請求項9のいずれかにおいて、前記結晶化ドロップ保持エリアおよび前記溶液注入エリアは、互いに対向する位置に形成されており、前記結晶化ドロップ保持エリアの底面部にはX線および可視光を透過する薄膜状の薄膜底部が形成されていることを特徴とする高分子結晶化容器。
  14. 請求項13において、前記溶液注入エリアに形成された開口部に、X線および可視光を透過する薄膜部材を貼付することにより高分子結晶化容器内を密閉状態にすることを特徴とする高分子結晶化容器。
  15. 請求項13または請求項14において、前記薄膜部材および前記薄膜底部は1μm〜1mmの厚さに形成されることを特徴とする高分子結晶化容器。
  16. 請求項1から請求項15のいずれかにおいて、前記結晶化ドロップ保持エリアに、結晶化ドロップが横方向に流れるのを防止するための結晶化ドロップ収容部を設けたことを特徴とする高分子結晶化容器。
JP2002080731A 2002-03-22 2002-03-22 高分子結晶化容器 Expired - Fee Related JP3958610B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002080731A JP3958610B2 (ja) 2002-03-22 2002-03-22 高分子結晶化容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002080731A JP3958610B2 (ja) 2002-03-22 2002-03-22 高分子結晶化容器

Publications (2)

Publication Number Publication Date
JP2003277198A JP2003277198A (ja) 2003-10-02
JP3958610B2 true JP3958610B2 (ja) 2007-08-15

Family

ID=29229650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002080731A Expired - Fee Related JP3958610B2 (ja) 2002-03-22 2002-03-22 高分子結晶化容器

Country Status (1)

Country Link
JP (1) JP3958610B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053085A (ja) * 2004-08-13 2006-02-23 Hokkaido Univ 環状突起体を有するキャピラリー

Also Published As

Publication number Publication date
JP2003277198A (ja) 2003-10-02

Similar Documents

Publication Publication Date Title
US11366042B2 (en) Microfluidic devices for investigating crystallization
Dhouib et al. Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis
US7993416B2 (en) Pre-filled crystallization plates and methods for making and using same
Junius et al. A microfluidic device for both on-chip dialysis protein crystallization and in situ X-ray diffraction
US20160019994A1 (en) High Density Grids
US20150117611A1 (en) Single crystal quartz chips for protein crystallization and x-ray diffraction data collection and related methods
Lee et al. Nonphotochemical laser induced nucleation of hen egg white lysozyme crystals
US9731289B2 (en) Automation of incubation, processing, harvesting and analysis of samples in a multi-cell plate with thin film sample support
Gicquel et al. Microfluidic chips for in situ crystal X-ray diffraction and in situ dynamic light scattering for serial crystallography
JP3958610B2 (ja) 高分子結晶化容器
Soliman et al. Development of high-performance X-ray transparent crystallization plates for in situ protein crystal screening and analysis
JP7323663B2 (ja) 分子の結晶化のためのマイクロ流体チップ、調製方法、前記チップを備えるデバイス、および分子の結晶化のための方法
WO2019114879A1 (de) Probenhalter
US9382639B2 (en) Device and method for crystallizing inorganic or organic substances
US20090311666A1 (en) Microfluidic device for crystallization and crystallographic analysis of molecules
AU2003266957A1 (en) Protein crystallisation method
Feiler et al. An all-in-one sample holder for macromolecular X-ray crystallography with minimal background scattering
JP2022524762A (ja) シリアルシンクロトロン結晶解析保持システム
Huang et al. In meso in situ serial X-ray crystallography (IMISX): a protocol for membrane protein structure determination at the Swiss light source
WO2010094290A1 (en) A crystallization system and a method for promoting crystallization
JP2006124238A (ja) 蛋白質結晶化装置および蛋白質結晶化方法
JP2005058889A (ja) 蛋白質結晶化装置および蛋白質結晶化方法
Deng Fabrication of functional devices using soft lithography and unconventional micropatterning
Duan et al. Experimental Study On The Crystal Growth By The Optical Diagnostics
WO2004045769A1 (en) Multiple sealing system for screening studies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees