JP3956834B2 - Blast furnace gas dust collection method - Google Patents

Blast furnace gas dust collection method Download PDF

Info

Publication number
JP3956834B2
JP3956834B2 JP2002314586A JP2002314586A JP3956834B2 JP 3956834 B2 JP3956834 B2 JP 3956834B2 JP 2002314586 A JP2002314586 A JP 2002314586A JP 2002314586 A JP2002314586 A JP 2002314586A JP 3956834 B2 JP3956834 B2 JP 3956834B2
Authority
JP
Japan
Prior art keywords
blast furnace
dust
gas
furnace gas
dust collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002314586A
Other languages
Japanese (ja)
Other versions
JP2004149831A (en
Inventor
望 西村
博文 西村
伸二 長谷川
廉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002314586A priority Critical patent/JP3956834B2/en
Publication of JP2004149831A publication Critical patent/JP2004149831A/en
Application granted granted Critical
Publication of JP3956834B2 publication Critical patent/JP3956834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Particles Using Liquids (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉ガスの集塵方法に係わり、詳しくは、高炉からの排ガスに含まれるダストを、乾式集塵装置であるバグ・フィルタ及び湿式集塵機であるベンチュリ・スクラバを交互に切り替えて回収する技術に関する。
【0002】
【従来の技術】
近年、溶銑を溶製する高炉では、前記高炉ガスの圧力を利用する炉頂圧発電が普及している。それに伴い、高炉ガスに含まれるダストの集塵は、図1に示すように、ベンチュリ・スクラバ1、シックナ2等が主体の従来から使用している湿式集塵装置に加え、バグ・フィルタ3を備えた乾式集塵機を併設し、交互に切り替えて行われるようになった。その理由は、湿式集塵装置を用いると、高炉4からの排ガス5(以下、高炉ガスという)は、水冷されてその容積を減らし、炉頂発電機6に供給するエネルギーが少なくなるので、できるだけ乾式で集塵したいからである。そして、高炉ガスは200℃前後の高温であり、且つ大型高炉(例えば、容量4000m3程度)では1日あたり40〜50トンに及ぶ多量のダストを濾過するために、濾布の材質として、ポリテトラフルオロエチレン膜をフェルト基地に熱融着した耐熱仕様の特殊なものが使用されている(例えば、特許文献1参照)。
【0003】
ところが、このような材質の濾布(バグという)は、有機物の脱水反応で製造された材料を採用することが多いので、ダストに含まれるアルカリ分及び高炉ガス中の水蒸気がバグの劣化を促進し、その寿命は非常に短い。そのため、高炉の操業に際しては、原料に伴なわれて炉内に入るアルカリ分の装入原単位をある一定レベル以下に管理すると共に、回収したダストの成分を分析し、バグがアルカリに晒される量を把握していた。そして、ダストのアルカリ濃度が上昇した際には、バグ・フィルタ3の運転を停止し、高炉ガスの排出ルートを前記湿式集塵装置であるベンチュリ・スクラバ1側に切り替え、従来通りの集塵を行うと共に、高炉4へのアルカリ分の装入原単位が低下するように、原料の銘柄調整を実施して、ダストのアルカリ分が低下していることを確認してから、運転の再開を判断していた。つまり、乾式集塵装置であるバグ・フィルタ3及び湿式集塵機であるベンチュリ・スクラバ1が併設されている高炉4では、高炉ガス5に含まれるダストを、方式の異なる集塵装置を交互に切り替えて回収するようにしているのが現状である。
【0004】
【特許文献1】
特開平10−317号公報(特許請求の範囲、2頁)
【0005】
【発明が解決しようとする課題】
しかしながら、回収したダストを分析してアルカリ量を把握する手法では、ダストのアルカリ濃度が実際に上昇してからかなりの時間が経過して、バグ・フィルタの運転停止判断を行うことになるので、バグにアルカリ濃度の高いダストが長期間触れてしまい、急激にその劣化を促進してしまう。また、運転停止後は、ベンチュリ・スクラバにより湿式除塵することになり、ダストは水により洗浄された形で回収されるので、湿式除塵の前にダスト中のアルカリ濃度を把握する手段が工程的には難しく、湿式集塵装置の入り側配管からスポット的にダストをサンプリングし、採取試料のアルカリ濃度を把握していた。しかし、スポット分析であるため代表性に欠けるばかりでなく、高炉ガス中に含まれるアルカリを低減する原料銘柄の調整も妥当性に欠けるので、再運転開始直後に濾布を劣化させてしまう危険性を常にはらんでいた。
【0006】
本発明は、かかる事情に鑑み、高炉ガスに含まれるダストを回収する乾式集塵装置及び湿式集塵装置の運転を交互に切り替えるに際して、その切り替え時期の判断を従来より精度良く、且つ迅速に実施可能な高炉ガスの集塵方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。
【0008】
すなわち、本発明は、高炉の排ガス配管に分岐して設けた乾式集塵装置であるバグ・フィルタと湿式集塵装置であるベンチュリ・スクラバとで高炉ガスの通過を交互に切り替え、該高炉ガスが含むダストを回収するに際して、前記両集塵装置の入り側で一定時間毎に排ガス配管より高炉ガスの試料を採取し、直ちに該試料を燃焼させて、発生した燃焼ガスのNOx濃度を測定すると共に、該測定値を予め求めてある燃焼ガスのNOx濃度と前記ダストのアルカリ濃度との関係に照らし、該関係に設定した閾値に基づき、前記切り替えの時期を判断することを特徴とする高炉ガスの集塵方法である。
【0009】
本発明によれば、高炉ガスがアルカリ分の高いダストを含むかどうかの判断が迅速、且つ精度良く行えるようになる。その結果、バグの高炉ガスに晒される期間が短縮され、その寿命が延長されるようになる。
【0010】
【発明の実施の形態】
以下、発明をなすに至った経緯をまじえ、本発明の実施の形態を説明する。
【0011】
まず、発明者は、バグ・フィルタを利用する乾式集塵装置とベンチュリ・スクラバを利用した湿式集塵装置が併用される現在の高炉ガスの集塵において、バグ・フィルタの寿命が極めて短いことに着眼した。ダストのアルカリ濃度がバグの劣化に影響を与えることは従来より言われているが、前記したように、その濃度を分析する方法が適切でなく、また管理目標値の把握も十分でない。そこで、実態を詳細に調査したところ、回収したダストのアルカリ濃度がある値を超えた時期に、バグ(濾布)の破損が頻発していることを知った。そして、ダストのアルカリ濃度がこの値以上になる時期が迅速且つ正確に把握できれば、その時期にはバグ・フィルタへの高炉ガスの通過を停止し、ベンチュリ・スクレバを通過させ、アルカリ濃度が十分に低い時期には通過を逆にすれば、従来より改良されると考えた。
【0012】
しかしながら、ダストのアルカリ濃度がこの値以上になる時期を、直接的にしかも迅速、且つ正確に把握することは非常に難しいので、高炉ガスを利用して迅速に測定できる項目のうちに、高炉ガスが含むダストのアルカリ濃度と対応するものがあれば、それを一定時間毎に連続的に測定すると共に監視し、乾式集塵装置の運転及び停止の切り替えを時間遅れなく実施できると考え、引き続きその項目の選定を検討した。
【0013】
一般にカリウムを代表とするアルカリ成分は、低沸点化合物を形成することが多く、溶銑を溶製する高炉では、その炉内に充填された原料の表層のうち、高炉ガスが大量に通過する領域の温度が800℃を超えると、ガス状態のアルカリ化合物が排出される高炉ガスに多量に含まれるようになる。そして、高炉ガスに伴われるダストに捕獲され、そのアルカリ濃度を増加する。この高炉の原料表層部分に、温度の高い領域を形成する操業を実施している際に発生している高炉ガスをある条件で燃焼させると、その燃焼排ガスにNOxが多量に含まれることが知られていた。そのため、発明者は、この事実に注目し、実際の高炉ガスから試料を採取し、その燃焼排ガスのNOxを測定し、該測定期間中に回収したダストのアルカリ濃度との相関を調査した。その結果、図2に示すように、非常に強い関係があることがわかった。なお、図2においては、横軸は高炉ガスから試料を採り、その試料を燃焼した燃焼排ガス中のNOxを測定した中で、最も高い数値を1として指数化した数値である。また、縦軸は上記高炉ガスから試料を採取したタイミングで採取したダストのサンプルを化学分析してK2O,Na2Oの濃度の和を求め、前記NOxが最も高い数値を示した時のK2O,Na2Oの濃度の和を1として指数化したものである。
【0014】
このことから、発明者は、前記項目として、高炉ガスを燃焼させた排ガスに含まれるNOxを選定し、それを連続測定すると共に、管理のための閾値を設定することで、本発明を完成させた。つまり、本発明は、図1に示すように、高炉4の排ガス配管に分岐して設けた乾式集塵装置であるバグ・フィルタ3と湿式集塵装置であるベンチュリ・スクラバ1とで高炉ガス5の通過を交互に切り替え、該高炉ガス5が含むダストを回収するに際して、前記両集塵装置の入り側のガス・サンプリング地点7で一定時間毎に排ガス配管より高炉ガス5の試料を採取し、直ちに該試料を燃焼させて、発生した燃焼ガスのNOx濃度を測定すると共に、該測定値を予め求めてある燃焼ガスのNOx濃度と前記ダストのアルカリ濃度との関係に照らし、該関係に設定した閾値に基づき、前記切り替えの時期を判断して集塵を行うものである。この場合、ガスのサンプリング地点は、図1に示す位置に限る必要はなく、炉頂発電機6の後流側でも問題はない。一般に高炉では、高炉ガスの一部を分岐して熱風炉で燃焼させることで送風温度の上昇を行っているので、この熱風炉の燃焼ガスをサンプリングしてNOxを測定し、その測定値で管理しても良い。
【0015】
以上のように、本発明では、まず熱風炉の燃焼排ガス中のNOx濃度を連続測定すると共に、乾式集塵によるダストを、ダストの排出タイミングに合わせてサンプリングしてアルカリ濃度(K2O,Na2Oのダスト中mass%の和)を求める。次に、このアルカリ濃度とダストの排出タイミング間における平均NOx濃度とをプロットして、図2に示すようなNOx濃度とアルカリ濃度との関係を求める。そして、この間の乾式集塵の濾布の損傷状況を把握することで、濾布の寿命が目標期間以上となるアルカリ濃度値とNOx濃度との関係を図2上に設定できる。すなわち、濾布の寿命が目標以上となるダスト中アルカリ濃度を維持できる高炉ガス燃焼排ガス中のNOx濃度の上限を求めることができる。
【0016】
高炉のダスト中アルカリ濃度と高炉ガス燃焼排ガス中のNOx濃度との関係は、高炉の内容積、原料条件等によって異なるので、図2の関係や高炉ガス燃焼排ガス中のNOx濃度の上限値等は、高炉毎に異なる。従って、本発明を各炉に適用するに当たっては、それぞれ図2の関係を実操業で求めておくことが好ましい。
【0017】
高炉ガスの燃焼排ガス中のNOx濃度は通常変動するものであるので、湿式集塵と乾式集塵との切替えは、上記NOx濃度の上限値を閾値として、例えば乾式集塵装置運転時にNOx濃度が上昇して上記閾値を所定時間(2〜12時間程度)閾値以上に推移した時点で湿式集塵へ切り替えるといった操作を行い、また湿式集塵運転時にNOx濃度が閾値以下に下がって同様な所定時間閾値以下に推移した時点で乾式集塵へ復帰するといった作業をする。これにより、集塵機の切り替えによる高炉の変動を最小限にしつつ、乾式集塵機の濾布のダスト中アルカリによる損傷を防止することができる。
【0018】
【実施例】
乾式集塵装置及び湿式集塵装置が併設された、容積4500m3級の高炉操業において、本発明を適用した。なお、乾式集塵装置としては、バグの懸架数が合計648本のバグ・フィルタであり、バグの材質はポリイミド繊維のフェルト地にポリテトラフルオロエチレン膜を熱融着したものである。また、高炉ガスは、集塵装置の入り側配管で温度が160〜200℃、平均流量が64万m3(標準状態)/hである。
【0019】
高炉に付随している熱風炉で、高炉ガスを燃料として使用しているため、高炉ガスの燃焼排ガスとして、熱風炉燃焼排ガスをガスクロマトグラフィーにより連続分析した。また、上記したように、乾式集塵ダスト中のアルカリ濃度 (K2O,Na2Oのダスト中mass%の和)を、1日1回のダスト排出時に採取したダストのサンプルを分析して求め、図2の関係を求めた。
【0020】
この炉では、ダストのアルカリ濃度が指数で0.43以下となる時に、濾布の損傷がないことがわかったので、高炉ガス燃焼排ガス中NOxの閾値は、図2より指数で0.7と設定することができ、これを基準として乾式集塵設備の運転範囲を定めた。すなわち、NOx濃度が0.7以上の状態が8時間推移した状態の時に乾式集塵機を湿式集塵機へ切り替えると共に、0.7以下の状態が8時間以上推移した時点で湿式集塵機から乾式集塵機へ切り替えるという操作を行った。
【0021】
この発明に係る操作を開始する前1年間と開始後1年間をそれぞれ、従来例、発明例として表1に示す。従来は、濾布損傷が頻発した段階で乾式集塵から湿式集塵へ切り替え、その後ダスト中のアルカリ濃度が低減した時点を見計らって乾式集塵へ戻す操作をしていたため、ダスト分析のタイミングによって乾式集塵機の使用が遅れることになり、乾式集塵機の運転時間が高炉の全操業期間の30%程度であったが、本発明の適用により、湿式集塵機の運転中に高炉ガス燃焼排ガス中のNOx濃度の推移を見て、乾式集塵へ戻すことができ、乾式集塵機の運転時間を85%に増加させることができた。また、この間、濾布の破損はなく、その寿命は1年以上に延長された。これは、従来の濾布寿命が0.5〜2ケ月程度であったことに比べ格段の成果である。
【0022】
【表1】

Figure 0003956834
【0023】
【発明の効果】
以上述べたように、本発明により、高炉ガスがアルカリ分の高いダストを含むかどうかの判断が迅速、且つ精度良く行えるようになる。その結果、乾式集塵装置と湿式集塵装置の運転切り替えが円滑に行えるようになり、乾式集塵装置のバグのアルカリ濃度の大きい高炉ガスに晒される期間が短縮され、その寿命が延長されるようになった。
【図面の簡単な説明】
【図1】乾式集塵装置及び湿式集塵装置を併設した高炉の排ガス処理系の一例を示す平面図である。
【図2】高炉ガスを燃焼させた燃焼排ガスのNOx濃度と、該高炉ガスが含むダストのアルカリ濃度との関係を示す図である。
【符号の説明】
1 ベンチュリ・スクラバ
2 シックナ
3 バグ・フィルタ
4 高炉
5 排ガス(高炉ガス)
6 炉頂発電機
7 ガス・サンプリング地点
8 ダスト・キャッチャ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dust collection method for blast furnace gas, and more specifically, dust contained in exhaust gas from a blast furnace is collected by alternately switching a bag filter as a dry dust collector and a venturi scrubber as a wet dust collector. Regarding technology.
[0002]
[Prior art]
In recent years, furnace top pressure power generation using the pressure of the blast furnace gas has become widespread in a blast furnace for melting hot metal. Accordingly, as shown in FIG. 1, the dust collected in the blast furnace gas has a bag filter 3 in addition to a conventional wet dust collector mainly composed of a venturi scrubber 1 and a thickener 2. A dry-type dust collector equipped is installed, and it has been switched alternately. The reason for this is that when a wet dust collector is used, the exhaust gas 5 (hereinafter referred to as blast furnace gas) from the blast furnace 4 is cooled with water to reduce its volume, and less energy is supplied to the furnace top generator 6. This is because we want to collect dust in a dry process. The blast furnace gas is at a high temperature of about 200 ° C., and a large blast furnace (for example, a capacity of about 4000 m 3 ) is used as a filter cloth material for filtering a large amount of dust ranging from 40 to 50 tons per day. A special heat-resistant specification in which a tetrafluoroethylene film is thermally fused to a felt base is used (for example, see Patent Document 1).
[0003]
However, filter cloths (called bugs) of such materials often use materials produced by dehydration of organic matter, so alkali content in dust and water vapor in blast furnace gas promote the deterioration of bugs. And its life is very short. Therefore, during the operation of the blast furnace, the basic unit of alkali content entering the furnace with the raw material is controlled to a certain level or less, the collected dust components are analyzed, and bugs are exposed to alkali. I knew the amount. And when the alkali concentration of dust rises, the operation of the bag filter 3 is stopped, the blast furnace gas discharge route is switched to the venturi scrubber 1 side which is the wet dust collector, and the conventional dust collection is performed. At the same time, adjust the brand name of the raw material so that the basic unit of alkali content in the blast furnace 4 decreases, and confirm that the alkali content of the dust has decreased, and then decide to resume operation. Was. That is, in the blast furnace 4 provided with the bug filter 3 which is a dry dust collector and the venturi scrubber 1 which is a wet dust collector, the dust contained in the blast furnace gas 5 is switched alternately between different dust collectors. The current situation is to collect them.
[0004]
[Patent Document 1]
JP-A-10-317 (Claims, page 2)
[0005]
[Problems to be solved by the invention]
However, in the method of analyzing the collected dust and grasping the amount of alkali, a considerable amount of time has passed since the alkali concentration of the dust actually increased, so it is judged that the bug filter has been shut down. Dust with a high alkali concentration touches the bug for a long period of time, and its deterioration is rapidly accelerated. In addition, after the operation is stopped, wet dust will be removed by the venturi scrubber, and the dust will be recovered in the form of being washed with water. It was difficult, and dust was sampled spot-wise from the inlet piping of the wet dust collector, and the alkali concentration of the collected sample was grasped. However, since it is a spot analysis, not only is it lacking in representativeness, but also the adjustment of the raw material brand that reduces the alkali contained in the blast furnace gas is also not valid, so there is a risk of degrading the filter cloth immediately after the start of re-operation. Was always involved.
[0006]
In view of such circumstances, the present invention, when alternately switching the operation of a dry dust collector that collects dust contained in blast furnace gas and a wet dust collector, makes a determination of the switching timing more accurately and quickly than before. It aims at providing the dust collection method of possible blast furnace gas.
[0007]
[Means for Solving the Problems]
The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention.
[0008]
That is, the present invention alternately switches the passage of blast furnace gas between a bag filter, which is a dry dust collector provided by branching to an exhaust gas pipe of a blast furnace, and a venturi scrubber, which is a wet dust collector. When collecting the contained dust, a sample of the blast furnace gas is taken from the exhaust gas pipe at regular intervals on the entry side of the two dust collectors, and the sample is immediately burned to measure the NOx concentration of the generated combustion gas. The blast furnace gas is characterized by determining the timing of the switching based on the threshold value set in the relationship in relation to the relationship between the NOx concentration of the combustion gas obtained in advance and the alkali concentration of the dust. It is a dust collection method.
[0009]
According to the present invention, it is possible to quickly and accurately determine whether or not the blast furnace gas contains dust having a high alkali content. As a result, the exposure period of the bug to the blast furnace gas is shortened, and the lifetime is extended.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the circumstances leading to the invention.
[0011]
First, the inventor found that the life of the bag filter is extremely short in the dust collection of the current blast furnace gas in which the dry dust collector using the bag filter and the wet dust collector using the venturi scrubber are used together. I focused on it. Although it has been said that the alkali concentration of dust affects the deterioration of bugs, as described above, the method of analyzing the concentration is not appropriate, and the management target value is not sufficiently grasped. Therefore, after examining the actual situation in detail, we learned that bugs (filter cloth) were frequently damaged when the alkali concentration of the collected dust exceeded a certain value. And if the time when the alkali concentration of dust becomes above this value can be grasped quickly and accurately, the passage of the blast furnace gas to the bag filter is stopped at that time, the venturi scrubber is passed, and the alkali concentration is sufficient. We thought that it would be better than before if the passage was reversed at low times.
[0012]
However, it is very difficult to grasp the time when the alkali concentration of dust exceeds this value directly, quickly and accurately, so among the items that can be measured quickly using blast furnace gas, blast furnace gas If there is something that corresponds to the alkali concentration of dust contained in the dust, it will be measured and monitored continuously at regular intervals, and the dry dust collector operation and stoppage can be switched without time delay. The selection of items was examined.
[0013]
In general, an alkaline component typified by potassium often forms a low-boiling point compound, and in a blast furnace for melting hot metal, in the surface layer of the raw material filled in the furnace, the blast furnace gas passes through a large area. When the temperature exceeds 800 ° C., the blast furnace gas from which the gaseous alkali compound is discharged is contained in a large amount. And it is captured by the dust accompanying the blast furnace gas, and its alkali concentration is increased. It is known that when the blast furnace gas generated during the operation to form a high temperature region is burned under certain conditions in the raw material surface layer part of this blast furnace, the combustion exhaust gas contains a large amount of NOx. It was done. Therefore, the inventor paid attention to this fact, took a sample from the actual blast furnace gas, measured NOx of the combustion exhaust gas, and investigated the correlation with the alkali concentration of dust collected during the measurement period. As a result, it was found that there is a very strong relationship as shown in FIG. In FIG. 2, the horizontal axis is a numerical value obtained by taking a sample from blast furnace gas and indexing the NOx in the combustion exhaust gas obtained by burning the sample as the highest numerical value. The vertical axis represents the sum of the concentrations of K 2 O and Na 2 O obtained by chemical analysis of the dust sample collected at the timing when the sample was collected from the blast furnace gas, and the NOx shows the highest value. The sum of the concentrations of K 2 O and Na 2 O is taken as 1 and indexed.
[0014]
From this, the inventor completed the present invention by selecting NOx contained in the exhaust gas combusted with the blast furnace gas as the item, continuously measuring it, and setting a threshold for management. It was. In other words, as shown in FIG. 1, the present invention includes a blast furnace gas 5 including a bag filter 3 which is a dry dust collector provided by branching in an exhaust gas pipe of a blast furnace 4 and a venturi scrubber 1 which is a wet dust collector. When the dust contained in the blast furnace gas 5 is recovered alternately, a sample of the blast furnace gas 5 is taken from the exhaust gas pipe at regular intervals at the gas sampling point 7 on the entry side of the two dust collectors, The sample was immediately burned, and the NOx concentration of the generated combustion gas was measured, and the measured value was set in accordance with the relationship between the NOx concentration of the combustion gas determined in advance and the alkali concentration of the dust. Based on a threshold value, the time of switching is judged and dust collection is performed. In this case, the gas sampling point need not be limited to the position shown in FIG. 1, and there is no problem even on the downstream side of the furnace top generator 6. Generally, in a blast furnace, a part of the blast furnace gas is branched and burned in a hot stove to increase the blowing temperature. Therefore, the combustion gas of this hot stove is sampled and NOx is measured and managed by the measured value. You may do it.
[0015]
As described above, in the present invention, first, the NOx concentration in the combustion exhaust gas of the hot stove is continuously measured, and the dust from the dry dust collection is sampled in accordance with the dust discharge timing to obtain the alkali concentration (K 2 O, Na 2 ) Sum of mass% in O dust). Next, this alkali concentration and the average NOx concentration between dust discharge timings are plotted, and the relationship between the NOx concentration and the alkali concentration as shown in FIG. 2 is obtained. And by grasping | ascertaining the damage condition of the filter cloth of the dry type dust collection in the meantime, the relationship between the alkali concentration value and NOx density | concentration from which the lifetime of a filter cloth becomes more than a target period can be set on FIG. That is, it is possible to obtain the upper limit of the NOx concentration in the blast furnace gas combustion exhaust gas that can maintain the alkali concentration in the dust at which the life of the filter cloth is longer than the target.
[0016]
Since the relationship between the alkali concentration in the dust of the blast furnace and the NOx concentration in the blast furnace gas combustion exhaust gas varies depending on the internal volume of the blast furnace, the raw material conditions, etc., the relationship in FIG. 2 and the upper limit value of the NOx concentration in the blast furnace gas combustion exhaust gas, etc. Different for each blast furnace. Therefore, in applying the present invention to each furnace, it is preferable to obtain the relationship of FIG. 2 by actual operation.
[0017]
Since the NOx concentration in the blast furnace gas flue gas usually fluctuates, switching between wet dust collection and dry dust collection uses the upper limit of the NOx concentration as a threshold value, for example, the NOx concentration during operation of the dry dust collector. When the above threshold value rises above the predetermined time (about 2 to 12 hours) and exceeds the threshold value, an operation is performed such as switching to wet dust collection, and the NOx concentration falls below the threshold value during wet dust collection operation, and the same predetermined time When moving below the threshold, work is done such as returning to dry dust collection. Thereby, the damage by the alkali in dust of the filter cloth of a dry dust collector can be prevented, minimizing the fluctuation | variation of the blast furnace by switching of a dust collector.
[0018]
【Example】
The present invention was applied to the operation of a blast furnace having a capacity of 4500 m 3 and provided with a dry dust collector and a wet dust collector. The dry dust collector is a bag filter having a total of 648 bugs suspended, and the material of the bug is a polytetrafluoroethylene film thermally fused to a felt of polyimide fiber. The blast furnace gas has a temperature of 160 to 200 ° C. and an average flow rate of 640,000 m 3 (standard state) / h in the inlet side piping of the dust collector.
[0019]
Since the blast furnace gas used as a fuel in the hot blast furnace attached to the blast furnace, the hot blast furnace combustion exhaust gas was continuously analyzed by gas chromatography as the combustion exhaust gas of the blast furnace gas. Also, as described above, the alkali concentration in the dry dust collection dust (the sum of mass% in the dust of K 2 O and Na 2 O) is analyzed for the dust sample collected at the time of dust discharge once a day. The relationship shown in FIG. 2 was obtained.
[0020]
In this furnace, it was found that the filter cloth was not damaged when the alkali concentration of dust was 0.43 or less, so the threshold value of NOx in the blast furnace gas combustion exhaust gas was 0.7 as an index from FIG. The operating range of the dry dust collection equipment was determined based on this. That is, the dry dust collector is switched to the wet dust collector when the state where the NOx concentration is 0.7 or more has transitioned for 8 hours, and is switched from the wet dust collector to the dry dust collector when the state of 0.7 or less has transitioned for 8 hours or more. The operation was performed.
[0021]
One year before starting the operation according to the present invention and one year after starting the operation are shown in Table 1 as a conventional example and an invention example, respectively. In the past, when filter cloth damage occurred frequently, switching from dry dust collection to wet dust collection, and then returning to dry dust collection when the alkali concentration in the dust was reduced, depending on the timing of dust analysis The use of the dry dust collector was delayed, and the operation time of the dry dust collector was about 30% of the total operation time of the blast furnace. By applying the present invention, the NOx concentration in the blast furnace gas combustion exhaust gas during the operation of the wet dust collector It was possible to return to dry dust collection, and to increase the operating time of the dry dust collector to 85%. During this time, the filter cloth was not damaged, and its life was extended to more than one year. This is a remarkable result compared to the conventional filter cloth life of about 0.5 to 2 months.
[0022]
[Table 1]
Figure 0003956834
[0023]
【The invention's effect】
As described above, according to the present invention, whether or not the blast furnace gas contains dust having a high alkali content can be determined quickly and accurately. As a result, the operation of the dry dust collector and the wet dust collector can be smoothly switched, and the period of exposure to the blast furnace gas with a high alkali concentration of the bug of the dry dust collector is shortened, and the life is extended. It became so.
[Brief description of the drawings]
FIG. 1 is a plan view showing an example of an exhaust gas treatment system of a blast furnace equipped with a dry dust collector and a wet dust collector.
FIG. 2 is a graph showing the relationship between the NOx concentration of combustion exhaust gas obtained by burning blast furnace gas and the alkali concentration of dust contained in the blast furnace gas.
[Explanation of symbols]
1 Venturi Scrubber 2 Thickina 3 Bag Filter 4 Blast Furnace 5 Exhaust Gas (Blast Furnace Gas)
6 Furnace top generator 7 Gas sampling point 8 Dust catcher

Claims (1)

高炉の排ガス配管に分岐して設けた乾式集塵装置であるバグ・フィルタと湿式集塵装置であるベンチュリ・スクラバとで高炉ガスの通過を交互に切り替え、該高炉ガスが含むダストを回収するに際して、
前記両集塵装置の入り側で一定時間毎に排ガス配管より高炉ガスの試料を採取し、直ちに該試料を燃焼させて、発生した燃焼ガスのNOx濃度を測定すると共に、該測定値を予め求めてある燃焼ガスのNOx濃度と前記ダストのアルカリ濃度との関係に照らし、該関係に設定した閾値に基づき、前記切り替えの時期を判断することを特徴とする高炉ガスの集塵方法。
When collecting the dust contained in the blast furnace gas by alternately switching the passage of the blast furnace gas between the bag filter, which is a dry dust collector provided by branching to the exhaust gas piping of the blast furnace, and the venturi scrubber, which is a wet dust collector. ,
A sample of the blast furnace gas is taken from the exhaust gas pipe at regular intervals at the entrance side of the two dust collectors, and the sample is immediately burned to measure the NOx concentration of the generated combustion gas, and the measured value is obtained in advance. A dust collection method for blast furnace gas, characterized in that, based on a relationship between a NOx concentration of a certain combustion gas and an alkali concentration of the dust, the switching timing is determined based on a threshold value set in the relationship.
JP2002314586A 2002-10-29 2002-10-29 Blast furnace gas dust collection method Expired - Fee Related JP3956834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002314586A JP3956834B2 (en) 2002-10-29 2002-10-29 Blast furnace gas dust collection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002314586A JP3956834B2 (en) 2002-10-29 2002-10-29 Blast furnace gas dust collection method

Publications (2)

Publication Number Publication Date
JP2004149831A JP2004149831A (en) 2004-05-27
JP3956834B2 true JP3956834B2 (en) 2007-08-08

Family

ID=32458856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002314586A Expired - Fee Related JP3956834B2 (en) 2002-10-29 2002-10-29 Blast furnace gas dust collection method

Country Status (1)

Country Link
JP (1) JP3956834B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101988135B (en) * 2010-11-24 2012-12-05 武汉钢铁(集团)公司 Control process of blast-furnace gas dedusting system
KR102574944B1 (en) * 2020-12-21 2023-09-06 주식회사 포스코 Measuring system for dust contained in furnace gas
CN112853015B (en) * 2021-01-06 2022-11-18 鞍钢股份有限公司 High-efficiency cooling system and method for blast furnace gas
CN112831622B (en) * 2021-01-06 2022-11-18 鞍钢股份有限公司 Blast furnace gas cooling and dechlorinating system and method
CN112831621B (en) * 2021-01-06 2022-11-18 鞍钢股份有限公司 Blast furnace gas cooling system and cooling control method

Also Published As

Publication number Publication date
JP2004149831A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP3956834B2 (en) Blast furnace gas dust collection method
Cornette et al. Particulate matter emission reduction in small-and medium-scale biomass boilers equipped with flue gas condensers: Field measurements
JP5527168B2 (en) Converter exhaust gas recovery device and converter exhaust gas recovery method
Rodriguez et al. A novel electrical charging condensing heat exchanger for efficient particle emission reduction in small wood boilers
CN107941718A (en) flue gas pollutant environment monitoring system
Gough et al. Influence of a coal-fired powerplant on the element content of Parmelia chlorochroa
Li et al. Mechanism of SO3/H2SO4 transformation and reduction in wet flue gas desulfurization systems
Stanger et al. Mercury and SO3 measurements on the fabric filter at the Callide Oxy-fuel Project during air and oxy-fuel firing transitions
Herzog et al. Corrosion caused by dew point and deliquescent salts in the boiler and flue gas cleaning
US20110071788A1 (en) Method and apparatus for the calculation of coal ash fusion values
CN107702952A (en) A kind of dusty gas continuous sampling device
JP5154131B2 (en) Boiler and boiler operation method
CN205861403U (en) A kind of flue gas sampler
JP4032004B2 (en) Apparatus and method for measuring dioxin secondary production ability
Schott et al. Novel metal mesh filter equipped with pulse-jet regeneration for small-scale biomass boilers
Meléndez et al. Fine and ultrafine emission dynamics from a ferrous foundry cupola furnace
Stabile et al. Effects of the flue gas treatment of incinerator plants on sub-micron particle concentrations at the stack
Brna et al. Polychlorinated dibenzo-p-dioxins and dibenzofurans: removal from flue gas and distribution in ash/residue of a refuse-derived fuel combustor
JPH02115746A (en) Iodine measuring instrument
JP7077832B2 (en) Whitening prediction method for sintered main exhaust gas
KR102302601B1 (en) Continuous measurement device of ammonia from a stack exhaust gas
CN219571977U (en) Cooling filter structure for uridylic acid desalting
CN208155672U (en) A kind of novel heat power plant boiler fly ash sampling device
CN216133020U (en) Flue gas analysis equipment based on cement clinker firing
Dunzik et al. Evaluation and enhancement of the performance of benzene solubles methods for asphalt fume assessment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees