JP3957405B2 - Method for producing metal element adsorbent - Google Patents

Method for producing metal element adsorbent Download PDF

Info

Publication number
JP3957405B2
JP3957405B2 JP23132398A JP23132398A JP3957405B2 JP 3957405 B2 JP3957405 B2 JP 3957405B2 JP 23132398 A JP23132398 A JP 23132398A JP 23132398 A JP23132398 A JP 23132398A JP 3957405 B2 JP3957405 B2 JP 3957405B2
Authority
JP
Japan
Prior art keywords
adsorbent
metal element
solution
gel
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23132398A
Other languages
Japanese (ja)
Other versions
JP2000065988A (en
Inventor
渡 白土
千勝 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP23132398A priority Critical patent/JP3957405B2/en
Publication of JP2000065988A publication Critical patent/JP2000065988A/en
Application granted granted Critical
Publication of JP3957405B2 publication Critical patent/JP3957405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a metal element adsorbent which is difficult to crush, does not increase the loss of pressure and increases the treatment speed of liquid wastes when the adsorbent is filled into a column and waste treatment is conducted and make it possible to gain a metal element adsorbent where alkali metal does not remain as residue following the incineration of the adsorbent after the liquid waste is treated and, as a result of it, the quantity of wastes does not increase. SOLUTION: A gel composition is generated by dissolving powdery condensed tannin in an NaOH, KOH or LiOH water solution of pH 7 to 10, mixing the solution with an aldehyde water solution or a hexamethylene tetramine and heating the mixture. The stabilized gel composition is put in contact with nitric acid, hydrochloric acid or sulfuric acid whose concentration is both 0.01 N or more and below 2 N preferably. Consequently, Na, K or Li as a terminal atom of a molecule of the gel composition can be replaced with an H atom.

Description

【0001】
【発明の属する技術分野】
本発明はウラン、トリウム、超ウラン元素等のアクチニド元素、又はカドミウム、鉛、クロム、水銀及び鉄を含む重金属元素、或いはコバルト、セシウム、ストロンチウム等の金属元素を吸着するための金属元素吸着剤の製造方法に関するものである。
【0002】
【従来の技術】
核燃料を取扱う工程において排出される廃液中には、ウラン、トリウム等の核燃料元素、又はカドミウム、鉛、クロム、水銀及び鉄を含む重金属元素、或いはコバルト、セシウム、ストロンチウム等の金属元素が含まれている。従来、これらの金属元素を吸着するための吸着剤の製造方法として、アルカリ水溶液に縮合型タンニン粉末を溶解し、この溶液にアルデヒド水溶液を混合してゲル状組成物を生成し、このゲル状組成物を室温下で熟成するか又は加熱して安定化させる方法が知られている(特開平5−66291号公報)。この方法で得られる吸着剤は金属元素を効率よく吸着することができる。
【0003】
【発明が解決しようとする課題】
しかし、この従来の金属元素吸着剤を廃液処理装置のカラムに充填した後、金属元素を含む廃液をカラムに通過させてこの廃液の処理を行った場合、廃液の通過速度が高くなるに従って吸着剤が潰れて圧損が大きくなり、廃液の流速が遅くなり、結果として廃液の通過速度を高くできない問題があった。
また上記吸着剤を製造する際に使用したNaイオン、Kイオン等のアルカリ金属イオンが吸着剤に残留するため、廃液がアルカリ性の場合、上記アルカリ金属イオンが廃液処理後も吸着剤中に残留する。従って、吸着剤中に残留したアルカリ金属イオンは廃液処理後に吸着剤を焼却した後にも残渣として残り、結果として廃棄物の量が増大する不都合があった。
【0004】
本発明の目的は、カラムに充填して、廃液処理を行った際に、潰れにくく圧損を増大せず、廃液の処理速度を増大させることのできる金属元素吸着剤の製造方法を提供することにある。
本発明の別の目的は、廃液処理後の吸着剤を焼却した後において、アルカリ金属が残渣として残ることがなく、従って廃棄物の量を増大させない金属元素吸着剤の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
請求項1に係る発明は、pH7〜10の水酸化ナトリウム、水酸化カリウム又は水酸化リチウムの水溶液に縮合型タンニン粉末を溶解し、この溶液にアルデヒド水溶液又はヘキサメチレンテトラミンを混合し、この混合液を加熱して安定化したゲル状組成物を生成する金属元素吸着剤の製造方法において、上記ゲル状組成物に硝酸、塩酸又は硫酸を接触させることを特徴とする金属元素吸着剤の製造方法である。
請求項2に係る発明は、ヘキサメチレンテトラミン水溶液に縮合型タンニン粉末を混合し、この混合液に水酸化ナトリウム、水酸化カリウム又は水酸化リチウムの水溶液を添加してpH7〜10とすることにより上記タンニン粉末を溶解し、この溶液を加熱して安定化したゲル状組成物を生成する金属元素吸着剤の製造方法において、上記ゲル状組成物に硝酸、塩酸又は硫酸を接触させることを特徴とする金属元素吸着剤の製造方法である。
【0006】
請求項1又は2に係る発明では、ゲル状組成物に上記酸を接触させることにより、ゲル状組成物の分子の末端原子であるナトリウム、カリウム又はリチウムを水素原子に置換することができる。
【0007】
【発明の実施の形態】
本明細書において、ゲル状組成物の安定化とはゲル状組成物を水、酸又はアルカリのいずれに対しても不溶にすることをいい、安定化したゲル状組成物とは水、酸又はアルカリのいずれに対しても不溶な組成物をいう。本発明で使用されるタンニン粉末は縮合型タンニンである。この縮合型タンニンは酸でアントシアニジン系色素をつくるプロアントシアニジンをいい、柿渋を含まない。例示すれば、ケブラコタンニン、ワットルタンニン、マングローブタンニン、スプルースタンニン、ガンビールタンニン、アカカテキン、カシワ樹皮タンニン等が挙げられる。
【0008】
本発明の硝酸、塩酸又は硫酸で処理されない前のゲル状組成物は多孔質で網目構造である。このゲル状組成物を構成する分子の末端基はアルカリ水溶液に水酸化ナトリウム溶液を使用した場合、図1(a)に示すように、末端原子はNaとなり、大きなイオンのNaを有するため、ゲル状組成物の孔径は1〜2μmと大きな値を有する。このゲル状組成物に上記酸を接触させると図1(b)に示すように、大きなイオンのNaから小さなイオンのHに交換基が変るため、ゲル状組成物の網目構造が収縮して緻密化し、ゲル状組成物の孔径は0.5〜1μmと小さくなり、ゲル状組成物の機械的強度が高まる。その結果、本発明の金属元素吸着剤をカラムに充填して、廃液処理を行った場合には、吸着剤が潰れにくくなり、結果として圧損が増大せず、廃液の処理速度を増大させることができる。
上述のように、ゲル状組成物は硝酸、塩酸又は硫酸と接触すると、ゲル状組成物の分子の末端原子であるNa、K又はLiはHの末端原子に変えられる。上記硝酸、塩酸又は硫酸の濃度は0.01N以上2N未満であることが好ましい。より好ましくは0.1N以上1.5N以下である。ゲル状組成物は弱アルカリ性を示すため、上記酸の濃度が0.1N未満の場合には、酸はゲル状組成物により中和され、その結果、ゲル状組成物の分子の末端原子であるNa、K又はLiをHの末端原子に変化しにくくなる。また上記酸の濃度が2N以上になる場合には、ゲル状組成物が酸に溶解し易くなり、好ましくない。
【0009】
ゲル状組成物に上記酸を接触させる具体的な方法としては、酸溶液にゲル状組成物を投入するか、又はゲル状組成物が入った容器に酸溶液を注入して30分以上室温で撹拌した後、脱水する。
【0010】
請求項1及び請求項2の発明で共通に用いられるアルデヒド水溶液としては、例えばホルムアルデヒド水溶液、アセトアルデヒド水溶液、グルタールアルデヒド水溶液等が挙げられるが、アルデヒド水溶液であれば特に限定されるものではない。これらの中でホルムアルデヒド水溶液が、ゲル状組成物の生成を速め、またゲル状組成物になった吸着剤の機械的強度を高めるため、好ましい。
本発明の方法で製造された金属元素吸着剤は、金属元素の中でウラン、トリウム、超ウラン元素等のアクチニド元素、又はカドミウム、鉛、クロム、水銀、鉄等の元素、或いはコバルト、セシウム、ストロンチウム等の元素の吸着に好適である。
【0011】
請求項1に係る発明では、先ず縮合型タンニン粉末をpH7〜10の水酸化ナトリウム、水酸化カリウム又は水酸化リチウムの水溶液に溶解する。pH7未満ではタンニン粉末が溶解しにくく、pH10を越えると生成したゲル状組成物が不安定で水に溶け易くなるからである。タンニン粉末の混合割合はアルカリ金属水酸化物の水溶液に対してはタンニン粉末を1〜40重量%の範囲で混合することが好ましい。1重量%未満ではタンニン粉末がゲル化しにくく、40重量%を超えると粘性が高くなり取扱いにくくなる。この溶液にアルデヒド水溶液又はヘキサメチレンテトラミンを混合する。ここでアルデヒド水溶液は、例えばホルムアルデヒドの37重量%水溶液の場合、タンニンが溶解した水溶液50mLに対して少なくとも1.39mLを添加混合する。この混合液を加熱して安定化したゲル状組成物を生成させる。この安定化したゲル状組成物に硝酸、塩酸又は硫酸を接解させることによりゲル状組成物の分子の末端原子であるNa、K又はLiがH原子に変化した金属元素吸着剤が得られる。
【0012】
請求項2に係る発明では、先ずヘキサメチレンテトラミン水溶液に縮合型タンニン粉末を混合する。ヘキサメチレンテトラミン水溶液は、ヘキサメチレンテトラミンが少なくとも0.5重量%溶解した水溶液である。タンニン粉末の混合割合は請求項1と同様である。次に水酸化ナトリウム、水酸化カリウム又は水酸化リチウムを添加し、pHを8以上とするとタンニン粉末は完全に溶解する。以下請求項1と同様に加熱して安定化したゲル状組成物を生成させ、同様に上記酸で処理して金属元素吸着剤を得る。
上述した2つの方法で得られたゲル状組成物の金属元素吸着剤は、金属元素含有溶液との接触面積を増大するためにミキサー等の機械的手段により所望のサイズに砕解し細分化されて使用される。この金属元素吸着剤を用いて金属元素を吸着分離させる方法としては、カラム法、バッチ法などが挙げられる。
【0013】
上述した方法で得られた本発明の金属元素吸着剤をウラン、トリウム、超ウラン元素、又はカドミウム、鉛、クロム、水銀、鉄、コバルト、セシウム、ストロンチウム等の金属元素を含有した溶液に接触させると、吸着剤は金属元素を極めて効率良く吸着する。これは吸着剤のゲル状組成物を構成するタンニンのもっているポリフェノール性水酸基が官能基となって、金属元素とキレート化合物を形成するためと考えられる。またゲル状にすることにより上記官能基が金属元素と配位し易い立体構造になり、かつゲル状組成物が極めて強い親水性物質であるため、ゲル状組成物は極めて優れた金属元素の吸着性能を示すものと考えられる。
【0014】
特に、本発明で得られた金属元素吸着剤は、核燃料製造工程から発生するウラン、トリウム及び海水中のウランの吸着性能に優れるばかりか、再処理工程から発生する超ウラン元素であるキュリウム、アメリシウム、ネプツニウム、プルトニウム、更には金属元素を取扱う工程から発生するカドミウム、鉛、六価クロム、水銀、鉄、コバルト、セシウム及びストロンチウムに至る多種の元素の吸着性能に優れ、その利用価値は極めて大きい。
また、金属を吸着した本発明の吸着剤は、有毒ガスを発生することなく焼却可能であるため、焼却により吸着剤の容積を大きく減少して固体廃棄物の発生量を少なくすることができる。
【0015】
【実施例】
次に本発明の具体的態様を示すために、本発明の実施例を比較例とともに説明する。
<実施例1>
縮合型タンニンであるワットルタンニンの粉末8gをpH8.7のNaOH水溶液50mLに添加して溶解させた。タンニンの粉末を加えるに従って溶液のpHは徐々に低下するため、NaOH水溶液を随時添加して溶液のpHが8になるように保持した。次いでこの溶液にホルムアルデヒドの37重量%水溶液2.77mLを添加した後、この溶液を70℃で1時間加熱した。これによりゲル化と安定化が同時に行われ、安定化したゲル状組成物を調製した。このゲル状組成物をミキサーで砕解して約1.0〜2.4mmの粒径に細分化した後、二等分した。二等分した内の一方に0.1Nの硝酸溶液を1時間接触させた。即ち、この硝酸溶液に二等分した内の一方のゲル状組成物を投入し1時間室温で撹拌した。その後ゲル状組成物を脱水して、実施例1の金属元素吸着剤を得た。
【0016】
<実施例2>
実施例1の金属元素吸着剤を更にミキサーで砕解して約0.5〜1.2mmの粒径に細分化して、実施例2の金属元素吸着剤を得た。
【0017】
<比較例1>
硝酸溶液で洗浄していない金属元素吸着剤、即ち、実施例1において二等分した内の残りの一方を比較例1の金属元素吸着剤とした。
【0018】
<吸着性能試験例1>
実施例2の金属元素吸着剤及び比較例1の金属元素吸着剤をそれぞれ別々に内径0.1mのカラムに2mの高さに充填した。これらのカラムにアップフローにより純水を供給して、カラム入口及びカラム出口の圧力を測定し、その差から圧力損失を求めた。カラム通液時の線速度を変化させて線速度と圧力損失の関係を調べた。その結果を図2に示す。
図2から明らかなように、線速度が30cm/分の近くまでは実施例2の吸着剤を充填した場合も、比較例1の吸着剤を充填した場合も、ほぼ同じ緩い割合で圧力損失が増大するが、線速度が35cm/分を超えると、比較例1の吸着剤の方が急激に圧力損失が増大するのに対して、実施例2の吸着剤の方は圧力損失の増大割合が比較例1に比べて極めて小さいことが判る。
【0019】
<吸着性能試験例2>
ウラン濃度が245ppbのpH4の溶液を250mLずつ2つの容器に入れた。これらの溶液に実施例1の金属元素吸着剤と比較例1の金属元素吸着剤をそれぞれ乾燥重量で25mgずつ添加し、約2時間撹拌してウランを吸着させ、その吸着率を測定した。更にこの試験のウラン含有溶液のpHについて種々変えて、ウランの吸着率を測定した。即ち、実施例1及び比較例1の金属元素吸着剤についてそれぞれ溶液のpHを6、8及び10にして同様にウランの吸着率を測定した。その結果を図3に示す。ここで吸着率αは吸着剤添加前の原液のウラン濃度をCo、吸着剤を添加してウラン吸着後の溶液のウラン濃度をCtとするとき、
α=[(Co−Ct)/Co]×100(%)
で算出される値である。
図3より明らかなように、実施例1の吸着剤はpH4〜10の広い範囲で比較例1とほぼ同じウラン吸着率を示し、酸による洗浄の有無によって吸着性能に差がないことが判る。
【0020】
【発明の効果】
以上述べたように、本発明の金属元素吸着剤の製造方法によれば、縮合型タンニン粉末を原料として用いて安定化したゲル状組成物を生成し、このゲル状組成物に硝酸、塩酸又は硫酸を接触させることにより分子の末端原子であるNa、K又はLiをH原子に変えるようにしたので、得られた金属元素吸着剤をカラムに充填して、廃液処理を行った場合に、吸着剤が潰れにくくなり、結果として圧損が増大せず、廃液の処理速度を増大させることができる。
また本発明で得られた金属元素吸着剤を使用して廃液を処理した後に、廃液処理後の吸着剤を焼却した場合、Na、K又はLiのようなアルカリ金属が残渣として残ることがなく、従って廃棄物の量を減少させることができる効果がある。
【図面の簡単な説明】
【図1】(a) 酸接触前のゲル状組成物を構成する分子の末端基の状態を示す図。
(b) 酸接触後のゲル状組成物を構成する分子の末端基の状態を示す図。
【図2】本発明の吸着性能試験例1の結果を示す図。
【図3】本発明の吸着性能試験例2の結果を示す図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal element adsorbent for adsorbing actinide elements such as uranium, thorium and transuranium elements, heavy metal elements including cadmium, lead, chromium, mercury and iron, or metal elements such as cobalt, cesium and strontium. It relates to a manufacturing method.
[0002]
[Prior art]
Waste liquids discharged in the process of handling nuclear fuel contain nuclear fuel elements such as uranium and thorium, heavy metal elements including cadmium, lead, chromium, mercury and iron, or metal elements such as cobalt, cesium and strontium. Yes. Conventionally, as a method for producing an adsorbent for adsorbing these metal elements, a condensed tannin powder is dissolved in an alkaline aqueous solution, and an aqueous aldehyde solution is mixed with this solution to produce a gel-like composition. A method is known in which a product is aged at room temperature or stabilized by heating (Japanese Patent Application Laid-Open No. 5-66291). The adsorbent obtained by this method can adsorb metal elements efficiently.
[0003]
[Problems to be solved by the invention]
However, after this conventional metal element adsorbent is packed in the column of the waste liquid treatment device, when the waste liquid containing the metal element is passed through the column and this waste liquid is treated, the adsorbent increases as the waste liquid passage speed increases. As a result, the pressure loss increases, the flow rate of the waste liquid becomes slow, and as a result, there is a problem that the passage speed of the waste liquid cannot be increased.
In addition, since alkali metal ions such as Na ions and K ions used in manufacturing the adsorbent remain in the adsorbent, when the waste liquid is alkaline, the alkali metal ion remains in the adsorbent after the waste liquid treatment. . Therefore, the alkali metal ion remaining in the adsorbent remains as a residue even after the adsorbent is incinerated after the waste liquid treatment, resulting in a disadvantage that the amount of waste increases.
[0004]
An object of the present invention is to provide a method for producing a metal element adsorbent capable of increasing the treatment speed of waste liquid without being crushed and increasing pressure loss when packed in a column and performing waste liquid treatment. is there.
Another object of the present invention is to provide a method for producing a metal element adsorbent that does not leave alkali metal as a residue after incineration of the adsorbent after waste liquid treatment, and thus does not increase the amount of waste. is there.
[0005]
[Means for Solving the Problems]
In the invention according to claim 1, a condensed tannin powder is dissolved in an aqueous solution of sodium hydroxide, potassium hydroxide or lithium hydroxide having a pH of 7 to 10, and an aldehyde aqueous solution or hexamethylenetetramine is mixed into this solution. A method for producing a metal element adsorbent, characterized in that nitric acid, hydrochloric acid or sulfuric acid is brought into contact with the gel composition in a method for producing a metal element adsorbent which produces a stabilized gel composition by heating is there.
In the invention according to claim 2, the condensed tannin powder is mixed with an aqueous hexamethylenetetramine solution, and an aqueous solution of sodium hydroxide, potassium hydroxide or lithium hydroxide is added to this mixed solution to adjust the pH to 7-10. In the method for producing a metal element adsorbent for dissolving a tannin powder and heating the solution to produce a stabilized gel composition, the gel composition is contacted with nitric acid, hydrochloric acid or sulfuric acid. It is a manufacturing method of a metal element adsorbent.
[0006]
In the invention which concerns on Claim 1 or 2, the said acid is made to contact a gel-like composition, The sodium, potassium, or lithium which is the terminal atom of the molecule | numerator of a gel-like composition can be substituted by the hydrogen atom.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In this specification, the stabilization of the gel-like composition means making the gel-like composition insoluble in any of water, acid or alkali, and the stabilized gel-like composition means water, acid or It refers to a composition that is insoluble in any alkali. The tannin powder used in the present invention is condensed tannin. This condensed tannin is a proanthocyanidin that produces anthocyanidic pigments with acid, and does not contain astringency. Examples include quebraco tannin, wattle tannin, mangrove tannin, sprue tannin, gambir tannin, red catechin, oak bark tannin and the like.
[0008]
The gel composition before being treated with nitric acid, hydrochloric acid or sulfuric acid of the present invention is porous and has a network structure. When a sodium hydroxide solution is used as an alkaline aqueous solution as the terminal group of the molecules constituting this gel composition, as shown in FIG. 1 (a), the terminal atom becomes Na and has a large ion Na. The pore size of the composition has a large value of 1 to 2 μm. When the above acid is brought into contact with this gel composition, as shown in FIG. 1B, the exchange group changes from large ionic Na to small ionic H, so that the network structure of the gel composition shrinks and becomes dense. As a result, the pore size of the gel composition is reduced to 0.5 to 1 μm, and the mechanical strength of the gel composition is increased. As a result, when the column is filled with the metal element adsorbent of the present invention and the waste liquid treatment is performed, the adsorbent is less likely to be crushed, and as a result, pressure loss does not increase and the waste liquid treatment speed can be increased. it can.
As described above, when the gel-like composition is brought into contact with nitric acid, hydrochloric acid or sulfuric acid, Na, K or Li, which is the terminal atom of the molecule of the gel-like composition, is changed to the terminal atom of H. The concentration of nitric acid, hydrochloric acid or sulfuric acid is preferably 0.01N or more and less than 2N. More preferably, it is 0.1N or more and 1.5N or less. Since the gel-like composition exhibits weak alkalinity, when the acid concentration is less than 0.1N, the acid is neutralized by the gel-like composition and, as a result, is a terminal atom of the molecule of the gel-like composition. It becomes difficult to change Na, K or Li to the terminal atom of H. On the other hand, when the concentration of the acid is 2N or more, the gel composition is easily dissolved in the acid, which is not preferable.
[0009]
As a specific method of bringing the acid into contact with the gel composition, the gel composition is put into an acid solution, or the acid solution is injected into a container containing the gel composition at room temperature for 30 minutes or more. After stirring, dehydrate.
[0010]
Examples of the aldehyde aqueous solution commonly used in the inventions of claims 1 and 2 include formaldehyde aqueous solution, acetaldehyde aqueous solution, and glutaraldehyde aqueous solution. However, the aqueous solution is not particularly limited as long as it is an aldehyde aqueous solution. Among these, an aqueous formaldehyde solution is preferable because it accelerates the formation of the gel-like composition and increases the mechanical strength of the adsorbent that has become the gel-like composition.
The metal element adsorbent produced by the method of the present invention is an actinide element such as uranium, thorium, or transuranium element, or an element such as cadmium, lead, chromium, mercury, iron, or cobalt, cesium, Suitable for adsorption of elements such as strontium.
[0011]
In the invention according to claim 1, the condensed tannin powder is first dissolved in an aqueous solution of sodium hydroxide, potassium hydroxide or lithium hydroxide having a pH of 7-10. This is because if the pH is less than 7, the tannin powder is difficult to dissolve, and if the pH exceeds 10, the resulting gel composition is unstable and easily soluble in water. As for the mixing ratio of the tannin powder, the tannin powder is preferably mixed in the range of 1 to 40% by weight with respect to the aqueous solution of the alkali metal hydroxide. If it is less than 1% by weight, the tannin powder is difficult to gel, and if it exceeds 40% by weight, the viscosity becomes high and handling becomes difficult. This solution is mixed with an aqueous aldehyde solution or hexamethylenetetramine. Here, for example, in the case of a 37% by weight aqueous solution of formaldehyde, at least 1.39 mL is added and mixed with 50 mL of an aqueous solution in which tannin is dissolved. The mixed liquid is heated to produce a stabilized gel composition. By contacting nitric acid, hydrochloric acid, or sulfuric acid with this stabilized gel-like composition, a metal element adsorbent in which Na, K, or Li, which is the terminal atom of the molecule of the gel-like composition, has been changed to H atoms can be obtained.
[0012]
In the invention according to claim 2, first, the condensed tannin powder is mixed with the hexamethylenetetramine aqueous solution. The hexamethylenetetramine aqueous solution is an aqueous solution in which hexamethylenetetramine is dissolved at least 0.5% by weight. The mixing ratio of the tannin powder is the same as that of the first aspect. Next, when sodium hydroxide, potassium hydroxide or lithium hydroxide is added and the pH is adjusted to 8 or more, the tannin powder is completely dissolved. Thereafter, a stabilized gel-like composition is produced by heating in the same manner as in claim 1, and similarly treated with the acid to obtain a metal element adsorbent.
In order to increase the contact area with the metal element-containing solution, the metal element adsorbent of the gel composition obtained by the two methods described above is pulverized and subdivided into a desired size by a mechanical means such as a mixer. Used. Examples of a method for adsorbing and separating a metal element using this metal element adsorbent include a column method and a batch method.
[0013]
The metal element adsorbent of the present invention obtained by the above-described method is brought into contact with a solution containing uranium, thorium, transuranium element, or a metal element such as cadmium, lead, chromium, mercury, iron, cobalt, cesium, strontium. The adsorbent adsorbs metal elements very efficiently. This is presumably because the polyphenolic hydroxyl group possessed by the tannin constituting the gel composition of the adsorbent becomes a functional group to form a metal element and a chelate compound. In addition, the gel-like composition has a three-dimensional structure in which the functional group is easily coordinated with the metal element, and the gel-like composition is a very strong hydrophilic substance. It is considered to show performance.
[0014]
In particular, the metal element adsorbent obtained in the present invention is excellent in the adsorption performance of uranium, thorium and uranium in seawater generated from the nuclear fuel production process, as well as curium and americium which are superuranium elements generated from the reprocessing process. It has excellent adsorption performance for various elements such as cadmium, lead, hexavalent chromium, mercury, iron, cobalt, cesium and strontium generated from the process of handling neptunium, plutonium, and metal elements, and its utility value is extremely large.
Further, since the adsorbent of the present invention that has adsorbed metal can be incinerated without generating toxic gas, the volume of adsorbent can be greatly reduced by incineration to reduce the amount of solid waste generated.
[0015]
【Example】
Next, in order to show the concrete mode of the present invention, the example of the present invention is explained with a comparative example.
<Example 1>
8 g of Wattalanin powder, which is condensed tannin, was added to 50 mL of NaOH aqueous solution at pH 8.7 and dissolved. Since the pH of the solution gradually decreased as tannin powder was added, an aqueous NaOH solution was added as needed to keep the pH of the solution at 8. To this solution was then added 2.77 mL of a 37 wt% aqueous solution of formaldehyde, and the solution was heated at 70 ° C. for 1 hour. Thereby, gelation and stabilization were performed at the same time, and a stabilized gel composition was prepared. This gel composition was pulverized with a mixer and subdivided into particle sizes of about 1.0 to 2.4 mm, and then divided into two equal parts. One of the halves was brought into contact with a 0.1N nitric acid solution for 1 hour. That is, one of the two gel-like compositions divided into this nitric acid solution was added and stirred at room temperature for 1 hour. Thereafter, the gel composition was dehydrated to obtain the metal element adsorbent of Example 1.
[0016]
<Example 2>
The metal element adsorbent of Example 1 was further pulverized with a mixer and subdivided into particle sizes of about 0.5 to 1.2 mm to obtain the metal element adsorbent of Example 2.
[0017]
<Comparative Example 1>
The metal element adsorbent that was not washed with the nitric acid solution, that is, the remaining one of the two divided in Example 1 was used as the metal element adsorbent of Comparative Example 1.
[0018]
<Adsorption performance test example 1>
The metal element adsorbent of Example 2 and the metal element adsorbent of Comparative Example 1 were separately packed in a column having an inner diameter of 0.1 m at a height of 2 m. Pure water was supplied to these columns by upflow, the pressure at the column inlet and the column outlet was measured, and the pressure loss was determined from the difference. The relationship between the linear velocity and pressure loss was investigated by changing the linear velocity when the column was passed through. The result is shown in FIG.
As is clear from FIG. 2, the pressure loss is almost the same loose rate when the adsorbent of Example 2 is filled up to about 30 cm / min and when the adsorbent of Comparative Example 1 is filled. However, when the linear velocity exceeds 35 cm / min, the pressure loss of the adsorbent of Comparative Example 1 increases more rapidly, whereas the adsorbent of Example 2 has an increased rate of pressure loss. It can be seen that it is extremely small compared to Comparative Example 1.
[0019]
<Adsorption performance test example 2>
250 mL each of a pH 4 solution having a uranium concentration of 245 ppb was placed in two containers. To these solutions, 25 mg each of the metal element adsorbent of Example 1 and the metal element adsorbent of Comparative Example 1 were added in dry weight, stirred for about 2 hours to adsorb uranium, and the adsorption rate was measured. Furthermore, the uranium adsorption rate was measured by varying the pH of the uranium-containing solution in this test. That is, with respect to the metal element adsorbents of Example 1 and Comparative Example 1, the pH of the solution was set to 6, 8, and 10, respectively, and the uranium adsorption rate was measured in the same manner. The result is shown in FIG. Here, the adsorption rate α is Co when the uranium concentration of the stock solution before addition of the adsorbent is C, and Ct is the uranium concentration of the solution after adsorbent addition and uranium adsorption.
α = [(Co−Ct) / Co] × 100 (%)
Is a value calculated by.
As is apparent from FIG. 3, the adsorbent of Example 1 shows almost the same uranium adsorption rate as Comparative Example 1 in a wide range of pH 4 to 10, and it can be seen that there is no difference in adsorption performance depending on the presence or absence of washing with acid.
[0020]
【The invention's effect】
As described above, according to the method for producing a metal element adsorbent of the present invention, a stabilized gel-like composition is produced using condensed tannin powder as a raw material, and nitric acid, hydrochloric acid or Since Na, K, or Li, which is the terminal atom of the molecule, is changed to H atom by contacting sulfuric acid, the column is filled with the obtained metal element adsorbent, and when the waste liquid treatment is performed, adsorption It becomes difficult for the agent to be crushed, and as a result, the pressure loss does not increase, and the treatment speed of the waste liquid can be increased.
Moreover, after treating the waste liquid using the metal element adsorbent obtained in the present invention, when the adsorbent after the waste liquid treatment is incinerated, an alkali metal such as Na, K or Li does not remain as a residue, Therefore, there is an effect that the amount of waste can be reduced.
[Brief description of the drawings]
FIG. 1A is a view showing the state of terminal groups of molecules constituting a gel composition before acid contact.
(B) The figure which shows the state of the terminal group of the molecule | numerator which comprises the gel-like composition after an acid contact.
FIG. 2 is a graph showing the results of adsorption performance test example 1 of the present invention.
FIG. 3 is a graph showing the results of adsorption performance test example 2 of the present invention.

Claims (2)

pH7〜10の水酸化ナトリウム、水酸化カリウム又は水酸化リチウムの水溶液に縮合型タンニン粉末を溶解し、この溶液にアルデヒド水溶液又はヘキサメチレンテトラミンを混合し、この混合液を加熱して安定化したゲル状組成物を生成する金属元素吸着剤の製造方法において、
前記ゲル状組成物に硝酸、塩酸又は硫酸を接触させることを特徴とする金属元素吸着剤の製造方法。
Gel in which condensed tannin powder is dissolved in an aqueous solution of sodium hydroxide, potassium hydroxide or lithium hydroxide having a pH of 7 to 10, mixed with an aldehyde aqueous solution or hexamethylenetetramine, and the mixture is heated to stabilize the gel. In the method for producing a metal element adsorbent that produces a glass-like composition,
A method for producing a metal element adsorbent, comprising bringing the gel composition into contact with nitric acid, hydrochloric acid, or sulfuric acid.
ヘキサメチレンテトラミン水溶液に縮合型タンニン粉末を混合し、この混合液に水酸化ナトリウム、水酸化カリウム又は水酸化リチウムの水溶液を添加してpH7〜10とすることにより前記タンニン粉末を溶解し、この溶液を加熱して安定化したゲル状組成物を生成する金属元素吸着剤の製造方法において、
前記ゲル状組成物に硝酸、塩酸又は硫酸を接触させることを特徴とする金属元素吸着剤の製造方法。
Condensed tannin powder is mixed with an aqueous solution of hexamethylenetetramine, and an aqueous solution of sodium hydroxide, potassium hydroxide or lithium hydroxide is added to the mixed solution to adjust the pH to 7 to 10, thereby dissolving the tannin powder. In the method for producing a metal element adsorbent that produces a gel composition stabilized by heating
A method for producing a metal element adsorbent, comprising bringing the gel composition into contact with nitric acid, hydrochloric acid, or sulfuric acid.
JP23132398A 1998-08-18 1998-08-18 Method for producing metal element adsorbent Expired - Lifetime JP3957405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23132398A JP3957405B2 (en) 1998-08-18 1998-08-18 Method for producing metal element adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23132398A JP3957405B2 (en) 1998-08-18 1998-08-18 Method for producing metal element adsorbent

Publications (2)

Publication Number Publication Date
JP2000065988A JP2000065988A (en) 2000-03-03
JP3957405B2 true JP3957405B2 (en) 2007-08-15

Family

ID=16921843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23132398A Expired - Lifetime JP3957405B2 (en) 1998-08-18 1998-08-18 Method for producing metal element adsorbent

Country Status (1)

Country Link
JP (1) JP3957405B2 (en)

Also Published As

Publication number Publication date
JP2000065988A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
Vincent et al. Chitin-Prussian blue sponges for Cs (I) recovery: From synthesis to application in the treatment of accidental dumping of metal-bearing solutions
US5407889A (en) Method of composite sorbents manufacturing
EP0158780A1 (en) Process and apparatus for solidification of radioactive waste
JP2015160208A (en) Adsorbent granulating method, and adsorbent granules produced thereby
US4793947A (en) Radioactive waste treatment method
US9480965B2 (en) Method for preparing granulated inorganic adsorbent for radionuclides
JP6213978B2 (en) Cesium adsorbent and method for removing cesium using the same
JP3033796B2 (en) Method for producing metal element adsorbent and method for adsorbing and separating metal element by the adsorbent
AU644303B2 (en) Method of preparing insoluble hydrolysable tannin and method of treating waste liquid with the tannin
WO2016195096A1 (en) Adsorbent for adsorbing iodine compounds and/or antimony, method for preparing said adsorbent, and method and apparatus for treating radioactive waste liquid by using said adsorbent
US5320664A (en) Method of preparing metal element adsorbent and method of adsorbing and separating metal element using the same
JP3957405B2 (en) Method for producing metal element adsorbent
CN111604037A (en) Polyphenol microsphere for treating heavy metal ions and radioactive nuclide in industrial wastewater and preparation method and application thereof
Kaczvinsky et al. Synthesis and development of porous chelating polymers for the decontamination of nuclear waste
JP2908107B2 (en) Solidification material for radioactive waste and method for treating radioactive waste
JP4136220B2 (en) Method for producing insoluble tannin and method for adsorption of hexavalent chromium using this tannin
KR101611260B1 (en) Synthesis method of 4A-Ba zeolite and treatment method for radioactive Sr contaminated water
KR101989910B1 (en) Volume reduction treatment method of spent uranium catalyst
Stejskal et al. Improved inorganic ion-exchangers: I. Systems with organic polymers as binding materials
EP1137014B1 (en) Co-solidification of low-level radioactive wet wastes produced from BWR nuclear power plants
JP3225087B2 (en) Adsorbent
JP2854691B2 (en) Stabilization method for radioactive waste
RIEMAN III lon exchange
JP2993903B2 (en) Radioactive waste treatment method
US6264840B1 (en) Process for producing insoluble tannin and method for adsorbing hexavalent chromium by using the tannin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term