JP3958221B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP3958221B2
JP3958221B2 JP2003012077A JP2003012077A JP3958221B2 JP 3958221 B2 JP3958221 B2 JP 3958221B2 JP 2003012077 A JP2003012077 A JP 2003012077A JP 2003012077 A JP2003012077 A JP 2003012077A JP 3958221 B2 JP3958221 B2 JP 3958221B2
Authority
JP
Japan
Prior art keywords
electrode
constant current
plating
current circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003012077A
Other languages
Japanese (ja)
Other versions
JP2004228199A (en
Inventor
望 下石坂
久士 船越
健 松本
芳宏 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003012077A priority Critical patent/JP3958221B2/en
Publication of JP2004228199A publication Critical patent/JP2004228199A/en
Application granted granted Critical
Publication of JP3958221B2 publication Critical patent/JP3958221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Description

【0001】
【発明の属する技術分野】
本発明は、COGやTAB、COF等のベアチップ実装に使用される半導体素子の電極上に電解めっきバンプを形成した半導体装置およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化、高機能化及び半導体素子プロセスの微細化に伴い、ベアチップ接合に用いるバンプ電極を備えた半導体装置も微細化、狭端子ピッチ化が要望されている。狭ピッチのベアチップ実装やCOGやTAB、COF接合などのバンプ電極形成には電解めっき法が主に用いられる。
【0003】
バンプ高さのばらつきはベアチップ実装の実装歩留りに直接影響を及ぼす。電解めっき法によるバンプの高さばらつきはめっき電流密度の不均一性に起因するため、従来よりめっき電流密度の均一性を向上する提案がなされている。
【0004】
めっき電流密度の均一性を向上する方法としては、被めっき物である半導体ウエーハ側にめっき電流密度の不均一を緩和する構造を設けるもの(例えば、特許文献1、特許文献2参照)や、電解めっきバンプの製造方法として電解めっき装置にめっき電流密度の集中の不均一を緩和する構造を設けるもの(例えば、特許文献3、特許文献4参照)などが提案されている。
【0005】
以下、従来の電解めっきバンプを備えた半導体装置及びその製造方法について図面を参照しながら説明する。
【0006】
図7(a)は電解めっきバンプを備えた従来の半導体装置を示す斜視図、図7(b)は図7(a)のB−B'間の断面図である。
【0007】
図7において、1は半導体素子、2は半導体素子1に形成された内部回路、3は内部回路2と電気的に接続し半導体装置1の表面に配列された半導体素子電極、4は半導体素子1の表面に形成されたパッシベーション膜、5はパッシベーション膜4に形成され半導体素子電極3上を開口する第1の開口部、6は第1の開口部5を経由して半導体素子電極3の表面に形成されたバリア層、7はバリア層6の表面に形成されためっきシード層、8はめっきシード層7上に形成された電解めっきバンプである。
【0008】
次に上記の電解めっきバンプを備えた従来の半導体装置の製造方法について図8〜図11を参照して説明する。
【0009】
図8〜図11において、1は半導体素子、2は内部回路、3は半導体素子電極、4はパッシベーション膜、5は第1の開口部、6はバリア層、7はめっきシード層、8は電解めっきバンプであり、これらは図7と同一のものである。
【0010】
9は半導体素子1を格子状に配列した半導体ウエーハ、10は半導体ウエーハ9上に配列された半導体素子1のチップ領域、11は半導体ウエーハ9上のスクライブ領域である。
【0011】
12はめっきシード層7上に形成されためっきレジスト、13はめっきレジスト12の第2の開口部、14は電解めっき電極、15は電解めっき装置、16は電解めっき液、17は陽極、18は定電流電源、19はめっき電流、20はめっきレジスト12を開口して形成したダミーめっき領域である。
【0012】
まず図8(a)、(b)、(c)に示すように半導体素子1が格子状に配列されチップ領域10とスクライブ領域11を有する半導体ウエーハ9を準備する。ここで図8(a)は半導体ウエーハ9の全体の平面図、図8(b)は半導体ウエーハ9の部分拡大斜視図、図8(c)は図8(b)のチップ領域10の一部の断面図を示す。
【0013】
次に図9(a)に示すように半導体素子1のパッシベーション膜6上にバリア層6、めっきシード層7をスパッタリング法で形成した後、めっきレジスト12を塗布しフォトリソ法により開口部13を形成する。このとき、図9(b)に示すように半導体ウエーハ9の周辺部分を開口して電解めっき電極14を同時に形成する。この電解めっき電極14は、半導体ウエーハ9の周辺部分でめっきレジスト12が開口された部分に形成されているバリア層6およびめっきシード層7からなる。
【0014】
次に図10(a)に示すようにめっきレジスト12を形成した半導体ウエーハ9をめっき装置15の電解めっき液16に浸漬し、めっきシード層7を陰極とし陽極17に定電流電源18から一定の電流を必要な時間だけ印加して電解めっきを行うと、めっきレジスト12の第2の開口部13に露出したシード層7にめっき金属が析出する。この電解めっき工程により図10(b)に示すようにめっきレジスト12の第2の開口部13に電解めっきバンプ8が形成される。
【0015】
次にめっきレジスト12を除去し、その後電解めっきバンプ8をマスクとしてめっきシード層7とバリア層6をエッチング除去し、スクライブ領域11に沿って半導体素子1を個片化することにより図7に示す電解めっきバンプ8を備えた半導体装置を形成する。
【0016】
一般に電解めっき法によりバンプを形成する場合、図10(a)に示すように全バンプのめっきに必要なめっき電流を一括して定電流電源18で供給するため、各電解めっきバンプ8のウエーハ上の位置によりめっき電流密度の不均一が生じ、電解めっきバンプ8の高さばらつきの原因となる。めっき電流密度の不均一性を低減する方法としては一般的には図9(b)に示すようにめっき電極14を複数個形成する方法や、ウエーハの周辺部を全てめっき電極として使用し、めっき電流密度の均一化を図る方法などがある。また、図10(a)の陽極17とウエーハ9との間に絶縁性の遮蔽板を挿入しめっき電流密度の均一化を図る方法なども従来より行われている。
【0017】
更に、図11(a)または(b)に示すようにウエーハ9上でめっき電流密度が集中する箇所にダミーめっき領域20を設けてめっき電流密度の均一化を図る方法なども提案されている。
【0018】
以上のような方法により従来の電解めっきバンプを備える半導体装置を製造していた。
【0019】
【特許文献1】
特開平09−139387号公報
【特許文献2】
特開平04−258128号公報
【特許文献3】
特許第274618号公報
【特許文献4】
特開平03−254129号公報
【0020】
【発明が解決しようとする課題】
しかしながら上記従来の半導体装置及びその製造方法は、いずれも半導体ウエーハ全体に対し一定のめっき電流で電解めっきを行うため、電解めっきバンプのウエーハ上の位置によりめっき電流密度の不均一が生じ、電解めっきバンプの高さばらつきが生じる。なお、上述のようにめっき電流密度の均一化を図る方法も提案されているが、いずれも半導体ウエーハ上の比較的広い面積に対してめっき電流密度の均一性を改善する方法であり、電解めっきバンプの高さばらつきを効果的に低減することができず、高さばらつきが生じるという欠点を有していた。
【0021】
本発明は上記従来の課題を解決するもので、電解めっきバンプの高さばらつきを効果的に低減することができる半導体装置およびその製造方法を提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明の請求項1記載の半導体装置は、半導体ウエーハと、半導体ウエーハの主面上に形成された複数の半導体素子と、半導体素子上に配列された複数の電極と、半導体素子の表面を被覆保護するパッシベーション膜と、パッシベーション膜に形成され電極の上を開口する開口部と、電極の上に形成された電解めっきバンプとを備えた半導体装置であって、電解めっきバンプ形成時のめっき電流を一定に制御するために半導体ウエーハ内に形成された複数の定電流回路と、定電流回路に接続した電流入力電極と、定電流回路に接続した電流流出電極とを設けたことを特徴とする。
【0023】
この請求項1の構成によれば、電解めっきバンプ形成時のめっき電流を一定に制御するために複数の定電流回路を設けているため、電解めっきバンプを形成する際には、半導体ウエーハ上で電解めっきバンプの形成される複数の電極のそれぞれがどれか1つの定電流回路と対応し、各定電流回路をそれと対応する1つまたは複数の電極に接続して電解めっきを行うことで、各定電流回路に接続された1つまたは複数の電極ごとにめっき電流を一定に制御することができるため、半導体ウエーハ面内でのめっき電流密度のばらつきを抑え、電解めっきバンプの高さばらつきを効果的に低減することができる。
【0024】
また、請求項2記載の半導体装置は、請求項1記載の半導体装置において、定電流回路、定電流回路に接続した電流入力電極および定電流回路に接続した電流流出電極は、個々の半導体素子ごとに設けられていることを特徴とする。
【0025】
この請求項2の構成によれば、請求項1と同様の効果が得られ、この場合、定電流回路が半導体素子と同数設けられ、電解めっきバンプを形成する際には、各半導体素子ごとに電解めっきバンプの形成される電極が対応する1つの定電流回路と接続され、半導体素子ごとにめっき電流を一定に制御することができる。
【0026】
また、請求項3記載の半導体装置は、請求項1記載の半導体装置において、定電流回路、定電流回路に接続した電流入力電極および定電流回路に接続した電流流出電極は、個々の半導体素子に設けられた電解めっきバンプの個数より少ない複数の電解めっきバンプごとに設けられていることを特徴とする。
【0027】
この請求項3の構成によれば、請求項1と同様の効果が得られ、この場合、定電流回路が半導体素子の個数より多く設けられ、電解めっきバンプを形成する際には、個々の半導体素子の電解めっきバンプの個数より少ない数の電解めっきバンプの形成される電極が、対応する1つの定電流回路と接続され、請求項2の場合より少ない数の電極ごとにめっき電流を一定に制御することができる。
【0028】
また、請求項4記載の半導体装置は、請求項1記載の半導体装置において、定電流回路、定電流回路に接続した電流入力電極および定電流回路に接続した電流流出電極は、個々の電解めっきバンプごとに設けられていることを特徴とする。
【0029】
この請求項4の構成によれば、請求項1と同様の効果が得られ、この場合、定電流回路が電解めっきバンプと同数設けられ、電解めっきバンプを形成する際には、電解めっきバンプの形成される電極が対応する1つの定電流回路と接続され、電解めっきバンプの形成される電極ごとにめっき電流を一定に制御することができる。
【0030】
また、請求項5記載の半導体装置は、請求項1、2、3または4記載の半導体装置において、定電流回路、定電流回路に接続した電流入力電極および定電流回路に接続した電流流出電極は、個々の半導体素子どうしの間に形成されているスクライブ領域内に設けられていることを特徴とする。
【0031】
この請求項5の構成によれば、請求項1、2、3または4と同様の効果が得られ、この場合、定電流回路、定電流回路に接続した電流入力電極および定電流回路に接続した電流流出電極を、個々の半導体素子の面積を増大させること無く配置できるため、個々の半導体素子を小型化することができる。
【0032】
また、請求項6記載の半導体装置は、請求項1、2、3、4または5記載の半導体装置において、定電流回路は、電解めっきバンプ形成時には半導体素子の電極と電気的に接続され、電解めっきバンプ形成後に電気的に遮断されたことを特徴とする。
【0033】
この請求項6の構成によれば、請求項1、2、3、4または5と同様の効果が得られ、この場合、電解めっきバンプ形成後の半導体素子の電気的な動作に定電流回路が与える影響を無くすことができる。
【0034】
また、請求項7記載の半導体装置は、請求項1、2、3、4、5または6記載の半導体装置において、半導体素子の電極と電解めっきバンプとの間に金属膜が設けられたことを特徴とする。
【0035】
この請求項7の構成によれば、請求項1、2、3、4、5または6と同様の効果が得られ、この場合、金属膜を定電流回路を電解めっきバンプ形成時には半導体素子の電極と電気的に接続し、電解めっきバンプ形成後に電気的に遮断する電気配線として用いることで、半導体素子電極と電流入力電極との電気的な接続と遮断のためのスイッチ回路を半導体素子に内蔵することを不要にでき、半導体素子の面積が増大することが無い。更に金属膜の材質を適切に選択することで、半導体素子電極の金属の電解めっきバンプへの拡散を防止し、製品の信頼性を向上することが可能である。
【0036】
本発明の請求項8記載の半導体装置の製造方法は、複数の定電流回路が内部に形成され、表面にパッシベーション膜が形成され、パッシベーション膜が開口された部分に、半導体素子電極、定電流回路に接続した電流入力電極および定電流回路に接続した電流流出電極が形成された半導体ウエーハを準備する工程と、半導体素子電極上に開口部を持つめっきレジストを形成する工程と、電解めっき法を用いて開口部の半導体素子電極、電流入力電極、定電流回路、および電流流出電極を介してめっき電流を流すことにより、開口部の半導体素子電極上に電解めっきバンプを形成する電解めっき工程と、めっきレジストを除去する工程とを含んでいる。
【0037】
この請求項8の製造方法によれば、半導体ウエーハに複数の定電流回路が形成され、半導体ウエーハ上で電解めっきバンプの形成される複数の半導体素子電極のそれぞれがどれか1つの定電流回路と対応し、各定電流回路をそれと対応する1つまたは複数の半導体素子電極に接続して電解めっきを行うことで、各定電流回路に接続された1つまたは複数の半導体素子電極ごとにめっき電流を一定に制御することができるため、半導体ウエーハ面内でのめっき電流密度のばらつきを抑え、形成される電解めっきバンプの高さばらつきを効果的に低減することができる。
【0038】
本発明の請求項9記載の半導体装置の製造方法は、複数の定電流回路が内部に形成され、表面にパッシベーション膜が形成され、パッシベーション膜が開口された部分に、半導体素子電極、定電流回路に接続した電流入力電極および定電流回路に接続した電流流出電極が形成された半導体ウエーハを準備する工程と、半導体ウエーハの表面に金属膜を形成する工程と、金属膜上に所定のパターンのエッチングレジストを形成する工程と、エッチングレジストをマスクにして金属膜をエッチングすることにより、電流入力電極と電流流出電極とが定電流回路を介した経路によってのみ電気的に接続されるように少なくとも電流入力電極と電流流出電極との間の金属膜の一部を除去する第1のエッチング工程と、エッチングレジストを除去した後、半導体素子電極上の金属膜上に開口部を持つめっきレジストを形成する工程と、電解めっき法を用いて開口部の金属膜、電流入力電極、定電流回路、および電流流出電極を介してめっき電流を流すことにより、開口部の金属膜上に電解めっきバンプを形成する電解めっき工程と、めっきレジストを除去した後、電解めっきバンプをマスクとして金属膜をエッチングする第2のエッチング工程とを含んでいる。
【0039】
この請求項9記載の製造方法によれば、請求項8記載の製造方法と同様の効果が得られる。
【0040】
また、請求項10記載の半導体装置の製造方法は、請求項9記載の半導体装置の製造方法において、第1のエッチング工程では半導体素子電極と電流入力電極との間が金属膜で電気的に接続されるように金属膜を残し、第2のエッチング工程により半導体素子電極と電流入力電極との間が電気的に遮断されるように金属膜を除去することを特徴とする。
【0041】
この請求項10記載の製造方法によれば、請求項9と同様の効果が得られ、この場合、半導体素子電極と電流入力電極との電気的な接続と遮断のためのスイッチ回路を半導体素子に内蔵することないため、半導体素子の面積が増大することが無い。また特別な製造工法を用いることなく、通常のエッチング工程により半導体素子電極と電流入力電極との電気的な接続と遮断が可能であるため、製造装置の価格が増大することが無く低コストの製品を実現することができる。
【0042】
また、請求項11記載の半導体装置の製造方法は、請求項9記載の半導体装置の製造方法において、第2のエッチング工程で、電解めっきバンプでマスクされていない電流入力電極および電流流出電極を溶解することなく金属膜のみを選択的にエッチングすることを特徴とする。
【0043】
この請求項11記載の製造方法によれば、請求項9と同様の効果が得られ、この場合、第2のエッチング工程では電流入力電極および電流流出電極が溶解されないため、金属膜のエッチングの工程管理が容易になり、製品の歩留を向上することが可能になる。
【0044】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0045】
図1(a)は本発明の実施の形態の半導体装置を示す斜視図、図1(b)は図1(a)のA−A'間の断面図である。
【0046】
図1において、21は半導体素子(半導体チップ)、22は半導体素子21に形成された内部回路、23は内部回路22と電気的に接続し半導体装置21の表面に配列された半導体素子電極、24は半導体素子21の表面に形成されたパッシベーション膜、26は第1の開口部を経由して半導体素子電極3の表面に形成されたバリア層、27はバリア層26の表面に形成されためっきシード層、28はめっきシード層27上に形成された電解めっきバンプである。31は定電流回路、32は定電流回路31の電流入力電極、33は定電流回路31の電流流出電極、34はパッシベーション膜24に形成され半導体素子電極23、定電流回路31の電流入力電極32、電流流出電極33上を開口する第1の開口部である。
【0047】
なお、定電流回路31は、ここではエンハンスメント型のMOS型FETのドレイン電流の定電流特性を利用した回路である。この他バイポーラ型トランジスタによるカレントミラー特性を利用する回路等、めっき時の電圧に依存せずかつ電流のばらつきが少なく一定の電流に制御できる回路であれば良い。
【0048】
次に本発明の半導体装置の製造方法について図2〜図6を参照して説明する。
【0049】
図2〜図6において、21は半導体素子、22は内部回路、23は半導体素子電極、24はパッシベーション膜、26はバリア層、27はめっきシード層、28は電解めっきバンプ、31は定電流回路、32は電流入力電極、33は電流流出電極、34は第1の開口部であり、これらは上述した図1の半導体装置のものと同一である。
【0050】
39は半導体素子21を格子状に配列した半導体ウエーハ、40は半導体ウエーハ39上に配列された半導体素子21のチップ領域、41は半導体ウエーハ39上のスクライブ領域である。
【0051】
42はめっきシード層27上に形成されたエッチングレジスト、43はめっきシード層27上に形成されためっきレジスト、44はめっきレジスト43の第2の開口部、45は半導体素子電極23と定電流回路31の電流入力電極32とを接続する第1の配線、46は定電流回路31の電流流出電極33同士を接続する第2の配線、47は電解めっき電極、48は電解めっき装置、49は電解めっき液、50は陽極、51はめっき電源、52はめっき電流である。
【0052】
まず図2(a)、(b)、(c)に示すように内部回路22と定電流回路31及び半導体素子電極23と定電流回路31の電流入力電極32と電流流出電極33及びパッシベーション膜24を備える半導体素子21が格子状に配列され、各半導体素子21のチップ領域40とスクライブ領域41を有する半導体ウエーハ39を準備する。ここで図2(a)は半導体ウエーハ39の全体の平面図、図2(b)は半導体ウエーハ39の部分拡大斜視図、図2(c)は図2(b)のチップ領域40の一部の断面図を示す。
【0053】
次に図3(a)に示すように半導体素子21の半導体素子電極23、電流入力電極32、電流流出電極33、パッシベーション膜24上に、バリア層26、めっきシード層27をスパッタリング法で形成する。
【0054】
ここでは半導体素子電極23、電流入力電極32、電流流出電極33の材料には一般的な半導体ウエーハの配線材料としてAl、Al−SiもしくはAl−Si−Cuを用いる。また、パッシベーション膜24としてはSiNを用いる。
【0055】
バリア層26としては半導体素子電極23、電流入力電極32、電流流出電極33及びパッシベーション膜24との密着性及びエッチング液の選択性の観点からTi−Wを用いる。
【0056】
また、シード層27の材質は電解めっき時の導電性の確保と電解めっき液49(ここでは電解Auめっき液を使用する)のめっき下地金属としての観点からAuを用いる。
【0057】
次に図3(b)に示すようにエッチングレジスト42をフォトリソ法で形成し、図3(c)に示すようにエッチングレジスト42をマスクとして第1のエッチング工程を行いシード層27とバリア層26をパターニングする。
【0058】
Auからなるシード層27のエッチング液としてはTi−Wからなるバリア層26を溶解しない溶液としてここではヨウ素とヨウ化カリウム及び酢酸からなる混合溶液を用いる。また、バリア層26のエッチング液としてはパッシベーション膜24及び半導体素子電極23、電流入力電極32、電流流出電極33を溶解しない溶液としてここでは過酸化水素水を用いる。
【0059】
次に図3(d)に示すようにエッチングレジスト42を剥離する。このときの半導体ウエーハ39の部分拡大斜視図を図4(a)に示す。
【0060】
ここで第1のエッチング工程により図3(d)、図4(a)に示すように半導体素子電極23と定電流回路31の電流入力電極32とを接続する第1の配線45及び、定電流回路31の電流流出電極33同士を接続する第2の配線46が形成される。第1の配線45及び第2の配線46はバリア層26およびめっきシード層27からなる。
【0061】
また、第1のエッチング工程では、図4(b)に示されるように、定電流回路31の電流流出電極33同士を接続する第2の配線46を電解めっき電極47に接続する配線部分と、電解めっき電極47も同時に形成される。
【0062】
次に図4(b)、(c)に示すようにめっきレジスト43をフォトリソ法により形成し、第2の開口部44を形成する。このとき、図4(b)に示す電解めっき電極47上も同時に開口する。この電解めっき電極47は、半導体ウエーハ39の周辺部分でめっきレジスト43が開口された部分に形成されているバリア層26およびめっきシード層27からなる。
【0063】
次に図5(a)に示すようにめっきレジスト43を形成した半導体ウエーハ39をめっき装置48の電解めっき液49に浸漬し、めっきシード層27を陰極として電解めっきを行うと図5(b)に示すようにめっきレジスト43の第2の開口部44に電解めっきバンプ28が形成される。
【0064】
電解めっき液49としてここでは一般的な亜硫酸金めっき溶液を用いる。
【0065】
このとき、個々の電解めっきバンプ28のめっき電流52はめっきレジスト43の第2の開口部44から第1の配線45と電流入力端子32を経由して定電流回路31に流入するため、半導体ウエーハ39内の電解めっきバンプ28の配置や密度、電解めっき液49の流量などのめっき条件に影響されることなく、めっき電流密度は個々の電解めっきバンプ毎に一定に制御される。
【0066】
なお、ここでは電解めっきバンプ28のめっき電流を定電流回路31を用いて個別に制御したが、電解めっきバンプ28の高さばらつきが許容できる範囲で複数の電解めっきバンプ28のめっき電流をまとめて一つの定電流回路31で制御しても良い。
【0067】
次に図6(a)に示すようにめっきレジスト43を除去し、その後図6(b)に示すように電解めっきバンプ28をマスクとしてめっきシード層27とバリア層26を第2のエッチング工程により除去する。
【0068】
ここで、第1のエッチング工程と同様にシード層27のエッチング液としてはヨウ素とヨウ化カリウム及び酢酸からなる混合溶液を用い、また、バリア層26のエッチング液としては過酸化水素水を用いる。
【0069】
次に半導体ウエーハ39のスクライブ領域41に沿って半導体素子21を個片化することにより図6(c)示すように電解めっきバンプ28を備えた半導体装置を形成する。
【0070】
以上のように本実施の形態によれば、各電解めっきバンプ28ごとに定電流回路31を設け、各々の電解めっきバンプ28ごとにめっき電流を一定に制御することができるため、半導体ウエーハ面内でのめっき電流密度のばらつきを抑え、形成される電解めっきバンプ28の高さばらつきを効果的に低減することができる。
【0071】
また、先述したように、電解めっきバンプ28の高さばらつきが許容できる範囲で複数の電解めっきバンプ28のめっき電流をまとめて一つの定電流回路31で制御しても良い。例えば、半導体素子21ごとの複数の電解めっきバンプ28のめっき電流をまとめて一つの定電流回路31で制御しても良いし、あるいは、個々の半導体素子21に設けられる電解めっきバンプ28の個数より少ない複数の電解めっきバンプ28のめっき電流をまとめて一つの定電流回路31で制御しても良い。
【0072】
なお、本実施の形態では、定電流回路31、電流入力端子32、電流流出端子33を個々の半導体素子のチップ領域に形成したが、スクライブ領域に形成しても良いし、半導体ウエーハ39上であればチップ領域及びスクライブ領域以外の領域に形成しても良い。
【0073】
また、本実施の形態では、定電流回路31と電解めっきバンプ28とをバリア層26およびめっきシード層27からなる第1の配線45で接続し、定電流回路31と電解めっき電極47とをバリア層26およびめっきシード層27からなる第2の配線46で接続しているが、それぞれバリア層26およびめっきシード層27で接続する代わりに半導体素子内の配線で接続しても良い。この場合、めっき後に不要となる第1の配線45および第2の配線46を第2のエッチング工程で切断(除去)しているが、半導体素子内の電子的なスイッチによって切り離しても良い。
【0074】
【発明の効果】
以上のように本発明によれば、半導体ウエーハに複数の定電流回路が設けられ、電解めっきバンプ形成時には、半導体ウエーハ上で電解めっきバンプの形成される複数の半導体素子電極のそれぞれがどれか1つの定電流回路と対応し、各定電流回路をそれと対応する1つまたは複数の半導体素子電極に接続して電解めっきを行うことで、各定電流回路に接続された1つまたは複数の半導体素子電極ごとにめっき電流を一定に制御することができるため、半導体ウエーハ面内でのめっき電流密度のばらつきを抑え、形成される電解めっきバンプの高さばらつきを効果的に低減することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の半導体装置を示す図
【図2】本発明の実施の形態の半導体装置の製造方法を示す図
【図3】本発明の実施の形態の半導体装置の製造方法を示す図
【図4】本発明の実施の形態の半導体装置の製造方法を示す図
【図5】本発明の実施の形態の半導体装置の製造方法を示す図
【図6】本発明の実施の形態の半導体装置の製造方法を示す図
【図7】従来の半導体装置を示す図
【図8】従来の半導体装置の製造方法を示す図
【図9】従来の半導体装置の製造方法を示す図
【図10】従来の半導体装置の製造方法を示す図
【図11】従来の半導体装置の製造方法を示す図
【符号の説明】
1 半導体素子
2 内部回路
3 半導体素子電極
4 パッシベーション膜
5 第1の開口部
6 バリア層
7 めっきシード層
8 電解めっきバンプ
9 半導体ウエーハ
10 チップ領域
11 スクライブ領域
12 めっきレジスト
13 第2の開口部
14 電解めっき電極
15 電解めっき装置
16 電解めっき液
17 陽極
18 定電流電源
19 めっき電流
20 ダミーめっき領域
21 半導体素子
22 内部回路
23 半導体素子電極
24 パッシベーション膜
26 バリア層
27 めっきシード層
28 電解めっきバンプ
31 定電流回路
32 電流入力電極
33 電流流出電極
34 第1の開口部
39 半導体ウエーハ
40 チップ領域
41 スクライブ領域
42 エッチングレジスト
43 めっきレジスト
44 第2の開口部
45 第1の配線
46 第2の配線
47 めっき電極
48 電解めっき装置
49 電解めっき液
50 陽極
51 めっき電源
52 めっき電流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device in which electrolytic plating bumps are formed on electrodes of semiconductor elements used for bare chip mounting such as COG, TAB, and COF, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, along with miniaturization and high functionality of electronic devices and miniaturization of semiconductor element processes, semiconductor devices including bump electrodes used for bare chip bonding are also required to be miniaturized and narrow terminal pitches. Electrolytic plating is mainly used for narrow pitch bare chip mounting and bump electrode formation such as COG, TAB, and COF bonding.
[0003]
The variation in bump height directly affects the mounting yield of bare chip mounting. Since the variation in bump height due to the electrolytic plating method is caused by the nonuniformity of the plating current density, proposals for improving the uniformity of the plating current density have been made.
[0004]
As a method for improving the uniformity of the plating current density, a structure for mitigating the unevenness of the plating current density is provided on the side of the semiconductor wafer that is the object to be plated (for example, see Patent Document 1 and Patent Document 2), electrolysis As a method for producing a plating bump, an electrolytic plating apparatus provided with a structure that alleviates uneven concentration of plating current density (see, for example, Patent Document 3 and Patent Document 4) has been proposed.
[0005]
Hereinafter, a conventional semiconductor device including an electrolytic plating bump and a manufacturing method thereof will be described with reference to the drawings.
[0006]
FIG. 7A is a perspective view showing a conventional semiconductor device provided with an electrolytic plating bump, and FIG. 7B is a cross-sectional view taken along the line BB ′ in FIG.
[0007]
In FIG. 7, 1 is a semiconductor element, 2 is an internal circuit formed in the semiconductor element 1, 3 is a semiconductor element electrode electrically connected to the internal circuit 2 and arranged on the surface of the semiconductor device 1, and 4 is a semiconductor element 1. A passivation film 5 formed on the surface of the semiconductor element electrode 5 is formed on the passivation film 4 and opens on the semiconductor element electrode 3, and 6 is formed on the surface of the semiconductor element electrode 3 via the first opening 5. The formed barrier layer, 7 is a plating seed layer formed on the surface of the barrier layer 6, and 8 is an electrolytic plating bump formed on the plating seed layer 7.
[0008]
Next, a method for manufacturing a conventional semiconductor device having the above-described electrolytic plating bump will be described with reference to FIGS.
[0009]
8 to 11, 1 is a semiconductor element, 2 is an internal circuit, 3 is a semiconductor element electrode, 4 is a passivation film, 5 is a first opening, 6 is a barrier layer, 7 is a plating seed layer, and 8 is electrolysis. These are plating bumps, which are the same as in FIG.
[0010]
Reference numeral 9 denotes a semiconductor wafer in which the semiconductor elements 1 are arranged in a lattice pattern, 10 denotes a chip region of the semiconductor element 1 arranged on the semiconductor wafer 9, and 11 denotes a scribe region on the semiconductor wafer 9.
[0011]
12 is a plating resist formed on the plating seed layer 7, 13 is a second opening of the plating resist 12, 14 is an electroplating electrode, 15 is an electroplating apparatus, 16 is an electroplating solution, 17 is an anode, and 18 is A constant current power source, 19 is a plating current, and 20 is a dummy plating region formed by opening the plating resist 12.
[0012]
First, as shown in FIGS. 8A, 8 </ b> B, and 8 </ b> C, a semiconductor wafer 9 having semiconductor elements 1 arranged in a lattice and having a chip region 10 and a scribe region 11 is prepared. 8A is a plan view of the entire semiconductor wafer 9, FIG. 8B is a partially enlarged perspective view of the semiconductor wafer 9, and FIG. 8C is a part of the chip region 10 in FIG. 8B. FIG.
[0013]
Next, as shown in FIG. 9A, a barrier layer 6 and a plating seed layer 7 are formed on the passivation film 6 of the semiconductor element 1 by a sputtering method, and then a plating resist 12 is applied and an opening 13 is formed by a photolithography method. To do. At this time, as shown in FIG. 9B, the peripheral portion of the semiconductor wafer 9 is opened and the electrolytic plating electrode 14 is simultaneously formed. The electrolytic plating electrode 14 includes a barrier layer 6 and a plating seed layer 7 formed in a portion where the plating resist 12 is opened in the peripheral portion of the semiconductor wafer 9.
[0014]
Next, as shown in FIG. 10A, a semiconductor wafer 9 on which a plating resist 12 is formed is immersed in an electrolytic plating solution 16 of a plating apparatus 15 so that the plating seed layer 7 serves as a cathode and a constant current source 18 is connected to an anode 17 from a constant current power source 18. When electroplating is performed by applying a current for a necessary time, plating metal is deposited on the seed layer 7 exposed in the second opening 13 of the plating resist 12. By this electrolytic plating step, the electrolytic plating bump 8 is formed in the second opening 13 of the plating resist 12 as shown in FIG.
[0015]
Next, the plating resist 12 is removed, and then the plating seed layer 7 and the barrier layer 6 are removed by etching using the electrolytic plating bumps 8 as a mask, so that the semiconductor element 1 is separated into pieces along the scribe region 11 as shown in FIG. A semiconductor device provided with the electrolytic plating bumps 8 is formed.
[0016]
In general, when bumps are formed by an electrolytic plating method, as shown in FIG. 10 (a), the plating current necessary for plating all the bumps is supplied all at once by the constant current power supply 18, and therefore, on the wafer of each electrolytic plating bump 8. Depending on the position, the plating current density becomes non-uniform, which causes variations in the height of the electrolytic plating bumps 8. As a method for reducing the non-uniformity of the plating current density, generally, a method of forming a plurality of plating electrodes 14 as shown in FIG. 9B, or using all the peripheral portions of the wafer as plating electrodes, There is a method of making the current density uniform. In addition, a method of making the plating current density uniform by inserting an insulating shielding plate between the anode 17 and the wafer 9 in FIG.
[0017]
Furthermore, as shown in FIG. 11 (a) or (b), a method has been proposed in which a dummy plating region 20 is provided at a location where the plating current density is concentrated on the wafer 9 to make the plating current density uniform.
[0018]
The semiconductor device provided with the conventional electrolytic plating bump was manufactured by the above methods.
[0019]
[Patent Document 1]
JP 09-139387 A
[Patent Document 2]
JP 04-258128 A
[Patent Document 3]
Japanese Patent No. 274618
[Patent Document 4]
Japanese Patent Laid-Open No. 03-254129
[0020]
[Problems to be solved by the invention]
However, since the conventional semiconductor device and the manufacturing method thereof both perform electrolytic plating with a constant plating current on the entire semiconductor wafer, the plating current density is non-uniform depending on the position of the electrolytic plating bump on the wafer. Bump height variation occurs. As described above, methods for making the plating current density uniform have also been proposed. However, all of these are methods for improving the uniformity of the plating current density over a relatively large area on the semiconductor wafer. The bump height variation cannot be effectively reduced, and the height variation occurs.
[0021]
SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a semiconductor device and a method for manufacturing the same that can effectively reduce variation in height of electrolytic plating bumps.
[0022]
[Means for Solving the Problems]
A semiconductor device according to claim 1 of the present invention covers a semiconductor wafer, a plurality of semiconductor elements formed on the main surface of the semiconductor wafer, a plurality of electrodes arranged on the semiconductor element, and a surface of the semiconductor element A semiconductor device comprising a passivation film to be protected, an opening formed on the passivation film and opening above the electrode, and an electrolytic plating bump formed on the electrode, wherein the plating current at the time of forming the electrolytic plating bump is A plurality of constant current circuits formed in the semiconductor wafer for constant control, a current input electrode connected to the constant current circuit, and a current outflow electrode connected to the constant current circuit are provided.
[0023]
According to the first aspect of the present invention, since a plurality of constant current circuits are provided in order to control the plating current at the time of forming the electrolytic plating bumps constant, when forming the electrolytic plating bumps, the semiconductor wafer is formed on the semiconductor wafer. Each of the plurality of electrodes on which the electroplating bumps are formed corresponds to any one constant current circuit, and each constant current circuit is connected to one or more corresponding electrodes to perform electroplating, Because the plating current can be controlled to be constant for each electrode or electrodes connected to the constant current circuit, variations in the plating current density within the semiconductor wafer surface are suppressed, and variations in the height of the electrolytic plating bumps are effective. Can be reduced.
[0024]
The semiconductor device according to claim 2 is the semiconductor device according to claim 1, wherein the constant current circuit, the current input electrode connected to the constant current circuit, and the current outflow electrode connected to the constant current circuit are provided for each individual semiconductor element. It is provided in.
[0025]
According to the configuration of the second aspect, the same effect as that of the first aspect can be obtained. In this case, the same number of constant current circuits as that of the semiconductor elements are provided. The electrode on which the electrolytic plating bump is formed is connected to a corresponding constant current circuit, and the plating current can be controlled to be constant for each semiconductor element.
[0026]
The semiconductor device according to claim 3 is the semiconductor device according to claim 1, wherein the constant current circuit, the current input electrode connected to the constant current circuit, and the current outflow electrode connected to the constant current circuit are connected to each semiconductor element. It is characterized in that it is provided for each of a plurality of electrolytic plating bumps which is smaller than the number of electrolytic plating bumps provided.
[0027]
According to the configuration of claim 3, the same effect as in claim 1 can be obtained. In this case, the constant current circuit is provided more than the number of semiconductor elements. An electrode on which a smaller number of electrolytic plating bumps than the number of electrolytic plating bumps of the element is formed is connected to one corresponding constant current circuit, and the plating current is controlled to be constant for each of the smaller number of electrodes than in the case of claim 2. can do.
[0028]
According to a fourth aspect of the present invention, there is provided the semiconductor device according to the first aspect, wherein the constant current circuit, the current input electrode connected to the constant current circuit, and the current outflow electrode connected to the constant current circuit are individually electroplated bumps. It is provided for each.
[0029]
According to the configuration of the fourth aspect, the same effect as in the first aspect can be obtained. In this case, the same number of constant current circuits as the electrolytic plating bumps are provided. The formed electrode is connected to a corresponding constant current circuit, and the plating current can be controlled to be constant for each electrode on which the electrolytic plating bump is formed.
[0030]
The semiconductor device according to claim 5 is the semiconductor device according to claim 1, 2, 3 or 4, wherein the constant current circuit, the current input electrode connected to the constant current circuit, and the current outflow electrode connected to the constant current circuit are The semiconductor device is characterized in that it is provided in a scribe region formed between individual semiconductor elements.
[0031]
According to the configuration of the fifth aspect, the same effect as in the first, second, third or fourth aspect can be obtained. In this case, the constant current circuit, the current input electrode connected to the constant current circuit, and the constant current circuit are connected. Since the current outflow electrode can be arranged without increasing the area of each semiconductor element, the size of each semiconductor element can be reduced.
[0032]
According to a sixth aspect of the present invention, in the semiconductor device of the first, second, third, fourth, or fifth aspect, the constant current circuit is electrically connected to the electrode of the semiconductor element when the electrolytic plating bump is formed. It is characterized by being electrically cut off after the formation of the plating bump.
[0033]
According to the configuration of the sixth aspect, the same effect as that of the first, second, third, fourth or fifth aspect can be obtained. In this case, the constant current circuit is used for the electrical operation of the semiconductor element after the formation of the electrolytic plating bump. It is possible to eliminate the influence.
[0034]
The semiconductor device according to claim 7 is the semiconductor device according to claim 1, wherein a metal film is provided between the electrode of the semiconductor element and the electrolytic plating bump. Features.
[0035]
According to the configuration of the seventh aspect, the same effect as that of the first, second, third, fourth, fifth or sixth aspect can be obtained. In this case, the electrode of the semiconductor element is formed when the constant current circuit is formed on the metal film and the electrolytic plating bump is formed. A switch circuit for electrical connection and disconnection between the semiconductor element electrode and the current input electrode is built in the semiconductor element by using as an electrical wiring that is electrically connected to and electrically disconnected after the formation of the electrolytic plating bump. This can be eliminated, and the area of the semiconductor element does not increase. Further, by appropriately selecting the material of the metal film, it is possible to prevent the diffusion of the metal of the semiconductor element electrode to the electrolytic plating bump, and to improve the reliability of the product.
[0036]
According to an eighth aspect of the present invention, there is provided a method of manufacturing a semiconductor device, wherein a plurality of constant current circuits are formed inside, a passivation film is formed on a surface, and a semiconductor element electrode and a constant current circuit are formed at a portion where the passivation film is opened. A step of preparing a semiconductor wafer on which a current input electrode connected to the substrate and a current outflow electrode connected to a constant current circuit are formed; a step of forming a plating resist having an opening on the semiconductor element electrode; and an electrolytic plating method An electroplating step of forming an electroplating bump on the semiconductor element electrode in the opening by flowing a plating current through the semiconductor element electrode in the opening, the current input electrode, the constant current circuit, and the current outflow electrode; And a step of removing the resist.
[0037]
According to the manufacturing method of claim 8, a plurality of constant current circuits are formed on the semiconductor wafer, and each of the plurality of semiconductor element electrodes on which the electrolytic plating bumps are formed on the semiconductor wafer is one of the constant current circuits. Correspondingly, by carrying out electrolytic plating by connecting each constant current circuit to one or more semiconductor element electrodes corresponding thereto, the plating current for each one or more semiconductor element electrodes connected to each constant current circuit Therefore, variation in plating current density in the semiconductor wafer surface can be suppressed, and variation in the height of the formed electrolytic plating bumps can be effectively reduced.
[0038]
According to a ninth aspect of the present invention, there is provided a method of manufacturing a semiconductor device, wherein a plurality of constant current circuits are formed therein, a passivation film is formed on a surface, and a semiconductor element electrode and a constant current circuit are formed at a portion where the passivation film is opened. A step of preparing a semiconductor wafer having a current input electrode connected to the substrate and a current outflow electrode connected to a constant current circuit; a step of forming a metal film on the surface of the semiconductor wafer; and etching a predetermined pattern on the metal film At least current input so that the current input electrode and the current outflow electrode are electrically connected only by a path through the constant current circuit by etching the metal film using the resist forming process and the etching resist as a mask. A first etching step for removing a part of the metal film between the electrode and the current outflow electrode, and after removing the etching resist A step of forming a plating resist having an opening on a metal film on a semiconductor element electrode, and a plating current through the metal film, the current input electrode, the constant current circuit, and the current outflow electrode using an electrolytic plating method An electroplating step for forming an electroplating bump on the metal film in the opening, and a second etching step for etching the metal film using the electroplating bump as a mask after removing the plating resist. Yes.
[0039]
According to the manufacturing method of the ninth aspect, the same effect as the manufacturing method of the eighth aspect can be obtained.
[0040]
The method for manufacturing a semiconductor device according to claim 10 is the method for manufacturing a semiconductor device according to claim 9, wherein in the first etching step, the semiconductor element electrode and the current input electrode are electrically connected by a metal film. The metal film is left as it is, and the metal film is removed by the second etching process so that the semiconductor element electrode and the current input electrode are electrically disconnected.
[0041]
According to the manufacturing method of the tenth aspect, the same effect as in the ninth aspect can be obtained. In this case, a switch circuit for electrically connecting and disconnecting the semiconductor element electrode and the current input electrode is provided in the semiconductor element. Since it is not built in, the area of the semiconductor element does not increase. In addition, it is possible to electrically connect and disconnect the semiconductor element electrode and the current input electrode by a normal etching process without using a special manufacturing method. Can be realized.
[0042]
The method for manufacturing a semiconductor device according to claim 11 is the method for manufacturing a semiconductor device according to claim 9, wherein in the second etching step, the current input electrode and the current outflow electrode not masked by the electrolytic plating bump are dissolved. It is characterized in that only the metal film is selectively etched without doing so.
[0043]
According to the manufacturing method of the eleventh aspect, the same effect as that of the ninth aspect can be obtained. In this case, the current input electrode and the current outflow electrode are not dissolved in the second etching step. Management becomes easy and the yield of products can be improved.
[0044]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0045]
FIG. 1A is a perspective view showing a semiconductor device according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along a line AA ′ in FIG.
[0046]
In FIG. 1, 21 is a semiconductor element (semiconductor chip), 22 is an internal circuit formed in the semiconductor element 21, 23 is a semiconductor element electrode electrically connected to the internal circuit 22 and arranged on the surface of the semiconductor device 21, 24. Is a passivation film formed on the surface of the semiconductor element 21, 26 is a barrier layer formed on the surface of the semiconductor element electrode 3 via the first opening, and 27 is a plating seed formed on the surface of the barrier layer 26. Layers 28 are electrolytic plating bumps formed on the plating seed layer 27. Reference numeral 31 denotes a constant current circuit, 32 denotes a current input electrode of the constant current circuit 31, 33 denotes a current outflow electrode of the constant current circuit 31, 34 denotes a semiconductor element electrode 23 formed on the passivation film 24, and a current input electrode 32 of the constant current circuit 31 This is a first opening that opens on the current outflow electrode 33.
[0047]
Here, the constant current circuit 31 is a circuit using the constant current characteristic of the drain current of the enhancement type MOS FET. In addition, any circuit that does not depend on the voltage at the time of plating and that can be controlled to a constant current with little variation in current, such as a circuit that uses a current mirror characteristic of a bipolar transistor, may be used.
[0048]
Next, a method for manufacturing a semiconductor device according to the present invention will be described with reference to FIGS.
[0049]
2 to 6, 21 is a semiconductor element, 22 is an internal circuit, 23 is a semiconductor element electrode, 24 is a passivation film, 26 is a barrier layer, 27 is a plating seed layer, 28 is an electrolytic plating bump, and 31 is a constant current circuit. 32 is a current input electrode, 33 is a current outflow electrode, and 34 is a first opening, which are the same as those of the semiconductor device of FIG.
[0050]
Reference numeral 39 denotes a semiconductor wafer in which the semiconductor elements 21 are arranged in a lattice pattern, reference numeral 40 denotes a chip region of the semiconductor elements 21 arranged on the semiconductor wafer 39, and reference numeral 41 denotes a scribe area on the semiconductor wafer 39.
[0051]
42 is an etching resist formed on the plating seed layer 27, 43 is a plating resist formed on the plating seed layer 27, 44 is a second opening of the plating resist 43, and 45 is a semiconductor element electrode 23 and a constant current circuit. 31 is a first wiring that connects the current input electrode 32, 46 is a second wiring that connects the current outflow electrodes 33 of the constant current circuit 31, 47 is an electroplating electrode, 48 is an electroplating apparatus, and 49 is an electrolysis device. A plating solution, 50 is an anode, 51 is a plating power source, and 52 is a plating current.
[0052]
First, as shown in FIGS. 2A, 2 </ b> B, and 2 </ b> C, the internal circuit 22, the constant current circuit 31, the semiconductor element electrode 23, the current input electrode 32, the current outflow electrode 33, and the passivation film 24 of the constant current circuit 31. A semiconductor wafer 39 having a chip region 40 and a scribe region 41 of each semiconductor element 21 is prepared. 2A is a plan view of the entire semiconductor wafer 39, FIG. 2B is a partially enlarged perspective view of the semiconductor wafer 39, and FIG. 2C is a part of the chip region 40 of FIG. 2B. FIG.
[0053]
Next, as shown in FIG. 3A, a barrier layer 26 and a plating seed layer 27 are formed on the semiconductor element electrode 23, the current input electrode 32, the current outflow electrode 33, and the passivation film 24 of the semiconductor element 21 by sputtering. .
[0054]
Here, as a material for the semiconductor element electrode 23, the current input electrode 32, and the current outflow electrode 33, Al, Al—Si, or Al—Si—Cu is used as a wiring material of a general semiconductor wafer. Further, SiN is used as the passivation film 24.
[0055]
As the barrier layer 26, Ti—W is used from the viewpoint of adhesion to the semiconductor element electrode 23, the current input electrode 32, the current outflow electrode 33, and the passivation film 24 and the selectivity of the etching solution.
[0056]
In addition, Au is used as the material of the seed layer 27 from the viewpoint of ensuring conductivity during electrolytic plating and as a plating base metal of the electrolytic plating solution 49 (here, electrolytic Au plating solution is used).
[0057]
Next, as shown in FIG. 3B, an etching resist 42 is formed by a photolithography method, and as shown in FIG. 3C, a first etching process is performed using the etching resist 42 as a mask to perform seed layer 27 and barrier layer 26. Is patterned.
[0058]
As the etching solution for the seed layer 27 made of Au, a mixed solution made of iodine, potassium iodide, and acetic acid is used here as a solution that does not dissolve the barrier layer 26 made of Ti—W. As the etchant for the barrier layer 26, hydrogen peroxide is used here as a solution that does not dissolve the passivation film 24, the semiconductor element electrode 23, the current input electrode 32, and the current outflow electrode 33.
[0059]
Next, as shown in FIG. 3D, the etching resist 42 is peeled off. FIG. 4A shows a partially enlarged perspective view of the semiconductor wafer 39 at this time.
[0060]
Here, as shown in FIG. 3 (d) and FIG. 4 (a), the first wiring 45 for connecting the semiconductor element electrode 23 and the current input electrode 32 of the constant current circuit 31 and the constant current are formed by the first etching step. A second wiring 46 that connects the current outflow electrodes 33 of the circuit 31 is formed. The first wiring 45 and the second wiring 46 include a barrier layer 26 and a plating seed layer 27.
[0061]
In the first etching step, as shown in FIG. 4B, a wiring portion that connects the second wiring 46 that connects the current outflow electrodes 33 of the constant current circuit 31 to the electrolytic plating electrode 47, and The electrolytic plating electrode 47 is also formed at the same time.
[0062]
Next, as shown in FIGS. 4B and 4C, a plating resist 43 is formed by photolithography, and a second opening 44 is formed. At this time, the electroplating electrode 47 shown in FIG. The electrolytic plating electrode 47 includes a barrier layer 26 and a plating seed layer 27 that are formed in a peripheral portion of the semiconductor wafer 39 in a portion where the plating resist 43 is opened.
[0063]
Next, as shown in FIG. 5A, when a semiconductor wafer 39 on which a plating resist 43 is formed is immersed in an electrolytic plating solution 49 of a plating apparatus 48 and electrolytic plating is performed using the plating seed layer 27 as a cathode, FIG. As shown in FIG. 5, the electrolytic plating bump 28 is formed in the second opening 44 of the plating resist 43.
[0064]
Here, a general gold sulfite plating solution is used as the electrolytic plating solution 49.
[0065]
At this time, since the plating current 52 of each electrolytic plating bump 28 flows from the second opening 44 of the plating resist 43 into the constant current circuit 31 via the first wiring 45 and the current input terminal 32, the semiconductor wafer The plating current density is controlled to be constant for each electroplating bump without being affected by the plating conditions such as the arrangement and density of the electroplating bump 28 in 39 and the flow rate of the electroplating solution 49.
[0066]
Here, the plating currents of the electrolytic plating bumps 28 are individually controlled using the constant current circuit 31. However, the plating currents of the plurality of electrolytic plating bumps 28 are collected within a range in which the height variation of the electrolytic plating bumps 28 is allowable. It may be controlled by one constant current circuit 31.
[0067]
Next, as shown in FIG. 6A, the plating resist 43 is removed, and then, as shown in FIG. 6B, the plating seed layer 27 and the barrier layer 26 are formed by the second etching process using the electrolytic plating bump 28 as a mask. Remove.
[0068]
Here, as in the first etching step, a mixed solution of iodine, potassium iodide, and acetic acid is used as the etchant for the seed layer 27, and hydrogen peroxide is used as the etchant for the barrier layer 26.
[0069]
Next, by separating the semiconductor element 21 along the scribe region 41 of the semiconductor wafer 39, a semiconductor device provided with the electrolytic plating bumps 28 is formed as shown in FIG.
[0070]
As described above, according to the present embodiment, the constant current circuit 31 is provided for each electrolytic plating bump 28, and the plating current can be controlled to be constant for each electrolytic plating bump 28. It is possible to suppress variations in the plating current density at, and to effectively reduce variations in the height of the electrolytic plating bumps 28 to be formed.
[0071]
Further, as described above, the plating currents of the plurality of electrolytic plating bumps 28 may be collectively controlled by one constant current circuit 31 within a range in which the variation in height of the electrolytic plating bumps 28 is allowable. For example, the plating currents of a plurality of electrolytic plating bumps 28 for each semiconductor element 21 may be collectively controlled by one constant current circuit 31, or may be determined based on the number of electrolytic plating bumps 28 provided on each semiconductor element 21. The plating currents of a small number of electrolytic plating bumps 28 may be collectively controlled by one constant current circuit 31.
[0072]
In the present embodiment, the constant current circuit 31, the current input terminal 32, and the current outflow terminal 33 are formed in the chip region of each semiconductor element, but may be formed in the scribe region or on the semiconductor wafer 39. If present, it may be formed in an area other than the chip area and the scribe area.
[0073]
In the present embodiment, the constant current circuit 31 and the electrolytic plating bump 28 are connected by the first wiring 45 including the barrier layer 26 and the plating seed layer 27, and the constant current circuit 31 and the electrolytic plating electrode 47 are connected to the barrier. Although the connection is made by the second wiring 46 composed of the layer 26 and the plating seed layer 27, they may be connected by wiring in the semiconductor element instead of being connected by the barrier layer 26 and the plating seed layer 27, respectively. In this case, the first wiring 45 and the second wiring 46 that are not required after plating are cut (removed) in the second etching step, but may be separated by an electronic switch in the semiconductor element.
[0074]
【The invention's effect】
As described above, according to the present invention, a plurality of constant current circuits are provided on a semiconductor wafer, and at the time of forming an electroplating bump, one of each of a plurality of semiconductor element electrodes on which the electroplating bump is formed on the semiconductor wafer. One or a plurality of semiconductor elements connected to each constant current circuit by performing electroplating by connecting each constant current circuit to one or a plurality of semiconductor element electrodes corresponding to each constant current circuit Since the plating current can be controlled to be constant for each electrode, variations in the plating current density in the semiconductor wafer surface can be suppressed, and variations in the height of the formed electrolytic plating bumps can be effectively reduced.
[Brief description of the drawings]
FIG. 1 shows a semiconductor device according to an embodiment of the present invention.
FIG. 2 is a diagram showing a method for manufacturing the semiconductor device according to the embodiment of the present invention.
FIG. 3 is a view showing a method for manufacturing the semiconductor device according to the embodiment of the present invention;
FIG. 4 is a diagram showing a method for manufacturing the semiconductor device according to the embodiment of the present invention.
FIG. 5 is a diagram showing a method for manufacturing the semiconductor device according to the embodiment of the present invention;
FIG. 6 is a diagram showing a method for manufacturing the semiconductor device according to the embodiment of the present invention.
FIG. 7 shows a conventional semiconductor device.
FIG. 8 is a view showing a conventional method for manufacturing a semiconductor device.
FIG. 9 is a view showing a conventional method for manufacturing a semiconductor device.
FIG. 10 is a view showing a conventional method for manufacturing a semiconductor device.
FIG. 11 is a view showing a conventional method for manufacturing a semiconductor device.
[Explanation of symbols]
1 Semiconductor device
2 Internal circuit
3 Semiconductor device electrodes
4 Passivation film
5 First opening
6 Barrier layer
7 Plating seed layer
8 Electrolytic plating bump
9 Semiconductor wafer
10 chip area
11 Scribe area
12 Plating resist
13 Second opening
14 Electroplating electrode
15 Electrolytic plating equipment
16 Electrolytic plating solution
17 Anode
18 Constant current power supply
19 Plating current
20 Dummy plating area
21 Semiconductor elements
22 Internal circuit
23 Semiconductor device electrodes
24 Passivation film
26 Barrier layer
27 Plating seed layer
28 Electrolytic plating bump
31 Constant current circuit
32 Current input electrode
33 Current outflow electrode
34 First opening
39 Semiconductor wafer
40 chip area
41 Scribe area
42 Etching resist
43 Plating resist
44 Second opening
45 First wiring
46 Second wiring
47 Plating electrode
48 Electrolytic plating equipment
49 Electrolytic plating solution
50 anode
51 Plating power supply
52 Plating current

Claims (11)

半導体ウエーハと、前記半導体ウエーハの主面上に形成された複数の半導体素子と、前記半導体素子上に配列された複数の電極と、前記半導体素子の表面を被覆保護するパッシベーション膜と、前記パッシベーション膜に形成され前記電極の上を開口する開口部と、前記電極の上に形成された電解めっきバンプとを備えた半導体装置であって、
前記電解めっきバンプ形成時のめっき電流を一定に制御するために前記半導体ウエーハ内に形成された複数の定電流回路と、前記定電流回路に接続した電流入力電極と、前記定電流回路に接続した電流流出電極とを設けたことを特徴とする半導体装置。
Semiconductor wafer, a plurality of semiconductor elements formed on the main surface of the semiconductor wafer, a plurality of electrodes arranged on the semiconductor element, a passivation film for covering and protecting the surface of the semiconductor element, and the passivation film A semiconductor device comprising an opening formed on the electrode and an electroplating bump formed on the electrode,
A plurality of constant current circuits formed in the semiconductor wafer, a current input electrode connected to the constant current circuit, and a connection to the constant current circuit in order to control the plating current at the time of forming the electrolytic plating bumps constant. A semiconductor device comprising a current outflow electrode.
定電流回路、前記定電流回路に接続した電流入力電極および前記定電流回路に接続した電流流出電極は、個々の半導体素子ごとに設けられていることを特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein a constant current circuit, a current input electrode connected to the constant current circuit, and a current outflow electrode connected to the constant current circuit are provided for each individual semiconductor element. 定電流回路、前記定電流回路に接続した電流入力電極および前記定電流回路に接続した電流流出電極は、個々の半導体素子に設けられた電解めっきバンプの個数より少ない複数の電解めっきバンプごとに設けられていることを特徴とする請求項1記載の半導体装置。A constant current circuit, a current input electrode connected to the constant current circuit, and a current outflow electrode connected to the constant current circuit are provided for each of a plurality of electrolytic plating bumps smaller than the number of electrolytic plating bumps provided for each semiconductor element. 2. The semiconductor device according to claim 1, wherein the semiconductor device is formed. 定電流回路、前記定電流回路に接続した電流入力電極および前記定電流回路に接続した電流流出電極は、個々の電解めっきバンプごとに設けられていることを特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein a constant current circuit, a current input electrode connected to the constant current circuit, and a current outflow electrode connected to the constant current circuit are provided for each electrolytic plating bump. . 定電流回路、前記定電流回路に接続した電流入力電極および前記定電流回路に接続した電流流出電極は、個々の半導体素子どうしの間に形成されているスクライブ領域内に設けられていることを特徴とする請求項1から4のいずれか一項に記載の半導体装置。A constant current circuit, a current input electrode connected to the constant current circuit, and a current outflow electrode connected to the constant current circuit are provided in a scribe region formed between individual semiconductor elements. The semiconductor device according to any one of claims 1 to 4 . 定電流回路は、電解めっきバンプ形成時には半導体素子の電極と電気的に接続され、前記電解めっきバンプ形成後に電気的に遮断されたことを特徴とする請求項1から5のいずれか一項に記載の半導体装置。Constant current circuit, at the time of electrolytic plating bump formation is connected electrode in electrical semiconductor device, according to any one of claims 1 to 5, characterized in that said electrically cut off after the electroless plating bump formation Semiconductor device. 半導体素子の電極と電解めっきバンプとの間に金属膜が設けられたことを特徴とする請求項1から6のいずれか一項に記載の半導体装置。The semiconductor device according to any one of claims 1 6, characterized in that the metal film is provided between the electrode and the electrolytic plating bumps of the semiconductor device. 複数の定電流回路が内部に形成され、表面にパッシベーション膜が形成され、前記パッシベーション膜が開口された部分に、半導体素子電極、前記定電流回路に接続した電流入力電極および前記定電流回路に接続した電流流出電極が形成された半導体ウエーハを準備する工程と、
前記半導体素子電極上に開口部を持つめっきレジストを形成する工程と、
電解めっき法を用いて前記開口部の前記半導体素子電極、前記電流入力電極、前記定電流回路、および前記電流流出電極を介してめっき電流を流すことにより、前記開口部の前記半導体素子電極上に電解めっきバンプを形成する電解めっき工程と、
前記めっきレジストを除去する工程とを含む半導体装置の製造方法。
A plurality of constant current circuits are formed inside, a passivation film is formed on the surface, a semiconductor element electrode, a current input electrode connected to the constant current circuit, and a connection to the constant current circuit are formed in the portion where the passivation film is opened A step of preparing a semiconductor wafer having a current outflow electrode formed thereon;
Forming a plating resist having an opening on the semiconductor element electrode;
By applying a plating current through the semiconductor element electrode, the current input electrode, the constant current circuit, and the current outflow electrode of the opening using an electrolytic plating method, on the semiconductor element electrode of the opening An electroplating process for forming an electroplating bump;
And a step of removing the plating resist.
複数の定電流回路が内部に形成され、表面にパッシベーション膜が形成され、前記パッシベーション膜が開口された部分に、半導体素子電極、前記定電流回路に接続した電流入力電極および前記定電流回路に接続した電流流出電極が形成された半導体ウエーハを準備する工程と、
前記半導体ウエーハの表面に金属膜を形成する工程と、
前記金属膜上に所定のパターンのエッチングレジストを形成する工程と、
前記エッチングレジストをマスクにして前記金属膜をエッチングすることにより、前記電流入力電極と前記電流流出電極とが前記定電流回路を介した経路によってのみ電気的に接続されるように少なくとも前記電流入力電極と前記電流流出電極との間の前記金属膜の一部を除去する第1のエッチング工程と、
前記エッチングレジストを除去した後、前記半導体素子電極上の前記金属膜上に開口部を持つめっきレジストを形成する工程と、
電解めっき法を用いて前記開口部の前記金属膜、前記電流入力電極、前記定電流回路、および前記電流流出電極を介してめっき電流を流すことにより、前記開口部の前記金属膜上に電解めっきバンプを形成する電解めっき工程と、
前記めっきレジストを除去した後、前記電解めっきバンプをマスクとして前記金属膜をエッチングする第2のエッチング工程とを含む半導体装置の製造方法。
A plurality of constant current circuits are formed inside, a passivation film is formed on the surface, a semiconductor element electrode, a current input electrode connected to the constant current circuit, and a connection to the constant current circuit are formed in the portion where the passivation film is opened A step of preparing a semiconductor wafer having a current outflow electrode formed thereon;
Forming a metal film on the surface of the semiconductor wafer;
Forming an etching resist having a predetermined pattern on the metal film;
By etching the metal film using the etching resist as a mask, the current input electrode and the current outflow electrode are at least electrically connected only by a path through the constant current circuit. A first etching step of removing a part of the metal film between the electrode and the current outflow electrode;
Forming a plating resist having an opening on the metal film on the semiconductor element electrode after removing the etching resist;
Electrolytic plating is performed on the metal film in the opening by flowing a plating current through the metal film in the opening, the current input electrode, the constant current circuit, and the current outflow electrode using an electrolytic plating method. An electroplating process for forming bumps;
And a second etching step of etching the metal film using the electrolytic plating bumps as a mask after removing the plating resist.
第1のエッチング工程では半導体素子電極と電流入力電極との間が金属膜で電気的に接続されるように前記金属膜を残し、第2のエッチング工程により前記半導体素子電極と電流入力電極との間が電気的に遮断されるように前記金属膜を除去することを特徴とする請求項9記載の半導体装置の製造方法。In the first etching step, the metal film is left so that the semiconductor element electrode and the current input electrode are electrically connected by a metal film, and in the second etching process, the semiconductor element electrode and the current input electrode are The method of manufacturing a semiconductor device according to claim 9, wherein the metal film is removed so that a gap is electrically cut off. 第2のエッチング工程で、電解めっきバンプでマスクされていない電流入力電極および電流流出電極を溶解することなく金属膜のみを選択的にエッチングすることを特徴とする請求項9記載の半導体装置の製造方法。10. The method of manufacturing a semiconductor device according to claim 9, wherein in the second etching step, only the metal film is selectively etched without dissolving the current input electrode and the current outflow electrode not masked by the electrolytic plating bump. Method.
JP2003012077A 2003-01-21 2003-01-21 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3958221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012077A JP3958221B2 (en) 2003-01-21 2003-01-21 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012077A JP3958221B2 (en) 2003-01-21 2003-01-21 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004228199A JP2004228199A (en) 2004-08-12
JP3958221B2 true JP3958221B2 (en) 2007-08-15

Family

ID=32900800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012077A Expired - Fee Related JP3958221B2 (en) 2003-01-21 2003-01-21 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3958221B2 (en)

Also Published As

Publication number Publication date
JP2004228199A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
US9426894B2 (en) Fabrication method of wiring structure for improving crown-like defect
JP5040035B2 (en) Low on-resistance power FETs using fused metal layers
KR100428825B1 (en) Semiconductor integrated circuit and fabrication process therefor
JP4058619B2 (en) Semiconductor wafer
US6861749B2 (en) Semiconductor device with bump electrodes
JP2002050647A (en) Semiconductor device and its manufacturing method
CN108364929A (en) The manufacturing method of semiconductor device and semiconductor device
CN108242437A (en) The manufacturing method of semiconductor device and semiconductor device
JP4368543B2 (en) Plating method and plating apparatus
JP4480108B2 (en) Method for manufacturing semiconductor device
WO2009016495A1 (en) Semiconductor device having a bump electrode and method for its manufacture
KR101404464B1 (en) Plating structure and Method for manufacturing semiconductor package using the same
JP3958221B2 (en) Semiconductor device and manufacturing method thereof
JP2002231871A (en) Method for manufacturing leadframe and leadframe
KR20000047626A (en) Process for manufacturing semiconductor device
JP2001118872A (en) Bump-forming method
JP2004140115A (en) Semiconductor device, its manufacturing method, circuit board, and electronic equipment
JP4249885B2 (en) Method for manufacturing printed circuit board
JP2017188544A (en) Semiconductor device and method of manufacturing the same
JP3561582B2 (en) Method for manufacturing semiconductor device
JPH0722425A (en) Manufacture of semiconductor device
JP4045007B2 (en) Manufacturing method of semiconductor device
JP3298570B2 (en) Method for manufacturing semiconductor device
JP3119352B2 (en) Method for forming plated structure of semiconductor device
TWI746231B (en) Redistribution structure and forming method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees