JP3956856B2 - Laser distance measuring device - Google Patents

Laser distance measuring device Download PDF

Info

Publication number
JP3956856B2
JP3956856B2 JP2003019476A JP2003019476A JP3956856B2 JP 3956856 B2 JP3956856 B2 JP 3956856B2 JP 2003019476 A JP2003019476 A JP 2003019476A JP 2003019476 A JP2003019476 A JP 2003019476A JP 3956856 B2 JP3956856 B2 JP 3956856B2
Authority
JP
Japan
Prior art keywords
distance measuring
laser
distance
ruled
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003019476A
Other languages
Japanese (ja)
Other versions
JP2004233106A (en
Inventor
達也 本田
貴司 岸田
裕史 前田
一成 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003019476A priority Critical patent/JP3956856B2/en
Publication of JP2004233106A publication Critical patent/JP2004233106A/en
Application granted granted Critical
Publication of JP3956856B2 publication Critical patent/JP3956856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tape Measures (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、測距対象物にレーザを照射して測距対象物までの距離を算出するレーザ測距装置に関し、詳しくはレーザで測距する距離を校正する機能を備えたレーザ測距装置に関するものである。
【0002】
【従来の技術】
従来、図14に示すように互いに対向し合うように平行に配置された一対の平面鏡aと、この一対の平面鏡aのうち一方の端部近くに配置された基準検出対象物bとを有する基準距離設定具cを備え、レーザで測距する距離を校正する機能を持たせたものがある(例えば、特許文献1参照)。
【0003】
かかるレーザ測距装置dでは上記基準距離設定具cを取り付け状態でレーザ測距装置dからレーザ光を基準検出対象物bに当て、レーザで測定した距離と基準距離設定具cで設定された距離とを比較してレーザで測定する距離を正しく校正するようになっている。
【0004】
【特許文献1】
特開平11−271448号公報
【0005】
【発明が解決しようとする課題】
ところが、上記従来例にあっては、レーザで測定する距離を校正するために基準距離を設定する基準距離設定具cを特別に設けなければならなく、構造が複雑になると共に校正しないときは基準距離設定具cが邪魔になるためにそれを取り外さなければならなくて取り扱いがしにくいという問題がある。また基準距離設定具cは校正するときに基準距離を設定するという機能しかない。
【0006】
本発明は上記の点に鑑みてなされたものであり、物差し状測距器具を設けるという簡単な構造でレーザで測定する距離を校正できると共に取り扱いがしやく、物差し状測距器具自体でも測距できて校正以外にも利用できて便利に測距できるレーザ測距装置を提供することを課題とするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するための本発明のレーザ測距装置は、レーザ測距装置本体6に、測距対象物へレーザ光を照射する投光部1と、測距対象物からの反射光を受光する受光部2と、投光部1から受光部2にレーザ光が到達する時間により測距対象物までの距離を算出する演算部3とから構成されるレーザ測距部4を備えて成るレーザ測距装置において、物差しのようにして距離を測定し得る物差し状測距器具5をレーザ測距装置本体6に着脱自在に装着し、物差し状測距器具5により測定される一定距離とレーザ測距部4で実測した距離との差を算出すると共にその差によりレーザ測距部4の測距値を校正する手段を演算部3に備えるとともに、物差し状測距器具5の測距向きとレーザ測距部4の測距向きが同じか否かを判定すると共に物差し状測距器具5が使用状態か否かを判定し、両者の判定がイエスとなる場合にだけ校正作業を行い、それ以外の場合には測距作業を行う切り替え制御手段を有することを特徴とする。
【0008】
上記構成のレーザ測距装置とすることで、物差し状測距器具5にて測定する実際の距離とレーザ測距部4で測定する距離との差を比較してレーザ測距部4で測定する測距値を校正することができる。このとき物差し状の測距器具5にて校正するときの基準距離を設定するために従来の校正のための専用の基準距離設定具に比べて構造が簡単で且つ取り扱いが容易にできる。また物差し状測距器具5を使って物差しのように距離の測定も行うことができる。加えて、物差し状測距器具5が必要ないときは取り外すことで軽量化が図れて携帯性を向上でき、更に、上記切り替え制御手段により校正作業と測距作業の切り替えが単純な切り替え構造で実現できると共に校正作業と測距作業とを明確に分離した使用ができる。
【0009】
また物差し状測距器具5は巻尺5aであることを特徴とすることも好ましい。物差し状測距器具5として巻尺5aはコンパクトで本体構造を大きくすることなく校正機能を持たせることができ、携帯性を向上できる。
【0010】
また物差し状測距器具5はスケール5bであり、レーザ測距装置本体6にスケール5bの一端を差し込んでスケール5bを保持する手段を具備したことを特徴とすることも好ましい。スケール5bが必要でないときには簡単に取り外すことができ、軽量化できて携帯性を向上できる
【0011】
また物差し状測距器具5が90°毎に角度を設定して固定可能にされたことを特徴とすることも好ましい。レーザ測距部4と物差し状測距器具5との両方を用いて測距することにより直角の位置関係にある測定面を測定できる。また1つの装置で2点の距離を同時に測定することができる。
【0012】
またレーザ測距部4で測距する向きと180°反対の向きに物差し状測距器具5を向けて固定できる構造にされたことを特徴とすることも好ましい。2つの測定面間の任意の位置から、これらの測定面間の距離を測定することができる。1つの装置で2点間の距離を測定することができる
【0013】
またレーザ測距部4からのレーザ光が垂直に当る板7をレーザ光が当る位置とレーザ光が当らない位置とに位置変更可能なように物差し状測距器具5に設けたことを特徴とすることも好ましい。物差し状測距器具5に設けた板7にレーザ光を当てて反射させることによりレーザの測距値の校正ができ、校正するときの基準面の有無や基準面までの距離に影響されずに校正作業を行うことができる。また校正作業状態を保持した状態、測距作業中に一時的に校正作業を実行した状態からでも板7にレーザ光が当らないように位置変更することで測距作業を連続的に行うことができるので、作業効率が向上する。
【0014】
また上記レーザ光が当る板7が反射板であることを特徴とすることも好ましい。投光部1から照射したレーザ光を確実に反射して受光部2に受光することで測距でき、レーザが照射される面の形状、色、材質に依存せずに校正作業を行うことができる。
【0015】
また受光レンズ8に着脱自在に装着し得るレンズカバー9に反射面を備え、このレンズカバー9が上記レーザ光の当る板になっていることを特徴とすることも好ましい。通常時にレンズカバー9をレンズ保護用のカバーとして取り付けていることで携帯性の妨げにもならず、校正作業時にはレンズカバー9の反射面を基準面として使用でき、測距作業時にはレンズカバー9の反射面を測定面として使用できるため、作業性と携帯性を向上できる。また測距作業時にレンズカバー9の反射面を測定面とすることで測定面の形状、色、材質に依存しない正確な測距作業ができる。
【0016】
【発明の実施の形態】
図1、図2に示すように本発明のレーザ測距装置はレーザ測距部4を有するレーザ測距装置本体6に物差し状測距器具5を組み込むことでレーザ測距部4で測距した測距値を校正し得る機能を持たせてある。レーザ測距部4は測距対象物にレーザ光を照射して対象物までの距離を算出するものであって、測距対象物へレーザ光を照射する一つの投光部1と、測距対象物からの反射光を受光する一つの受光部2と、投光部1から受光部2にレーザ光が到達する時間により測距対象物までの距離を演算する演算部3とから構成されている。上記受光部2には受光レンズ8が設けられている。レーザ測距装置本体6には表示部10が設けられており、レーザ測距部4で測距して演算した距離がデジタル表示のような表示で表示されるようになっている。
【0017】
物差し状測距器具5は物差しのように距離を測定するものであって、本例の場合、所謂コンベックスと称される巻尺5aで形成されており、この巻尺5aがレーザ測距装置本体6に組み込まれている。この巻尺5aは巻き戻すことで距離が計れるようになっているが、この巻尺5aで測定した距離はレーザ測距部4の演算部3に入力されるようになっている。例えば、巻尺5aの巻き出した長さを検出することで自動的に巻尺5aで測定した長さを演算部3に入力できるようになっている。この際、巻尺5aで測定した距離も表示部10で表示できるようになっていてもよい。この物差し状測距器具5としての巻尺5aで測定した距離を基準としてレーザで測定する距離を校正できるようになっており、演算部3にこの距離を校正する校正手段を備えている。
【0018】
レーザ測距部4で測定する距離を校正する場合、先ず、図3(a)のような差演算フローで測距値の差を演算し、次いで図3(b)のような測距値校正フローにてレーザの測距値を校正する。物差し状測距器具5としての巻尺5aを用いて図4(a)に示すように基準面11までの距離を測定し(測距値1)、レーザによる測距方式を用いて図4(b)に示すように基準面11までの距離を測定し(測距値2)、測距値1と測距値2との差Dを算出する(差D=測距値1−測距値2)。このように前処理として図3(a)のような差演算フローを実行して差Dを算出した後、次のように図3(b)のような測距値校正フローにてレーザの測距値を校正する。レーザ測距方式を用いて距離を測距し(測距値A)し、上記差Dを測距値Aに加算して測距値A′に校正する。
【0019】
上記のように巻尺5aにて測定する実際の距離とレーザ測距部4で測定する距離との差を比較してレーザ測距部4で測定する測距値を校正することができる。このとき巻尺5aにて校正するときの基準距離を設定するために従来の校正のための専用の基準距離設定具に比べて構造が簡単で且つ取り扱いが容易にできる。また巻尺5a自体を使って距離の測定も行うことができる。また物差し状測距器具5として巻尺5aはコンパクトで本体構造を大きくすることなく校正機能を持たせることができ、携帯性を向上できる。
【0020】
また上記のようにして測距値を校正できるようになっていると、図5(a)(b)に示すようにレーザ測距装置本体6から基準面11までの基準距離をL1、L2と任意の距離にしても校正を行うことができる。このように任意に基準距離を設定して校正作業を行うことができると、作業空間の広さに依存しないで校正作業を行うことができる。
【0021】
図6は他の例を示すものである。本例の場合、物差し状測距器具5としてスケール5bを用いている。図6(c)(d)のようにレーザ測距装置本体6の下面側に差し込み溝12を設けると共に差し込み溝12にバネ13を内装して保持部を形成してあり、図6(a)(b)のようにスケール5bの一端を差し込み溝12に差し込んでバネ13にて保持してあり、スケール5bが抜き差しで着脱できるように着脱自在に装着してある。
【0022】
上記のように構成せるレーザ測距装置はスケール5bをレーザ測距装置本体6に装着すると、スケール5bの長さを基準距離して上記例と同様に測距値を校正することができる。スケール5bが必要でないとき(校正しないとき)には簡単に取り外すことができ、軽量化できて携帯性を向上できる。またスケール5b自体を用いて寸法を計測することもできる。
【0023】
図7は他の例を示すものである。本例の場合、物差し状測距器具5として所謂コンベックスと称される巻尺5aを用いており、この巻尺5aをレーザ測距装置本体6に着脱自在に取り付けてある。この場合、巻尺5aを装着すると、上記例と同様に測距値を校正することができ、また物差し状測距器具5としての巻尺5aが必要でないときは取り外すことで軽量化が図れ、携帯性を向上できる。
【0024】
図8は他の例を示すものである。本例の場合、物差し状測距器具5としての巻尺5aが360°回転可能になるようにレーザ測距装置本体6に装着してあり、90°毎に角度を設定して固定可能にされている。このようにしてあると例えばレーザ測距部4を用いて矢印αのように第1の測定面15aまでの距離を測定すると共に巻尺5aで矢印βのように第2の測定面15bまでの距離を測定することができる。レーザ測距部4と巻尺5aとの両方を用いて測距することにより直角の位置関係にある測定面を測定できる。また1つの装置で2点の距離を同時に測定することができる。
【0025】
また図9は他の例を示すものである。本例の場合、レーザ測距部4で測距する方向と同じ方向を向けて巻尺5aを固定できる以外に、レーザ測距部4で測距する向きと180°反対の向きに巻尺5aを向けて固定できる構造になっている。レーザ測距部4で測距する方向と同じ方向に巻尺5aを向けて固定した状態では上記例と同様にレーザによる測距値を校正できる。またレーザ測距部4で測距する向きと180°反対の向きに巻尺5aを向けて固定すると、レーザ測距部4で矢印αのように第1の測定面15aまでの距離γを測定し、巻尺5aで矢印βのように第1の測定面15aと対向する第2の測定面15bまでの距離δを測定することができ、これにより第1、第2の測定面15a,15b間の距離ε(測定面間距離ε=距離γ+距離δ+巻尺本体長さη)を測定することができる。これにより2つの測定面間の任意の位置から、これらの測定面間の距離を測定することができる。1つの装置で2点間の距離を測定することができる。
【0026】
図10は他の例を示すものである。本例の場合、巻尺5aのような物差し状測距器具5をレーザ測距部4のレーザ光出射方向と同じ向きを向けたときだけ校正作業を行うことが可能となる切り替え制御手段を有する。図10に示すように物差し状測距器具5の取り付け位置角度が0度(物差し状測距器具5の測距向きとレーザ測距部4の測距向きが同じ)か否かを判定すると共に物差し状測距器具5が使用状態か否かを判定し、両者がYESなら校正処理をし、それ以外のときは測距処理をするように切り替えることができるようになっている。このようになっていると、校正作業と測距作業の切り替えが単純な切り替え構造で実現できると共に校正作業と測距作業とを明確に分離した使用ができる。
【0027】
図11は他の例を示すものである。本例の場合、物差し状測距器具5は巻尺5aであり、巻尺5aの先端にレーザが当る基準面となる板7が設けてある。この板7は図11(a)のように水平に倒した状態から図11(b)のように垂直に立てるとレーザ測距部4からのレーザ光が垂直に当り、この状態でレーザの測距値を校正することができる。また図11(b)のように板7を垂直に立てた状態から図11(c)に示すようにレーザ光の方向と平行な向きに向けることができ、校正途中でもレーザ光を測定面に照射した測距作業ができるようになっている。このようにすると、校正するときの基準面の有無や基準面までの距離に影響されずに校正作業を行うことができる。また校正作業状態を保持した状態、測距作業中に一時的に校正作業を実行した状態からでも板7にレーザ光が当らないように位置変更することで測距作業を連続的に行うことができるので、作業効率が向上する。
【0028】
図12は他の例を示す。上記例のように垂直に立てたときレーザ光が当る板7が反射板7aで形成されている。拡散面を持つ反射板7aで形成されていると、投光部1から照射したレーザ光を確実に反射板7aにて反射して受光部2に受光されることで測距でき、レーザが照射される面の形状、色、材質に依存せずに校正作業を行うことができる。
【0029】
図13は他の例を示す。受光レンズ8には受光レンズ8を保護するためレンズカバー9が図13(a)に示すように着脱自在に装着されているが、このレンズカバー9の内面に反射面を備えている。このレンズカバー9は取り外したとき、レンズカバー9を図13(b)のように巻尺5aの先端に配置または取り付けしたり、測定面に配置したりできるようになっている。このようにすると、通常時にレンズカバー9をレンズ保護用のカバーとして取り付けていることで携帯性の妨げにもならず、校正作業時にはレンズカバー9の反射面を基準面として使用でき、測距作業時にはレンズカバー9の反射面を測定面として使用できるため、作業性と携帯性を向上できる。また測距作業時にレンズカバー9の反射面を測定面とすることで測定面の形状、色、材質に依存しない正確な測距作業ができる。
【0030】
【発明の効果】
本発明の請求項1の発明は、レーザ測距装置本体に、測距対象物へレーザ光を照射する投光部と、測距対象物からの反射光を受光する受光部と、投光部から受光部にレーザ光が到達する時間により測距対象物までの距離を算出する演算部とから構成されるレーザ測距部を備えて成るレーザ測距装置において、物差しのようにして距離を測定し得る物差し状測距器具をレーザ測距装置本体に着脱自在に装着し、物差し状測距器具により測定される一定距離とレーザ測距部で実測した距離との差を算出すると共にその差によりレーザ測距部の測距値を校正する手段を演算部に備えたので、物差し状測距器具にて測定する実際の距離とレーザ測距部で測定する距離との差を比較してレーザ測距部で測定する測距値を校正することができるものであって、このとき物差し状の測距器具にて校正するときの基準距離を設定するために従来の校正のための専用の基準距離設定具に比べて構造が簡単で且つ取り扱いが容易にできるものであり、また物差し状測距器具を使って物差しのように距離の測定も行うことができるものである。また、物差し状測距器具がレーザ測距装置本体に着脱自在に装着されたので、物差し状測距器具が必要ないときは取り外すことで軽量化が図れ、携帯性を向上できる。
【0031】
加えて、本発明の請求項1の発明は、物差し状測距器具の測距向きとレーザ測距部の測距向きが同じか否かを判定すると共に物差し状測距器具が使用状態か否かを判定し、両者の判定がイエスとなる場合にだけ校正作業を行い、それ以外の場合には測距作業を行う切り替え制御手段を有するので、校正作業と測距作業の切り替えが単純な切り替え構造で実現できると共に校正作業と測距作業とを明確に分離した使用ができるものである。
【0032】
また本発明の請求項2の発明は、請求項1において、物差し状測距器具は巻尺であるので、巻尺はコンパクトで本体構造を大きくすることなく校正機能を持たせることができ、携帯性を向上できるものである。
【0033】
また本発明の請求項3の発明は、請求項1において、物差し状測距器具はスケールであり、レーザ測距装置本体にスケールの一端を差し込んでスケールを保持する手段を具備したので、スケールが必要でないときには簡単に取り外すことができ、軽量化できて携帯性を向上できるものである
【0034】
また本発明の請求項の発明は、請求項1〜3のいずれか一項において、物差し状測距器具が90°毎に角度を設定して固定可能にされたので、レーザ測距部と物差し状測距器具との両方を用いて測距することにより直角の位置関係にある測定面を測定できるものであり、また1つの装置で2点の距離を同時に測定することができるものである。
【0035】
また本発明の請求項の発明は、1〜3のいずれか一項において、レーザ測距部で測距する向きと180°反対の向きに物差し状測距器具を向けて固定できる構造にされたので、2つの測定面間の任意の位置から、これらの測定面間の距離を測定することができるものであり、また1つの装置で2点間の距離を測定することができるものである
【0036】
また本発明の請求項の発明は、請求項1〜5のいずれか一項において、レーザ測距部からのレーザ光が垂直に当る板をレーザ光が当る位置とレーザ光が当らない位置とに位置変更可能なように物差し状測距器具に設けたので、物差し状測距器具に設けた板にレーザ光を当てて反射させることによりレーザの測距値の校正ができ、校正するときの基準面の有無や基準面までの距離に影響されずに校正作業を行うことができるものであり、また校正作業状態を保持した状態、測距作業中に一時的に校正作業を実行した状態からでも板にレーザ光が当らないように位置変更することで測距作業を連続的に行うことができるので、作業効率が向上するものである。
【0037】
また本発明の請求項の発明は、請求項において、上記レーザ光が当る板が反射板であるので、投光部から照射したレーザ光を確実に反射して受光部に受光することで測距でき、レーザが照射される面の形状、色、材質に依存せずに校正作業を行うことができるものである。
【0038】
また本発明の請求項の発明は、請求項において、受光レンズに着脱自在に装着し得るレンズカバーに反射面を備え、このレンズカバーがレーザ光の当る板になっているので、通常時にレンズカバーをレンズ保護用のカバーとして取り付けていることで携帯性の妨げにもならず、校正作業時にはレンズカバーの反射面を基準面として使用でき、測距作業時にはレンズカバーの反射面を測定面として使用できるため、作業性を携帯性を向上できるものであり、また測距作業時にレンズカバーの反射面を測定面とすることで測定面の形状、色、材質に依存しない正確な測距作業ができるものである。
【図面の簡単な説明】
【図1】 本発明の一例のレーザ測距装置を示す斜視図である。
【図2】 同上の構造を示すブロック図である。
【図3】 (a)(b)は同上の動作を説明するフローチャートである。
【図4】 (a)(b)は同上の校正作業を説明する斜視図である。
【図5】 (a)(b)は同上の校正作業を説明する斜視図である。
【図6】 同上の他の例を示し、(a)はスケールを取り付けた状態の斜視図、(b)は要部の断面図、(c)はスケールを取り外した状態の斜視図、(d)は(c)の要部の断面図である。
【図7】 同上の他の例を説明する斜視図である。
【図8】 同上の他の例を説明する説明図である。
【図9】 同上の他の例を説明する説明図である。
【図10】 同上の他の例を説明するフローチャートである。
【図11】 (a)(b)(c)は同上の他の例を説明する説明図である。
【図12】 同上の他の例を説明する斜視図である。
【図13】 (a)(b)は同上の他の例の説明する斜視図である。
【図14】 従来例を説明する説明図である。
【符号の説明】
1 投光部
2 受光部
3 演算部
4 レーザ測距部
5 物差し状測距器具
5a 巻尺
5b スケール
6 レーザ測距装置本体
7 板
8 受光レンズ
9 レンズカバー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser distance measuring device that calculates a distance to a distance measuring object by irradiating the distance measuring object with a laser, and more particularly to a laser distance measuring device having a function of calibrating a distance measured by a laser. Is.
[0002]
[Prior art]
Conventionally, a reference having a pair of plane mirrors a arranged in parallel so as to face each other as shown in FIG. 14 and a reference detection object b arranged near one end of the pair of plane mirrors a. Some have a distance setting tool c and have a function of calibrating the distance measured by the laser (see, for example, Patent Document 1).
[0003]
In this laser distance measuring device d, the laser distance from the laser distance measuring device d is applied to the reference detection object b with the reference distance setting tool c attached, and the distance measured by the laser and the distance set by the reference distance setting tool c. And the distance measured by the laser is correctly calibrated.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-271448
[Problems to be solved by the invention]
However, in the above-described conventional example, a reference distance setting tool c for setting the reference distance must be provided in order to calibrate the distance measured by the laser. Since the distance setting tool c gets in the way, there is a problem that it is difficult to handle because it has to be removed. The reference distance setting tool c has only a function of setting a reference distance when calibrating.
[0006]
The present invention has been made in view of the above points, and it is possible to calibrate the distance measured with a laser with a simple structure of providing a ruler-like distance measuring instrument and to be easy to handle. It is an object of the present invention to provide a laser distance measuring device that can be used for purposes other than calibration and that can be conveniently measured.
[0007]
[Means for Solving the Problems]
The laser distance measuring apparatus of the present invention for solving the above problems, the laser distance measuring apparatus body 6, receiving the light projecting unit 1 is irradiated with a laser beam, the reflected light from the measuring object to the range-finding object lasers and the light receiving section 2, and includes a formed laser distance measuring unit 4 from the arithmetic unit 3 which laser light to the light receiving portion 2 from the light projecting unit 1 calculates the distance to the object by the time it reaches the In the distance measuring device, a ruled distance measuring instrument 5 capable of measuring a distance like a ruler is detachably attached to the laser distance measuring apparatus main body 6, and a fixed distance measured by the ruled distance measuring instrument 5 and laser measurement are measured. Rutotomoni comprising means for calibrating the distance measurement value of the laser distance measuring unit 4 by the difference to calculate the difference between the distances measured by距部4 to the arithmetic unit 3, a distance measuring direction of the ruler-shaped distance measuring instrument 5 Determines whether the distance measuring direction of the laser distance measuring unit 4 is the same and measures Ranging device 5 determines whether the usage state, only do calibration work when both the determination is YES, in other cases, characterized in that it has a switching control means for performing distance measurement work .
[0008]
By using the laser distance measuring device having the above configuration, the laser distance measuring unit 4 compares the difference between the actual distance measured by the ruled distance measuring instrument 5 and the distance measured by the laser distance measuring unit 4 and measures the distance. Ranging value can be calibrated. At this time, in order to set the reference distance when calibrating with the ruled distance measuring instrument 5, the structure is simple and the handling can be facilitated as compared with the conventional reference distance setting tool for calibration. Further, the distance can be measured like a ruler using the ruled distance measuring instrument 5. In addition, when the measuring instrument 5 is not necessary, it can be reduced in weight and improved in portability, and the switching control means realizes a simple switching structure between the calibration work and the distance measuring work. In addition, the calibration work and the distance measurement work can be used clearly separated.
[0009]
It is also preferable that the ruled distance measuring instrument 5 is a tape measure 5a. The tape measure 5a as the ruled distance measuring instrument 5 is compact and can have a calibration function without increasing the structure of the main body, thereby improving portability.
[0010]
The ruled distance measuring instrument 5 is a scale 5b, and it is preferable that the laser distance measuring device main body 6 is provided with means for inserting one end of the scale 5b and holding the scale 5b. When the scale 5b is not necessary, it can be easily removed, the weight can be reduced, and portability can be improved .
[0011]
It is also preferable that the ruled distance measuring instrument 5 is configured to be fixed by setting an angle every 90 °. By measuring the distance using both the laser distance measuring unit 4 and the ruled distance measuring instrument 5, it is possible to measure a measurement surface having a right-angle positional relationship. Moreover, the distance of two points can be measured simultaneously with one apparatus.
[0012]
Further, it is also preferable that the structure is such that the ruled distance measuring instrument 5 can be fixed in a direction opposite to the direction in which the distance is measured by the laser distance measuring unit 4 by 180 °. The distance between these measurement surfaces can be measured from any position between the two measurement surfaces. The distance between two points can be measured with one device .
[0013]
Further, the plate-type distance measuring instrument 5 is provided such that the plate 7 on which the laser light from the laser distance measuring unit 4 hits vertically can be changed between a position where the laser light hits and a position where the laser light does not hit. It is also preferable to do. The distance measurement value of the laser can be calibrated by irradiating and reflecting the laser beam on the plate 7 provided on the ruled distance measuring instrument 5 without being affected by the presence or absence of the reference surface and the distance to the reference surface when calibrating. Calibration work can be performed. Further, even if the calibration work state is maintained or the calibration work is temporarily performed during the distance measurement work, the distance measurement work can be continuously performed by changing the position so that the laser beam does not hit the plate 7. This improves work efficiency.
[0014]
It is also preferable that the plate 7 to which the laser beam hits is a reflecting plate. The distance can be measured by reliably reflecting the laser beam irradiated from the light projecting unit 1 and receiving it on the light receiving unit 2, and the calibration work can be performed without depending on the shape, color, and material of the surface irradiated with the laser. it can.
[0015]
It is also preferable that a lens cover 9 that can be detachably attached to the light receiving lens 8 is provided with a reflecting surface, and the lens cover 9 is a plate on which the laser light strikes. Since the lens cover 9 is attached as a lens protection cover during normal operation, portability is not hindered, the reflection surface of the lens cover 9 can be used as a reference surface during calibration work, and the lens cover 9 can be used during distance measurement work. Since the reflective surface can be used as a measurement surface, workability and portability can be improved. In addition, by using the reflecting surface of the lens cover 9 as a measurement surface during distance measurement work, accurate distance measurement work independent of the shape, color, and material of the measurement surface can be performed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1 and FIG. 2, the laser distance measuring device of the present invention measures the distance by the laser distance measuring unit 4 by incorporating the ruled distance measuring instrument 5 into the laser distance measuring device main body 6 having the laser distance measuring unit 4. A function to calibrate the distance measurement value is provided. The laser distance measuring unit 4 calculates the distance to the object by irradiating the object to be measured with the laser beam, and includes one light projecting unit 1 that irradiates the distance measuring object with the laser beam, It is composed of one light receiving unit 2 that receives reflected light from an object, and a calculation unit 3 that calculates the distance to the distance measuring object according to the time that the laser light reaches the light receiving unit 2 from the light projecting unit 1. Yes. The light receiving unit 2 is provided with a light receiving lens 8. The laser distance measuring device main body 6 is provided with a display unit 10 so that the distance measured by the laser distance measuring unit 4 and calculated is displayed in a display such as a digital display.
[0017]
The ruled distance measuring instrument 5 measures a distance like a ruler. In this example, the ruled distance measuring instrument 5 is formed by a tape measure 5a called a convex, and this tape measure 5a is attached to the laser distance measuring device main body 6. It has been incorporated. The tape measure 5 a can be measured by rewinding, but the distance measured by the tape measure 5 a is input to the calculation unit 3 of the laser distance measuring unit 4. For example, the length measured by the tape measure 5a can be automatically input to the calculation unit 3 by detecting the unwinded length of the tape measure 5a. At this time, the distance measured with the tape measure 5 a may be displayed on the display unit 10. The distance measured by the laser can be calibrated on the basis of the distance measured by the tape measure 5a as the ruled distance measuring instrument 5, and the arithmetic unit 3 is provided with a calibration means for calibrating the distance.
[0018]
When the distance measured by the laser distance measuring unit 4 is calibrated, first, the difference between the distance values is calculated according to the difference calculation flow as shown in FIG. 3A, and then the distance value is corrected as shown in FIG. Calibrate the laser ranging value with the flow. As shown in FIG. 4A, the distance to the reference surface 11 is measured using a tape measure 5a as a ruled distance measuring instrument 5 (ranging value 1), and a distance measuring method using a laser is used. ), The distance to the reference plane 11 is measured (distance value 2), and the difference D between the distance value 1 and the distance value 2 is calculated (difference D = distance value 1−distance value 2). ). As described above, after the difference calculation flow as shown in FIG. 3A is executed as the pre-processing to calculate the difference D, the laser measurement is performed in the distance value calibration flow as shown in FIG. 3B as follows. Calibrate the distance value. The distance is measured using a laser distance measurement method (range value A), and the difference D is added to the range value A and calibrated to the range value A ′.
[0019]
As described above, the distance measured by the laser distance measuring unit 4 can be calibrated by comparing the difference between the actual distance measured by the tape measure 5 a and the distance measured by the laser distance measuring unit 4. At this time, in order to set the reference distance when calibrating with the tape measure 5a, the structure is simple and the handling is easy as compared with the conventional reference distance setting tool for calibration. The distance can also be measured using the tape measure 5a itself. Further, the tape measure 5a as the ruled distance measuring instrument 5 is compact and can have a calibration function without increasing the main body structure, thereby improving portability.
[0020]
If the distance measurement value can be calibrated as described above, the reference distances from the laser distance measuring device body 6 to the reference surface 11 are set to L1 and L2, as shown in FIGS. Calibration can be performed at any distance. If the calibration work can be performed by arbitrarily setting the reference distance as described above, the calibration work can be performed without depending on the size of the work space.
[0021]
FIG. 6 shows another example. In the case of this example, a scale 5 b is used as the ruled distance measuring instrument 5. As shown in FIGS. 6C and 6D, the insertion groove 12 is provided on the lower surface side of the laser distance measuring device main body 6 and a spring 13 is provided in the insertion groove 12 to form a holding portion. As shown in (b), one end of the scale 5b is inserted into the insertion groove 12 and held by a spring 13, and the scale 5b is detachably attached so that it can be attached and detached by insertion and removal.
[0022]
When the scale 5b is mounted on the laser range finder main body 6, the laser range finder configured as described above can calibrate the range finder value in the same manner as in the above example using the length of the scale 5b as a reference distance. When the scale 5b is not necessary (when it is not calibrated), it can be easily removed, the weight can be reduced, and portability can be improved. The dimensions can also be measured using the scale 5b itself.
[0023]
FIG. 7 shows another example. In the case of this example, a tape measure 5a called a convex is used as the ruled distance measuring instrument 5, and this tape measure 5a is detachably attached to the laser distance measuring device main body 6. In this case, when the tape measure 5a is attached, the distance measurement value can be calibrated in the same manner as in the above example, and when the tape measure 5a as the ruled distance measuring instrument 5 is not necessary, the weight can be reduced by removing it. Can be improved.
[0024]
FIG. 8 shows another example. In the case of this example, the tape measure 5a as the ruled distance measuring instrument 5 is attached to the laser distance measuring device main body 6 so that it can rotate 360 °, and the angle can be set and fixed every 90 °. Yes. In this manner, for example, the distance to the first measurement surface 15a is measured using the laser distance measuring unit 4 as indicated by the arrow α, and the distance to the second measurement surface 15b is indicated using the tape measure 5a as indicated by the arrow β. Can be measured. By measuring the distance using both the laser distance measuring unit 4 and the tape measure 5a, it is possible to measure a measurement surface having a perpendicular positional relationship. Moreover, the distance of two points can be measured simultaneously with one apparatus.
[0025]
FIG. 9 shows another example. In the case of this example, in addition to fixing the tape measure 5a in the same direction as the direction of distance measurement by the laser distance measurement unit 4, the tape measure 5a is oriented 180 ° opposite to the direction of distance measurement by the laser distance measurement unit 4. Can be fixed. In a state where the tape measure 5a is fixed in the same direction as the direction of distance measurement by the laser distance measuring unit 4, the distance value measured by the laser can be calibrated as in the above example. Further, when the tape measure 5a is fixed in a direction 180 ° opposite to the direction in which the laser distance measurement unit 4 measures the distance, the laser distance measurement unit 4 measures the distance γ to the first measurement surface 15a as indicated by the arrow α. The distance δ to the second measurement surface 15b facing the first measurement surface 15a can be measured with the tape measure 5a as shown by the arrow β, and thereby the distance between the first and second measurement surfaces 15a and 15b can be measured. The distance ε (measurement surface distance ε = distance γ + distance δ + tape body length η) can be measured. Thereby, the distance between these measurement surfaces can be measured from an arbitrary position between the two measurement surfaces. The distance between two points can be measured with one device.
[0026]
FIG. 10 shows another example. In the case of this example, there is a switching control means that enables calibration work only when the ruled distance measuring instrument 5 such as the tape measure 5a is oriented in the same direction as the laser light emitting direction of the laser distance measuring unit 4. As shown in FIG. 10, it is determined whether the attachment position angle of the ruled distance measuring instrument 5 is 0 degrees (the distance measuring direction of the ruled distance measuring instrument 5 is the same as the distance measuring direction of the laser distance measuring unit 4). It is possible to determine whether or not the ruled distance measuring instrument 5 is in use, and if both are YES, the calibration process is performed, and otherwise, the distance measurement process can be switched. With this configuration, the calibration work and the distance measurement work can be switched with a simple switching structure, and the calibration work and the distance measurement work can be used in a clearly separated manner.
[0027]
FIG. 11 shows another example. In the case of this example, the ruled distance measuring instrument 5 is a tape measure 5a, and a plate 7 is provided as a reference surface on which the laser strikes the tip of the tape measure 5a. When the plate 7 is tilted horizontally as shown in FIG. 11 (a), when standing upright as shown in FIG. 11 (b), the laser beam from the laser distance measuring unit 4 hits vertically, and in this state, laser measurement is performed. The distance value can be calibrated. Further, from the state where the plate 7 is set up vertically as shown in FIG. 11B, it can be directed parallel to the direction of the laser beam as shown in FIG. 11C. The irradiated distance measurement work can be performed. In this way, the calibration operation can be performed without being affected by the presence or absence of the reference surface and the distance to the reference surface when calibrating. Further, even if the calibration work state is maintained or the calibration work is temporarily performed during the distance measurement work, the distance measurement work can be continuously performed by changing the position so that the laser beam does not hit the plate 7. This improves work efficiency.
[0028]
FIG. 12 shows another example. As in the above example, the plate 7 on which the laser beam hits when standing upright is formed by the reflecting plate 7a. When formed by the reflecting plate 7a having a diffusing surface, the laser beam emitted from the light projecting unit 1 can be reliably reflected by the reflecting plate 7a and received by the light receiving unit 2, and the laser beam can be irradiated. The calibration work can be performed without depending on the shape, color, and material of the surface.
[0029]
FIG. 13 shows another example. A lens cover 9 is detachably attached to the light receiving lens 8 to protect the light receiving lens 8 as shown in FIG. 13A. The lens cover 9 has a reflecting surface on the inner surface. When the lens cover 9 is removed, the lens cover 9 can be disposed or attached to the tip of the tape measure 5a as shown in FIG. 13B, or can be disposed on the measurement surface. In this way, the lens cover 9 is normally attached as a lens protection cover so that portability is not hindered, and the reflection surface of the lens cover 9 can be used as a reference surface during calibration work. Sometimes the reflective surface of the lens cover 9 can be used as a measurement surface, so that workability and portability can be improved. In addition, by using the reflecting surface of the lens cover 9 as a measurement surface during distance measurement work, accurate distance measurement work independent of the shape, color, and material of the measurement surface can be performed.
[0030]
【The invention's effect】
According to the first aspect of the present invention, a laser distance measuring device main body includes a light projecting unit that irradiates a distance measuring object with laser light, a light receiving unit that receives reflected light from the distance measuring object, and a light projecting unit. In a laser distance measuring device comprising a laser distance measuring unit composed of a calculation unit that calculates the distance to a distance measuring object according to the time at which the laser beam reaches the light receiving unit, the distance is measured like a ruler. A removable measuring instrument is removably attached to the laser measuring instrument body, and the difference between the fixed distance measured by the measuring instrument and the distance actually measured by the laser measuring unit is calculated and the difference is calculated. Since the calculation unit is equipped with a means for calibrating the distance measurement value of the laser distance measurement unit, the difference between the actual distance measured by the ruled distance measuring instrument and the distance measured by the laser distance measurement unit is compared and laser measurement is performed. The distance measurement value measured at the distance section can be calibrated. At this time, in order to set the reference distance when calibrating with a ruled distance measuring instrument, the structure is simpler and easier to handle than the dedicated reference distance setting tool for conventional calibration. In addition, the distance can be measured like a ruler using a ruled distance measuring instrument. Further, since the ruled distance measuring instrument is detachably attached to the laser distance measuring device main body, when the ruled distance measuring instrument is not necessary, the weight can be reduced by removing it and the portability can be improved.
[0031]
In addition, the invention of claim 1 of the present invention determines whether or not the distance measuring direction of the ruled distance measuring instrument and the distance measuring direction of the laser distance measuring unit are the same, and whether or not the ruled distance measuring instrument is in use. Since there is a switching control means that performs calibration work only when both judgments are YES, and otherwise performs ranging work, switching between calibration work and ranging work is simple switching The structure can be realized and the calibration work and the distance measurement work can be used in a clearly separated manner.
[0032]
Further, the invention of claim 2 of the present invention is that, since the ruled distance measuring instrument is a tape measure in claim 1, the tape measure is compact and can have a calibration function without increasing the structure of the main body, and is portable. It can be improved.
[0033]
According to a third aspect of the present invention, in the first aspect, the ruled distance measuring instrument is a scale, and includes means for holding the scale by inserting one end of the scale into the laser distance measuring device main body. When it is not necessary, it can be easily removed, it can be reduced in weight, and portability can be improved .
[0034]
According to a fourth aspect of the present invention, in any one of the first to third aspects, the ruled distance measuring instrument is configured to be fixed by setting an angle every 90 °. It is possible to measure a measurement surface in a right-angled positional relationship by measuring with both a ruled distance measuring instrument and to measure the distance of two points simultaneously with one device. .
[0035]
Further, the invention of claim 5 of the present invention is the structure according to any one of 1 to 3, wherein the ruled distance measuring instrument can be fixed in a direction 180 ° opposite to the direction in which the distance is measured by the laser distance measuring unit. Therefore, the distance between these measurement surfaces can be measured from any position between the two measurement surfaces, and the distance between two points can be measured with one device. .
[0036]
Further, the invention of claim 6 of the present invention is that, in any one of claims 1 to 5, a plate on which the laser beam from the laser distance measuring unit vertically hits a position where the laser beam hits and a position where the laser beam does not hit Because it is provided in the ruled range finder so that the position can be changed, the laser distance value can be calibrated by reflecting the laser beam on the plate provided in the ruled range finder. The calibration work can be performed without being affected by the presence or absence of the reference surface and the distance to the reference surface, and the calibration work state is maintained and the calibration work is temporarily executed during the distance measurement work. However, since the distance measuring operation can be continuously performed by changing the position so that the laser beam does not hit the plate, the working efficiency is improved.
[0037]
According to a seventh aspect of the present invention, in the sixth aspect , the plate to which the laser beam strikes is a reflection plate, so that the laser beam irradiated from the light projecting unit is reliably reflected and received by the light receiving unit. The distance can be measured and the calibration work can be performed without depending on the shape, color, and material of the surface irradiated with the laser.
[0038]
According to an eighth aspect of the present invention, in the sixth aspect, the lens cover that can be detachably attached to the light-receiving lens is provided with a reflecting surface, and the lens cover is a plate on which the laser beam strikes. Since the lens cover is attached as a lens protection cover, it does not hinder portability, the reflection surface of the lens cover can be used as a reference surface during calibration work, and the reflection surface of the lens cover is used as a measurement surface during distance measurement work. As a result, it is possible to improve workability and portability, and by using the reflective surface of the lens cover as the measurement surface during distance measurement work, accurate distance measurement work that does not depend on the shape, color, or material of the measurement surface It is something that can be done.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a laser range finder according to an example of the present invention.
FIG. 2 is a block diagram showing the structure of the above.
FIGS. 3A and 3B are flowcharts for explaining the operation described above.
FIGS. 4A and 4B are perspective views for explaining the calibration work described above.
FIGS. 5A and 5B are perspective views for explaining the calibration work according to the embodiment.
6 shows another example of the above, (a) is a perspective view with a scale attached, (b) is a cross-sectional view of the main part, (c) is a perspective view with a scale removed, (d) ) Is a cross-sectional view of the main part of (c).
FIG. 7 is a perspective view for explaining another example of the above.
FIG. 8 is an explanatory diagram for explaining another example of the above.
FIG. 9 is an explanatory diagram for explaining another example of the above.
FIG. 10 is a flowchart illustrating another example of the above.
FIGS. 11A, 11B, and 11C are explanatory diagrams for explaining another example of the above. FIGS.
FIG. 12 is a perspective view for explaining another example of the above.
FIGS. 13A and 13B are perspective views illustrating another example of the same.
FIG. 14 is an explanatory diagram for explaining a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light projection part 2 Light reception part 3 Calculation part 4 Laser distance measurement part 5 Ruler-like distance measuring instrument 5a Tape measure 5b Scale 6 Laser distance measuring device main body 7 Plate 8 Light reception lens 9 Lens cover

Claims (8)

レーザ測距装置本体に、測距対象物へレーザ光を照射する投光部と、測距対象物からの反射光を受光する受光部と、投光部から受光部にレーザ光が到達する時間により測距対象物までの距離を算出する演算部とから構成されるレーザ測距部を備えて成るレーザ測距装置において、物差しのようにして距離を測定し得る物差し状測距器具をレーザ測距装置本体に着脱自在に装着し、物差し状測距器具により測定される一定距離とレーザ測距部で実測した距離との差を算出すると共にその差によりレーザ測距部の測距値を校正する手段を演算部に備えるとともに、物差し状測距器具の測距向きとレーザ測距部の測距向きが同じか否かを判定すると共に物差し状測距器具が使用状態か否かを判定し、両者の判定がイエスとなる場合にだけ校正作業を行い、それ以外の場合には測距作業を行う切り替え制御手段を有することを特徴とするレーザ測距装置。 A light projecting unit that irradiates a laser beam to a distance measuring object, a light receiving unit that receives reflected light from the distance measuring object, and a time for the laser light to reach the light receiving unit from the light projecting unit In a laser range finder comprising a laser range finder configured to calculate a distance to an object to be measured by a laser, a measure finder that can measure the distance like a yardstick is measured by laser measurement. Attached to the distance measuring device detachably , calculates the difference between the fixed distance measured by the ruled distance measuring instrument and the distance actually measured by the laser distance measuring unit, and calibrates the distance measured value of the laser distance measuring unit based on the difference determining Rutotomoni, whether ruler shaped distance measuring instrument or the use state with the distance measuring direction a distance measuring direction of the laser distance measuring unit of the ruler-shaped distance measuring instrument to determine whether the same comprises a means for calculating portion Only if the judgment is yes. There, a laser distance measuring apparatus characterized by having a switching control means for performing ranging operations otherwise. 物差し状測距器具は巻尺であることを特徴とする請求項1記載のレーザ測距装置。  2. The laser distance measuring device according to claim 1, wherein the ruled distance measuring instrument is a tape measure. 物差し状測距器具はスケールであり、レーザ測距装置本体にスケールの一端を差し込んでスケールを保持する手段を具備したことを特徴とする請求項1記載のレーザ測距装置。  2. The laser distance measuring device according to claim 1, wherein the ruled distance measuring instrument is a scale, and includes means for holding the scale by inserting one end of the scale into the laser distance measuring device main body. 物差し状測距器具が90°毎に角度を設定して固定可能にされたことを特徴とする請求項1〜3のいずれか一項記載のレーザ測距装置。The laser distance measuring device according to any one of claims 1 to 3, wherein the ruled distance measuring instrument is fixed by setting an angle every 90 °. レーザ測距部で測距する向きと180°反対の向きに物差し状測距器具を向けて固定できる構造にされたことを特徴とする請求項1〜3のいずれか一項記載のレーザ測距装置。The laser distance measuring device according to any one of claims 1 to 3, wherein the laser distance measuring device has a structure in which the ruled distance measuring device can be fixed in a direction opposite to the direction measured by the laser distance measuring unit by 180 °. apparatus. レーザ測距部からのレーザ光が垂直に当る板をレーザ光が当る位置とレーザ光が当らない位置とに位置変更可能なように物差し状測距器具に設けたことを特徴とする請求項1〜5のいずれか一項記載のレーザ測距装置。2. A ruled distance measuring instrument according to claim 1, wherein a plate on which the laser beam from the laser distance measuring unit hits vertically is provided in the ruled distance measuring instrument so that the position of the plate can be changed between a position where the laser beam hits and a position where the laser beam does not hit. The laser range finder as described in any one of -5. 上記レーザ光が当る板が反射板であることを特徴とする請求項6記載のレーザ測距装置。7. The laser distance measuring device according to claim 6, wherein the plate to which the laser beam hits is a reflecting plate. 受光レンズに着脱自在に装着し得るレンズカバーに反射面を備え、このレンズカバーが上記レーザ光の当る板になっていることを特徴とする請求項6記載のレーザ測距装置。7. The laser distance measuring device according to claim 6, wherein a lens cover that can be detachably attached to the light receiving lens is provided with a reflecting surface, and the lens cover is a plate on which the laser light strikes.
JP2003019476A 2003-01-28 2003-01-28 Laser distance measuring device Expired - Fee Related JP3956856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019476A JP3956856B2 (en) 2003-01-28 2003-01-28 Laser distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019476A JP3956856B2 (en) 2003-01-28 2003-01-28 Laser distance measuring device

Publications (2)

Publication Number Publication Date
JP2004233106A JP2004233106A (en) 2004-08-19
JP3956856B2 true JP3956856B2 (en) 2007-08-08

Family

ID=32949321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019476A Expired - Fee Related JP3956856B2 (en) 2003-01-28 2003-01-28 Laser distance measuring device

Country Status (1)

Country Link
JP (1) JP3956856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106461365A (en) * 2015-03-17 2017-02-22 贝果实验室有限公司 Length measuring device and length measuring system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320790A1 (en) * 2003-05-09 2004-12-02 Hilti Ag Electro-optical distance measuring device
KR100750897B1 (en) * 2006-09-26 2007-08-22 삼성중공업 주식회사 Dimension measurement system and rescale method using indoor global positioning system
DE102008042440A1 (en) * 2008-09-29 2010-04-01 Robert Bosch Gmbh Device for measuring length and adapter for receiving a device for measuring length
WO2018076178A1 (en) * 2016-10-25 2018-05-03 杭州巨星工具有限公司 Distance measuring device
US11143494B2 (en) 2017-06-21 2021-10-12 Hangzhou Great Star Industrial Co., Ltd. Distance measuring device
JP7197081B2 (en) * 2017-06-21 2022-12-27 杭州巨星科技股▲ふん▼有限公司 distance measuring device
JP7139088B2 (en) * 2018-08-07 2022-09-20 東芝三菱電機産業システム株式会社 distance measuring device
JP7027010B2 (en) * 2018-08-07 2022-03-01 東芝三菱電機産業システム株式会社 Distance measuring device
JP2020060433A (en) * 2018-10-10 2020-04-16 ソニーセミコンダクタソリューションズ株式会社 Rane-finding system, calibration method, program and electronic instrument
CN109163637A (en) * 2018-11-01 2019-01-08 徐州市凯诺机械有限公司 A kind of building site ranging tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106461365A (en) * 2015-03-17 2017-02-22 贝果实验室有限公司 Length measuring device and length measuring system

Also Published As

Publication number Publication date
JP2004233106A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP3956856B2 (en) Laser distance measuring device
JP4842249B2 (en) Windowed retroreflector
TWI420081B (en) Distance measuring system and distance measuring method
ES2910957T3 (en) Measurement system and manufacturing method of a shaft with a hole
JP4419481B2 (en) Method and apparatus for measuring tire shape
JP4316643B2 (en) Shape measuring device and shape measuring method
JP4315327B2 (en) Laser distance measuring device and laser distance meter calibration method
US20190154445A1 (en) Method for Comparing a Received Beam Hitting a Laser Receiver with a Rotating Laser Beam
JP4339290B2 (en) Displacement measuring device
JP5828165B2 (en) Internal cavity cross-sectional shape measuring apparatus and internal air cross-sectional shape measuring method
JP2010249665A (en) Ground height measuring device of aerial cable
TW200819706A (en) Interferometer angle sensitivity calibration method
KR200403983Y1 (en) target for measurement pipe laying length
TWI738098B (en) Optical volume-measuring device
US20020024674A1 (en) Device and process for measuring the parallelism and aligned position of rollers
JP2005292037A (en) Angle measuring instrument
JP6967203B2 (en) Displacement measurement method, displacement measurement device, displacement observation method
JP3619851B2 (en) A method of improving the accuracy of a straight line meter using a laser beam.
JPH08122021A (en) Size measuring instrument
KR100637695B1 (en) Target for measurement pipe laying length
JP4568212B2 (en) Shape measuring device
US20030107728A1 (en) Non-contact hole depth gage
JP2004069446A (en) Thickness and gap measuring instrument
JPS6188105A (en) Instrument for measuring section of tunnel
KR102116618B1 (en) Inspection apparatus for surface of optic specimen and controlling method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees