JP3954607B2 - Steel plate with less weld buckling deformation and its manufacturing method - Google Patents

Steel plate with less weld buckling deformation and its manufacturing method Download PDF

Info

Publication number
JP3954607B2
JP3954607B2 JP2004320715A JP2004320715A JP3954607B2 JP 3954607 B2 JP3954607 B2 JP 3954607B2 JP 2004320715 A JP2004320715 A JP 2004320715A JP 2004320715 A JP2004320715 A JP 2004320715A JP 3954607 B2 JP3954607 B2 JP 3954607B2
Authority
JP
Japan
Prior art keywords
steel
less
yield stress
rolling
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004320715A
Other languages
Japanese (ja)
Other versions
JP2006131937A (en
Inventor
禎夫 森本
克壮 小林
徹 山下
洋一郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004320715A priority Critical patent/JP3954607B2/en
Publication of JP2006131937A publication Critical patent/JP2006131937A/en
Application granted granted Critical
Publication of JP3954607B2 publication Critical patent/JP3954607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主に船殻構造体などに使用される鋼板であって、比較的薄肉であるにもかかわらず溶接時の座屈変形が少なくて溶接建造後の矯正などを必要とせず、高い構築施工性を得ることのできる鋼板とその製法に関するものである。   The present invention is a steel sheet mainly used for a hull structure and the like, and is relatively thin and has little buckling deformation at the time of welding, and does not require correction after welding construction and is high. It is related with the steel plate which can obtain construction workability, and its manufacturing method.

船殻構造体の上方部を構成する外殻部を構築する際には、構造強度を高めるため鋼板に補強リブを溶接固定するのが一般的である。その際、溶接接合部および溶接熱影響部は溶接時の熱によって溶融もしくは組織変態(α→γへの逆変態)するので、その後で常温にまで降温(冷却)して固化する際に熱収縮を起こす。しかし、四周囲が補強リブによって拘束されている場合は自由に収縮できないため、当該溶接部の降伏応力に相当する引張残留応力が発生する。その際、上記残留応力に起因して溶接構築物が面外座屈変形を起こすことがあり、この変形は溶接作業現場の一部で“やせ馬変形”と呼ばれ問題となっている。   When constructing the outer shell part constituting the upper part of the hull structure, it is common to weld and fix a reinforcing rib to the steel plate in order to increase the structural strength. At that time, the welded joint and weld heat affected zone melt or undergo structural transformation (reverse transformation from α to γ) by the heat during welding, and then heat shrink when the temperature is lowered (cooled) to normal temperature and solidified. Wake up. However, when the four perimeters are constrained by the reinforcing ribs, they cannot be freely contracted, so that a tensile residual stress corresponding to the yield stress of the weld is generated. At that time, the welded structure may cause out-of-plane buckling deformation due to the residual stress, and this deformation is called “skin deformation” in a part of the welding work site and causes a problem.

ところで船殻構造体の外殻部などにこの様な座屈変形が起こると外観が劣化するので、従来はこうした面外座屈変形(やせ馬変形)を矯正するため、プレス矯正やスポット加熱矯正などが行われている。しかしその矯正作業は煩雑で手数を要するばかりでなく、工期を延長させる大きな原因になるので、こうした溶接による面外座屈変形を極力起こさないような鋼板の開発が求められる。   By the way, when such buckling deformation occurs in the outer shell of the ship's hull structure, the appearance deteriorates. Conventionally, in order to correct such out-of-plane buckling deformation (skin horse deformation), press correction or spot heating correction Etc. are done. However, the correction work is not only complicated and time-consuming, but also a major cause of extending the work period. Therefore, it is necessary to develop a steel plate that does not cause such out-of-plane buckling deformation as much as possible.

ところで、たとえば特許文献1には、海洋構造物や建築物、橋梁などに用いる構造用鋼板を対象として、比較的厚肉(10mm程度以上)の鋼板を低入熱溶接したときに問題となる溶接角変形の低減を目的とする改良技術が開示されている。この発明は、溶接熱影響を受けた鋼板の降伏応力を高めることによって溶接変形を阻止しようとするもので、具体的には、溶接熱影響を受けた鋼板の降伏応力を高めるための手法として鋼材の成分組成を特定すると共に、鋼材断面のミクロ組織の少なくとも30面積%以上を、微細なカーバイドが分散したベイナイト組織とし、降伏強度を360MPa以上に高めることで、溶接変形を生じ易い400℃以上の中温域の降伏強度を高め、上述した様な鉄鋼構造物を構築する際に一般的に採用される隅肉溶接時の所謂角変形を1/2レベル以下に低減しようとするものである。   By the way, for example, Patent Document 1 discloses a welding that becomes a problem when a relatively thick (about 10 mm or more) steel plate is subjected to low heat input welding for structural steel plates used for offshore structures, buildings, bridges, and the like. An improved technique for reducing angular distortion has been disclosed. The present invention is intended to prevent welding deformation by increasing the yield stress of a steel plate affected by welding heat, and specifically, as a technique for increasing the yield stress of a steel plate affected by welding heat. The component composition of the steel material is specified, and at least 30% by area or more of the microstructure of the steel cross section is a bainite structure in which fine carbides are dispersed, and the yield strength is increased to 360 MPa or more, so that welding deformation is likely to occur at 400 ° C. or more. It is intended to increase the yield strength in the middle temperature range and reduce the so-called angular deformation during fillet welding generally employed when constructing a steel structure as described above to ½ level or less.

また特許文献2にも、同様に海洋構造物や建築物、橋梁などに用いる構造用鋼板を対象として、比較的厚肉(10mm程度以上)の鋼板を隅肉溶接したときに問題となる溶接角変形の低減を目的とする改良技術が開示されている。この発明も、溶接熱影響を受けた鋼材の降伏応力を高めることによって溶接変形の防止を図っている。具体的には、溶接熱影響を受ける鋼板の降伏応力を高めるための手法として、鋼材の成分組成を特定すると共に、ミクロ組織を平均粒径の小さいベイナイト及び/又はマルテンサイトとフェライト及び/又はパーライトとし、且つ微細な炭窒化物を多量存在させることで、溶接変形が生じる中温域の降伏強度を高め、隅肉溶接による角変形を抑えている。   Similarly, Patent Document 2 also has a problem of welding angle when a relatively thick (about 10 mm or more) steel plate is fillet welded for structural steel plates used for offshore structures, buildings, bridges, and the like. An improved technique for the purpose of reducing deformation is disclosed. This invention also prevents welding deformation by increasing the yield stress of a steel material affected by welding heat. Specifically, as a method for increasing the yield stress of a steel sheet affected by welding heat, the component composition of the steel material is specified, and the microstructure is bainite and / or martensite and ferrite and / or pearlite having a small average particle diameter. In addition, the presence of a large amount of fine carbonitride increases the yield strength in the intermediate temperature range where welding deformation occurs, and suppresses angular deformation due to fillet welding.

しかしこれらの発明は、上記の様に比較的厚肉の鋼板を対象とし、且つ溶接熱影響部の降伏応力を高めることにより角変形の抑制を図るもので、追って詳述する如く溶接部の強度上昇を抑えることで“やせ馬現象”を防止する本発明とは技術思想が本質的に異なる。
特開平6−172921号公報 特開2003−268484号公報
However, these inventions are intended for relatively thick steel plates as described above, and are intended to suppress angular distortion by increasing the yield stress of the weld heat affected zone. The technical idea is essentially different from the present invention that prevents the “salting horse phenomenon” by suppressing the rise.
JP-A-6-172921 JP 2003-268484 A

本発明でその改善を意図する面外座屈変形(いわゆる“やせ馬変形”)とは、比較的薄肉(通常は10mm程度未満)の鋼板に補強リブを溶接して強化したときに見られる歪変形であり、例えば図2に示す如く鋼板1の片面側に同程度の厚さの補強リブ2を溶接して構造強度を与えたときに生じる、溶接熱による継手部の溶融とその後の冷却時の凝固収縮、更にはその際に母材や溶接熱影響部に生じる残留応力などが複雑に影響を及ぼし、溶接構造体の平板部が図2の特にA−A線断面図に示す如く“やせ馬の背中”状に座屈変形を起こす現象である。   In the present invention, out-of-plane buckling deformation (so-called “lean horse deformation”) intended to improve the distortion is a strain observed when reinforcing ribs are welded to a relatively thin steel plate (usually less than about 10 mm) and strengthened. For example, as shown in FIG. 2, when the reinforcing rib 2 having the same thickness is welded to one side of the steel plate 1 to give structural strength, the joint is melted by welding heat and then cooled. The solidification shrinkage of the steel, and the residual stress generated in the base metal and the heat affected zone of the weld at that time have a complicated effect, and the flat part of the welded structure is thin as shown in FIG. It is a phenomenon that causes buckling deformation like a “back of a horse”.

こうした座屈変形の発生原因については後で説明するが、本発明では鋼板の成分組成や強度特性、殊に母材強度と熱影響を受けた後の強度とのバランスを制御することによって、こうしたやせ馬変形を可及的に抑えることのできる鋼板を提供し、且つその様な鋼板を確実に得ることのできる製造方法を提供することにある。   The cause of the occurrence of such buckling deformation will be described later, but in the present invention, by controlling the balance between the composition and strength characteristics of the steel sheet, particularly the strength of the base metal and the strength after being affected by heat, An object of the present invention is to provide a steel plate that can suppress the deformation of a thin horse as much as possible, and to provide a manufacturing method that can reliably obtain such a steel plate.

上記課題を解決することのできた本発明に係る溶接座屈変形の少ない鋼板とは、鋼板の降伏応力を(YP0)、引張強度を(TS0)、当該鋼板に、溶接時の熱影響を模擬して下記の熱履歴を付与した後の降伏応力を(YP1)としたときに、YP0(母材強度)が250MPa以上、TS0が400MPa以上、YP1が400MPa以下であり、且つYP0/YP1が1以上であるところに特徴を有している。 The steel plate with less welded buckling deformation according to the present invention that has solved the above-mentioned problems is that the yield stress of the steel plate is (YP 0 ), the tensile strength is (TS 0 ), and the steel plate has a thermal effect during welding. When the simulated yield stress after giving the following thermal history is (YP 1 ), YP 0 (base material strength) is 250 MPa or more, TS 0 is 400 MPa or more, YP 1 is 400 MPa or less, and It is characterized in that YP 0 / YP 1 is 1 or more.

(熱履歴付与条件)
熱履歴パターン:図1の通り、
熱履歴付与装置;富士電波工機社製の50キロワット熱サイクル再現装置を使用。
(Heat history provision conditions)
Thermal history pattern:
Thermal history imparting device: A 50 kilowatt thermal cycle reproduction device manufactured by Fuji Radio Engineering Co., Ltd. is used.

本発明に係る上記鋼材のより好ましい第1の実施態様は、該鋼材が下記イ)またはロ)として示す化学成分と焼入れ性指数(DI値)を満たすものである。   A more preferable first embodiment of the steel material according to the present invention is one in which the steel material satisfies a chemical component and a hardenability index (DI value) indicated as a) or b) below.

イ)化学成分;
C :0.005〜0.12%、
Si:0.05〜0.5%、
Mn:0.05〜1.2%を含み、
残部:Feおよび不可避不純物、
DI=1.16×[√(C/10)]×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3.0×Mo+1)×(1.75×V+1)×(200×B+1)≦0.38
[式中の記号は、各元素の含有率(質量%)を表わす]、
B) Chemical composition;
C: 0.005-0.12%,
Si: 0.05 to 0.5%,
Mn: 0.05-1.2% included,
Balance: Fe and inevitable impurities,
DI = 1.16 × [√ (C / 10)] × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) x (3.0 x Mo + 1) x (1.75 x V + 1) x (200 x B + 1) ≤ 0.38
[The symbols in the formula represent the content (% by mass) of each element],

ロ)化学成分;
C :0.005〜0.12%、
Si:0.05〜0.5%、
Mn:0.05〜1.2%、
N:0.002〜0.007%を満たす他、
Nb:0.005〜0.03%、V:0.005〜0.075%、Ti:0.005〜0.03%よりなる群から選ばれる少なくとも1種を含み、
残部:Feおよび不可避不純物。
DI=1.16×[√(C/10)]×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3.0×Mo+1)×(1.75×V+1)×(200×B+1)≦0.38
[式中の記号は、各元素の含有率(質量%)を表わす]。
B) Chemical composition;
C: 0.005-0.12%,
Si: 0.05 to 0.5%,
Mn: 0.05 to 1.2%,
N: other than 0.002 to 0.007%,
Including at least one selected from the group consisting of Nb: 0.005-0.03%, V: 0.005-0.075%, Ti: 0.005-0.03%,
The remainder: Fe and inevitable impurities.
DI = 1.16 × [√ (C / 10)] × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) x (3.0 x Mo + 1) x (1.75 x V + 1) x (200 x B + 1) ≤ 0.38
[The symbol in the formula represents the content (% by mass) of each element].

また、より好ましい第2の実施態様は、該鋼材が下記化学成分と上記DI値を満たすものである。   In a more preferred second embodiment, the steel material satisfies the following chemical components and the DI value.

化学成分;
C :0.005〜0.12%、
Si:0.05〜0.5%、
Mn:0.05〜1.2%、
N :0.002〜0.007%を満たす他、
Nb:0.005〜0.03%、V:0.005〜0.075%、Ti:0.005〜0.03%よりなる群から選ばれる少なくとも1種を含有すると共に、下記式(I)の関係を満たし、
Nb/6.63N+V/3.64N+Ti/3.41N>1……(I)
残部:Feおよび不可避不純物。
Chemical composition;
C: 0.005-0.12%,
Si: 0.05 to 0.5%,
Mn: 0.05 to 1.2%,
N: Besides satisfying 0.002 to 0.007%,
It contains at least one selected from the group consisting of Nb: 0.005 to 0.03%, V: 0.005 to 0.075%, Ti: 0.005 to 0.03%, and the following formula (I )
Nb / 6.63N + V / 3.64N + Ti / 3.41N> 1 …… (I)
The remainder: Fe and inevitable impurities.

上記本発明の鋼材には、更に他の元素として、Ca:0.0005〜0.003%、Zr:0.0005〜0.004%、REM:0.0005〜0.005%よりなる群から選ばれる少なくとも1種を含むものであってもよく、或いは更に他の元素として、Ni:0.2%以下、Cu:0.2%以下、Cr:0.2%以下、Mo:0.1%以下よりなる群から選択される少なくとも1種を含むものであってもよい。   The steel material of the present invention further includes, as another element, Ca: 0.0005-0.003%, Zr: 0.0005-0.004%, REM: 0.0005-0.005%. It may contain at least one selected, or as other elements, Ni: 0.2% or less, Cu: 0.2% or less, Cr: 0.2% or less, Mo: 0.1 It may contain at least one selected from the group consisting of% or less.

また本発明に係る溶接座屈変形の少ない鋼板の製造方法とは、前記第1の実施態様として記載された要件を満たす鋼片を使用する場合に適用される方法で、950℃以上に加熱した後、目標板厚にまで圧延する際に、下記式によって算出されるAr3変態点以下の温度域での累積圧下率が30%以上となるように圧延することによって前記特性を与え、
Ar3(℃)=910−310×C−80×Mn−20×Cu−15×Cr−55×Ni−80×Mo
[式中の化学記号は、各元素の(質量%)を表わす]、
また前記第2の実施態様として記載された要件を満たす鋼片を使用する場合は、950℃以上に加熱した後、目標板厚にまで圧延する際に、板厚方向に平均温度850〜950℃の温度域での累積圧下率を50%以上とし、目標板厚迄圧延して圧延を終了することにより前記特性を与えることを特徴とする。
Moreover, the manufacturing method of the steel plate with little welding buckling deformation which concerns on this invention is a method applied when using the steel piece which satisfy | fills the requirements described as the said 1st embodiment, It heated at 950 degreeC or more Later, when rolling to the target plate thickness, the above-mentioned characteristics are given by rolling so that the cumulative reduction ratio in the temperature region below the Ar 3 transformation point calculated by the following formula is 30% or more,
Ar 3 (° C.) = 910−310 × C−80 × Mn-20 × Cu-15 × Cr-55 × Ni-80 × Mo
[Chemical symbols in the formula represent (mass%) of each element],
Moreover, when using the steel piece which satisfy | fills the requirements described as said 2nd embodiment, after heating to 950 degreeC or more, when rolling to target plate | board thickness, average temperature 850-950 degreeC in a plate | board thickness direction is used. The cumulative reduction ratio in the temperature range is set to 50% or more, and the above-mentioned characteristics are given by rolling to the target plate thickness and finishing the rolling.

本発明によれば、例えば船殻構造体用の鋼板などとして十分な構造強度を維持しつつ、溶接性に優れると共に溶接に伴う面外座屈変形(いわゆる“やせ馬現象”)を可及的に抑えることができる。その結果、溶接後の矯正処理を実質的に不要とすることができ、作業効率を大幅に高めると共に、工期を著しく短縮することができる。また本発明の製造方法によれば、高価な合金元素などの配合量を最小限に抑えた鋼材を使用することにより、目標特性を備えた鋼板を安価に提供できる。   According to the present invention, while maintaining a sufficient structural strength, for example, as a steel plate for a hull structure, the weldability is excellent and out-of-plane buckling deformation (so-called “skinning phenomenon”) associated with welding is possible. Can be suppressed. As a result, straightening treatment after welding can be substantially eliminated, the work efficiency can be greatly increased, and the work period can be significantly shortened. Further, according to the manufacturing method of the present invention, a steel plate having target characteristics can be provided at low cost by using a steel material in which the amount of an expensive alloy element or the like is minimized.

本発明者らは前述した様な状況の下で、溶接施工時に生じる“やせ馬現象”と呼ばれる面外座屈変形に注目し、その効率的な防止法を開発すべく“やせ馬現象”の発生メカニズムについて検討したところ、次のことが確認された。   Under the circumstances as described above, the present inventors pay attention to out-of-plane buckling deformation called “skin horse phenomenon” that occurs during welding, and to develop an effective prevention method of “skin horse phenomenon”. When the generation mechanism was examined, the following was confirmed.

(1)溶接建造において、溶接時に溶融した部分とその近傍(以下、溶接線近傍部と いうことがある)は、常温まで降温する際に熱収縮を起こす。   (1) In welding construction, the part melted during welding and the vicinity thereof (hereinafter sometimes referred to as the vicinity of the weld line) cause thermal contraction when the temperature is lowered to room temperature.

(2)上記熱収縮の際、溶接線近傍部は四周囲が補強リブで拘束されているため自由 収縮ができないことから、収縮によって生じる変形量不足を塑性変形によって補お うとする。その結果、当該領域にはその温度での降伏応力に相当する引張残留応力 が発生する。そして、該鋼板の溶接線近傍部が常温まで降温した状態では、溶接線 近傍部の常温での降伏応力に相当する引張残留応力が発生する。   (2) At the time of the above heat shrinkage, the weld line vicinity is restrained by reinforcing ribs around the four sides, so it cannot be freely shrunk. As a result, a tensile residual stress corresponding to the yield stress at that temperature is generated in the region. Then, in the state where the vicinity of the weld line of the steel sheet is cooled to room temperature, a tensile residual stress corresponding to the yield stress at room temperature in the vicinity of the weld line is generated.

(3)そうした現象に加えて溶接線から離れた部分では、溶接線近傍部に生じた引張 残留応力とバランスする様に圧縮残留応力が生じる。   (3) In addition to these phenomena, compressive residual stress is generated in the part away from the weld line so as to balance with the tensile residual stress generated in the vicinity of the weld line.

(4)そして上記圧縮残留応力が当該鋼板の座屈臨界強度を超えると、面外座屈変形 、すなわち“やせ馬現象”を生じることになる。   (4) When the compressive residual stress exceeds the critical buckling strength of the steel sheet, out-of-plane buckling deformation, that is, “skin horse phenomenon” occurs.

上記メカニズムのうち(2)は、「溶接線近傍部に発生する残留応力は溶接熱影響を受けた部分の降伏応力レベルに依存する」ことを意味しているから、面外座屈変形を抑えるには下記の点に考慮を払うのが有効と考えられる。   Among the above mechanisms, (2) means that “the residual stress generated in the vicinity of the weld line depends on the yield stress level of the part affected by the welding heat”, and thus suppresses out-of-plane buckling deformation. It is considered effective to pay attention to the following points.

即ち、「溶接時の熱影響により当該鋼板のAr3変態点以上に加熱された領域が常温にまで降温(冷却)した時点で、当該領域部分の降伏応力が極力低いこと」が重要であり、その場合は、溶接線から離れた部位に生じる圧縮残留応力も低減し、それに伴って面外座屈変形を起こし難くなると考えられる。 That is, it is important that the yield stress of the region portion is as low as possible when the region heated to the Ar 3 transformation point or more of the steel sheet due to the thermal effect during welding is lowered (cooled) to room temperature. In that case, it is considered that the compressive residual stress generated in a part away from the weld line is also reduced, and accordingly, it is difficult to cause out-of-plane buckling deformation.

ところで鋼材においては、添加合金元素量が多い場合、溶接熱によりAr3変態点以上に加熱された領域は、その後の冷却過程でベイナイトやマルテンサイトなどの硬質組織が形成され易くなり、溶接熱影響部の降伏応力は母材のそれよりも高くなることが多い。この場合、上記メカニズム(2)からすると、当該鋼板の溶接線から離れた部位に生じる圧縮残留応力レベルが高くなるため、面外座屈変形の低減は実現不能となる。そのため、上記メカニズム(2)を考慮して溶接熱影響部の降伏応力の上昇を抑えるには、焼入れ硬化作用を有する添加合金元素を極力低減することが必要となる。 By the way, in steel materials, when the amount of additive alloying elements is large, the region heated above the Ar 3 transformation point by welding heat tends to form hard structures such as bainite and martensite in the subsequent cooling process, and the influence of welding heat The yield stress of the part is often higher than that of the base metal. In this case, according to the mechanism (2), the level of compressive residual stress generated in a portion away from the weld line of the steel plate becomes high, and thus reduction of out-of-plane buckling deformation cannot be realized. Therefore, in order to suppress the increase in the yield stress of the weld heat affected zone in consideration of the mechanism (2), it is necessary to reduce the additive alloy element having a quench hardening effect as much as possible.

また前述した如く面外座屈変形は、溶接熱影響部の熱収縮に起因して発生した圧縮残留応力によって生じるが、当該座屈変形には、そのときの残留応力だけでなく、当該鋼板(母材)の降伏応力も関係することが確認された。すなわち、同レベルの残留応力が存在する場合は、母材自体の降伏応力が小さいほど座屈変形を起こし易くなるのである。この点について検討を進めた結果、鋼板(母材)の降伏応力を、当該鋼板の熱影響部の降伏応力よりも高くしてやれば、やせ馬現象を可及的に抑止できることが確認されたのである。   Further, as described above, the out-of-plane buckling deformation is caused by the compressive residual stress generated due to the thermal contraction of the weld heat affected zone, but the buckling deformation includes not only the residual stress at that time but also the steel plate ( It was confirmed that the yield stress of the base metal was also related. That is, when the residual stress of the same level exists, buckling deformation is more likely to occur as the yield stress of the base metal itself is smaller. As a result of studying this point, it was confirmed that if the yield stress of the steel sheet (base material) is made higher than the yield stress of the heat-affected zone of the steel sheet, the thin horse phenomenon can be suppressed as much as possible. .

更に溶接熱影響部の強度は、Ac3変態点(α→γ逆変態が完了した温度)以上に加熱された領域が周囲の鋼板への伝熱および鋼板表面から空気中への放熱によって常温まで冷却され、再びγ→α変態を生じたときに形成される組織変態によって決定され、ほぼ化学成分のみで決定される。一方、母材強度は、化学成分以外に圧延条件の変化に伴って変動することから、化学成分と圧延条件を制御することで母材強度と溶接熱影響部の強度を制御できることが確認された。 Furthermore, the strength of the weld heat-affected zone is such that the region heated above the Ac 3 transformation point (temperature at which α → γ reverse transformation is completed) reaches normal temperature due to heat transfer to the surrounding steel plate and heat dissipation from the steel plate surface to the air. It is determined by the tissue transformation formed when cooled and again undergoes the γ → α transformation, and is determined almost exclusively by chemical components. On the other hand, since the base metal strength fluctuates with changes in rolling conditions other than the chemical components, it was confirmed that the base metal strength and the strength of the weld heat affected zone can be controlled by controlling the chemical components and the rolling conditions. .

こうした知見の下で本発明においては、第1の必須要件として、鋼板の降伏応力と、当該鋼板を溶接したときの熱影響部の降伏応力の関係を、両者の比、すなわち(鋼板の降伏応力)/(当該鋼板を溶接したときの熱影響部の降伏応力)で1以上、言い換えると(鋼板の降伏応力)を(当該鋼板を溶接したときの熱影響部の降伏応力)よりも大きくしてやれば、やせ馬現象を可及的に防止できることを突き止めたのである。   Under such knowledge, in the present invention, as a first essential requirement, the relationship between the yield stress of the steel sheet and the yield stress of the heat-affected zone when the steel sheet is welded is the ratio between them, that is, (the yield stress of the steel sheet). ) / (Yield stress of the heat affected zone when the steel plate is welded) or more, in other words (yield stress of the steel plate) is greater than (yield stress of the heat affected zone when the steel plate is welded) They found out that the thin horse phenomenon can be prevented as much as possible.

そこで本発明では、鋼板(母材)の降伏応力を(YP0)とし、また溶接時の熱影響を模擬した熱履歴を受けたときの降伏応力を標準化するため、当該鋼板に前述した熱履歴を付与した後の降伏応力を(YP1)と定め、これら(YP0/YP1)が1以上であることを第1の必須要件と定めた。より好ましい(YP0/YP1)の値は1.2以上である。 Therefore, in the present invention, in order to standardize the yield stress when the yield stress of the steel sheet (base material) is (YP 0 ) and the thermal stress that simulates the thermal effect during welding is received, The yield stress after giving is defined as (YP 1 ), and the fact that (YP 0 / YP 1 ) is 1 or more is defined as the first essential requirement. A more preferable value (YP 0 / YP 1 ) is 1.2 or more.

但し、鋼板母材の降伏応力が低過ぎる場合は、船殻構造体などの構造用鋼板として強度不足になり必要な構造強度を確保できなくなることから、鋼板母材としての降伏応力並びに引張応力の下限値を夫々「250MP以上」、「400MPa以上」と定めた。   However, if the yield stress of the steel plate base material is too low, the strength of the structural steel plate such as a hull structure will be insufficient and the necessary structural strength cannot be secured. The lower limit values were defined as “250 MPa or more” and “400 MPa or more”, respectively.

なお図3は、後述する実施例を含めた多くの実験データの中から、(鋼板母材の降伏応力:YP0)/(溶接熱影響部の降伏応力:YP1)の比率が面外座屈変形量に与える影響を整理して示したグラフであり、該(YP0/YP1)比が1.0を境にして、それ未満では面外座屈変形量が4.0を超えるのに対し、該比が1.0以上になると面外座屈変形量は4.0以下の低い値になっている。 FIG. 3 shows that the ratio of (yield stress of steel plate base material: YP 0 ) / (yield stress of weld heat affected zone: YP 1 ) out of many experimental data including examples to be described later is out-of-plane. FIG. 6 is a graph showing the effects on the amount of bending deformation, with the (YP 0 / YP 1 ) ratio being 1.0 as a boundary, and if it is less than that, the out-of-plane buckling deformation amount exceeds 4.0. On the other hand, when the ratio is 1.0 or more, the out-of-plane buckling deformation amount is a low value of 4.0 or less.

また図4は、同様に多くの実験データの中から溶接熱影響部の降伏応力と面外座屈変形量の関係を整理して示したグラフであり、このグラフからは、溶接熱影響部の降伏応力が400MPa以下では面外座屈変形量が許容範囲の4.0mm以下に抑えられるのに対し、400MPaを超えると、面外座屈変形量は明らかに4.0mmを超えている。このことからも、溶接熱影響部の降伏応力は400MPa以下に抑えることが、やせ馬現象を抑止する上で有効となる。   Similarly, FIG. 4 is a graph showing the relationship between the yield stress and the amount of out-of-plane buckling deformation in the weld heat-affected zone from a lot of experimental data. When the yield stress is 400 MPa or less, the out-of-plane buckling deformation amount is suppressed to an allowable range of 4.0 mm or less, whereas when the yield stress exceeds 400 MPa, the out-of-plane buckling deformation amount clearly exceeds 4.0 mm. For this reason as well, it is effective to suppress the yield stress of the weld heat affected zone to 400 MPa or less in order to suppress the thin horse phenomenon.

次に、上記特性を得るための好ましい要件を見出すべく、鋼板母材や溶接熱影響部の降伏応力に少なからぬ影響を及ぼす含有元素と、それら元素の総合的な指標となる焼入れ性指数(DI値)について検討を重ねた。   Next, in order to find preferable requirements for obtaining the above characteristics, the contained elements that have a considerable influence on the yield stress of the steel plate base metal and the weld heat-affected zone, and the hardenability index (DI) that is a comprehensive indicator of these elements Value).

その結果、上記特性を得るための好ましい第1の要件として、使用する鋼材の化学成分に応じて前記式によって計算されるDI値が0.38(単位;インチ)以下となる様に構成元素の含有率を調整することが極めて重要であることを突き止めた。   As a result, as a preferable first requirement for obtaining the above-mentioned characteristics, the constituent elements are adjusted so that the DI value calculated by the above formula is 0.38 (unit: inch) or less according to the chemical composition of the steel material to be used. It was found that adjusting the content is extremely important.

これらDI値の上限を定めたのは、鋼材自体の焼入れ硬化性を低減し、溶接部およびその熱影響部が高温に加熱されたのち常温付近にまで降温する際に、焼入れ硬化によって強度上昇を起こすのを阻止し、やせ馬現象を起こす最大の原因となる溶接部および熱影響部の溶接後の降伏応力を可及的に低く抑えるためである。   The upper limit of these DI values was determined by reducing the hardenability of the steel material itself, and when the welded part and its heat-affected zone were heated to a high temperature and then cooled to near room temperature, the strength was increased by quenching hardening. This is because the yield stress after welding of the welded part and the heat-affected zone, which is the biggest cause of causing the skinnyness phenomenon, is suppressed as low as possible.

ちなみに、上記DI値、すなわち鋼材の焼入れ性指数が0.38を超えると鋼素材の焼入れ硬化性が高まり、それに伴って、溶接後の冷却過程で当該溶接部や熱影響部が焼入れ硬化を起こし当該部位の降伏応力が上昇する。それにつれて、前掲のメカニズム(2)で説明した如く溶接線近傍部の引張残留応力が高まり、それに伴って該引張残留応力とバランスする様に該溶接線から離れた部分に発生する圧縮残留応力も増大し、やせ馬現象を促す原因となる。よってこうした現象を抑えるには、その根源となるDI値を0.38以下に抑えることが必須となるのである。これらの焼入れ性指数のより好ましい値は0.37以下、更に好ましくは0.36以下であるが、鋼材の焼入れ性指数が低くなり過ぎると、溶接熱影響部の強度が不十分となり、構造用鋼としての必要強度を確保し難くなることから、その下限を0.22程度以上、より好ましくは0.24程度以上にすべきである。   Incidentally, when the DI value, that is, the hardenability index of the steel material exceeds 0.38, the hardenability of the steel material increases, and accordingly, the welded part and the heat-affected part undergo quench hardening in the cooling process after welding. The yield stress of the part increases. Accordingly, as described in the mechanism (2), the tensile residual stress in the vicinity of the weld line increases, and accordingly, the compressive residual stress generated in the part away from the weld line is balanced with the tensile residual stress. Increases and causes the skinnyness phenomenon. Therefore, in order to suppress such a phenomenon, it is essential to suppress the underlying DI value to 0.38 or less. More preferable values of these hardenability indexes are 0.37 or less, more preferably 0.36 or less. However, if the hardenability index of the steel material becomes too low, the strength of the weld heat affected zone becomes insufficient, and the structural Since it becomes difficult to ensure the required strength as steel, the lower limit should be about 0.22 or more, more preferably about 0.24 or more.

尚、鋼材が析出硬化元素として適量のNb,V,Tiを含有する場合は、それらの元素の炭化物や炭窒化物の析出硬化により母材強度が高まるので、当該鋼材のDI値は0.09程度であっても構わないが、好ましいのは0.16程度以上である。   When the steel material contains appropriate amounts of Nb, V, and Ti as precipitation hardening elements, the strength of the base material is increased by precipitation hardening of carbides and carbonitrides of these elements, so the DI value of the steel material is 0.09. However, it is preferably about 0.16 or more.

また鋼材の炭素当量が低くなり過ぎると、後述する製法で説明する如く母材強度向上の為の処理にも拘らず母材強度が不十分となり、構造用鋼としての必要強度を確保し難くなることから、その下限は0.15程度以上、より好ましくは0.16程度以上にすべきである。   Moreover, if the carbon equivalent of the steel material becomes too low, the base material strength becomes insufficient in spite of the treatment for improving the base material strength as described in the manufacturing method described later, and it becomes difficult to secure the necessary strength as structural steel. Therefore, the lower limit should be about 0.15 or more, more preferably about 0.16 or more.

次に本発明で使用する鋼材の好ましい化学成分について説明する。本発明に係る鋼板は、以下説明する如く2種の鋼材1と鋼材2に分類される。   Next, preferable chemical components of the steel material used in the present invention will be described. The steel plates according to the present invention are classified into two types of steel materials 1 and 2 as described below.

本発明で用いる鋼材1の好ましい化学成分は、C:0.005〜0.12%、Si:0.05〜0.5%、Mn:0.05〜1.2%で、残部がFeおよび不可避不純物であり、或いは更に、これらの元素に加えてN:0.002〜0.007%を含み、且つ、Nb:0.005〜0.03%、V:0.005〜0.075%、Ti:0.005〜0.03%よりなる群から選ばれる少なくとも1種を含有する鋼材であり、これら各成分の含有率を規定した理由は下記の通りである。   The preferable chemical components of the steel material 1 used in the present invention are C: 0.005 to 0.12%, Si: 0.05 to 0.5%, Mn: 0.05 to 1.2%, with the balance being Fe and Inevitable impurities, or, in addition to these elements, N: 0.002 to 0.007%, Nb: 0.005 to 0.03%, V: 0.005 to 0.075% , Ti: a steel material containing at least one selected from the group consisting of 0.005 to 0.03%, and the reason why the contents of these components are specified is as follows.

C:0.005〜0.12%
Cは、鋼板母材として必要な構造強度を確保するうえで最も有効であり且つ安価であることから、添加が不可欠の元素であり、0.005%未満では強度不足となるのでそれ以上の含有を必須とする。より好ましいC含量は0.01%以上であり、更に好ましくは0.03%以上である。一方、本発明では、前述した如く溶接熱影響部の焼入れ硬化特性を抑えることでやせ馬現象を低減するため、鋼材のDI値を抑えることを必要としており、該DI値にはCの影響が大きいことから、C含量は多くとも0.12%以下、好ましくは0.11%以下、更に好ましくは0.10%以下に抑えるのがよい。
C: 0.005-0.12%
C is the most effective and inexpensive element for securing the structural strength necessary for a steel plate base material, so addition is an indispensable element. Is required. A more preferable C content is 0.01% or more, and further preferably 0.03% or more. On the other hand, in the present invention, as described above, it is necessary to suppress the DI value of the steel material in order to reduce the thinning phenomenon by suppressing the quench hardening characteristics of the weld heat affected zone, and the DI value is affected by C. Because of its large size, the C content is at most 0.12% or less, preferably 0.11% or less, more preferably 0.10% or less.

Si:0.05〜0.5%
Siは溶鋼の脱酸材としての役割を持つと共に、DI値を上昇させて母材強度の向上に寄与する元素であるため、少なくとも0.05%程度以上含有させることが望ましい。好ましくは0.10%以上である。しかし、過度の添加は溶接熱影響部の焼入れ硬化性を上昇させて当該領域に発生する残留応力を大きくすると共に、当該領域の低温靭性を劣化させるので、0.5%を上限とする。好ましくは0.4%以下、更に好ましくは0.3%以下に抑えるのがよい。
Si: 0.05-0.5%
Si has a role as a deoxidizer for molten steel and is an element that increases the DI value and contributes to the improvement of the strength of the base metal. Therefore, it is desirable to contain at least about 0.05% or more. Preferably it is 0.10% or more. However, excessive addition increases the quenching hardenability of the weld heat affected zone to increase the residual stress generated in the region, and deteriorates the low temperature toughness of the region, so 0.5% is made the upper limit. Preferably it is 0.4% or less, more preferably 0.3% or less.

Mn:0.05〜1.2%
Mnは母材強度を高める役割を果たすと共にDI値を上昇させて母材強度の向上に寄与するので、少なくとも0.05%以上含有させることが望ましい。好ましくは0.10%以上、更に好ましくは0.20%以上である。しかし、過度の添加は溶接熱影響部の焼入れ硬化性を上昇させて当該領域に発生する残留応力を大きくすると共に、当該領域の低温靭性を劣化させるので、多くとも1.2%以下を上限とする。好ましくは1.0%以下、更に好ましくは0.8%以下に抑えるのがよい。
Mn: 0.05-1.2%
Mn plays a role of increasing the strength of the base material and increases the DI value to contribute to the improvement of the strength of the base material. Therefore, it is desirable to contain Mn at least 0.05% or more. Preferably it is 0.10% or more, more preferably 0.20% or more. However, excessive addition increases the hardenability of the heat affected zone and increases the residual stress generated in the region, and deteriorates the low temperature toughness of the region. To do. Preferably it is 1.0% or less, more preferably 0.8% or less.

上記元素に加えてNと、Nb,V,Tiの1種以上を含有する場合は、
N:0.002〜0.007%で、且つ、Nb:0.005〜0.03%、V:0.005〜0.075%、Ti:0.005〜0.03%の1種以上;
本発明においてNは、Nb,V,Tiと結合して窒化物の生成源となり、それら窒化物は、溶接熱影響部のオーステナイト組織の粗大化抑制に有効に作用することで溶接熱影響部の靭性向上に寄与する。こうした作用を有効に発揮させるには、NおよびNb,V,Tiを上記範囲にすることが好ましい。
In the case of containing N and one or more of Nb, V and Ti in addition to the above elements,
N: 0.002 to 0.007%, Nb: 0.005 to 0.03%, V: 0.005 to 0.075%, Ti: 0.005 to 0.03% or more ;
In the present invention, N combines with Nb, V, and Ti to form nitrides, and these nitrides effectively act to suppress coarsening of the austenite structure in the weld heat affected zone, thereby reducing the weld heat affected zone. Contributes to improved toughness. In order to effectively exhibit such an action, it is preferable to set N and Nb, V, and Ti within the above ranges.

本発明で用いる鋼材の残部成分は実質的に鉄と、不可避的に混入してくる不純物であり、その中には、Al、P、Sなども包含される。即ちAlは、脱酸剤として利用される元素であって、鋼中の固溶酸素量を十分に低減して母材の靭性劣化を抑えるには、0.02%以上含有させることが望ましい。しかし、過度の含有は非金属系介在物の形成源となって母材靭性や溶接熱影響部の靭性を劣化させる原因になるので、0.05%以下、より好ましくは0.04%以下に抑えるのがよい。   The remaining component of the steel material used in the present invention is substantially unavoidably mixed with iron and includes impurities such as Al, P, and S. That is, Al is an element used as a deoxidizer, and is desirably contained in an amount of 0.02% or more in order to sufficiently reduce the amount of dissolved oxygen in the steel and suppress the deterioration of the toughness of the base material. However, excessive inclusion becomes a source of formation of non-metallic inclusions and causes deterioration of the toughness of the base metal and the weld heat affected zone, so 0.05% or less, more preferably 0.04% or less. It is good to suppress.

また、P,Sはいずれも鋼中に不可避的に混入してくる元素であり、且つ介在物源となって鋼板の母材靭性および溶接熱影響部の靭性に悪影響を及ぼすので、Pは0.05%以下、より好ましくは0.03%以下、更に好ましくは0.02%以下に抑えるのがよく、またSは0.02%以下、より好ましくは0.01%以下、更に好ましくは0.005%以下に抑えるのがよい。   Further, P and S are elements that are inevitably mixed in the steel, and serve as inclusions, which adversely affect the base material toughness of the steel sheet and the toughness of the weld heat affected zone. 0.05% or less, more preferably 0.03% or less, still more preferably 0.02% or less, and S is 0.02% or less, more preferably 0.01% or less, still more preferably 0. It is good to keep it at 0.005% or less.

そして、上記成分要件を満足する鋼材1のDI値は、前記式によって計算される値で0.38以下であることが必要となる。   And DI value of the steel material 1 which satisfies the said component requirements needs to be 0.38 or less by the value calculated by the said Formula.

次に、本発明で用いる鋼材2の好ましい化学成分は、上記鋼材1で規定するC,Si,Mnの含有率範囲に加えて、N含量、更にはNb,V,Tiから選択される少なくとも1種の含有量を満足することに加えて、N含量とNb,V,Tiの含量の関係が「Nb/6.63N+V/3.64N+Ti/3.41N>1」を満たし、残部がFeおよび不可避不純物からなるものである。   Next, a preferable chemical component of the steel material 2 used in the present invention is at least one selected from the N content, and further Nb, V, and Ti, in addition to the content range of C, Si, and Mn defined in the steel material 1. In addition to satisfying the seed content, the relationship between the N content and the content of Nb, V, Ti satisfies “Nb / 6.63N + V / 3.64N + Ti / 3.41N> 1” with the balance being Fe and inevitable impurities Is.

即ちNは、前述した如くNb,V,Tiと窒化物を形成して溶接熱影響部の靭性向上に寄与するが、本発明の第2の態様にかかる鋼材2では、Nb,V,Tiを炭化物(あるいは炭窒化物)として析出させることで、析出硬化により強度アップを図ること意図しており、Nb,V,Tiの質量比との関係において、それらが窒化物を形成したとしてもなお、炭化物としての生成量も確保されて析出硬化効果を発揮するための要件として「Nb/6.63N+V/3.64N+Ti/3.41N>1」を満たすことが必要となる。   That is, N forms a nitride with Nb, V, Ti as described above and contributes to the improvement of the toughness of the weld heat affected zone. However, in the steel material 2 according to the second aspect of the present invention, Nb, V, Ti By precipitating as carbide (or carbonitride), it is intended to increase strength by precipitation hardening, and even if they form nitrides in relation to the mass ratio of Nb, V, Ti, It is necessary to satisfy “Nb / 6.63N + V / 3.64N + Ti / 3.41N> 1” as a requirement for exhibiting the precipitation hardening effect while securing the amount of carbide produced.

そして、上記の様にNb,V,Tiの炭化物としての析出硬化作用を有効に活用することで、追って詳述する如く鋼板を製造する際の熱間圧延時における温度と圧下率を適正に制御することで、溶接熱影響部の降伏応力は高めることなく、圧延時におけるそれら元素の炭化物(あるいは炭窒化物)の析出硬化作用で鋼板母材の降伏応力および引張応力を効果的に高めることができる。   As described above, by effectively utilizing the precipitation hardening action as carbides of Nb, V, and Ti, the temperature and the rolling reduction during hot rolling when manufacturing a steel sheet as described in detail later are appropriately controlled. As a result, the yield stress and tensile stress of the steel base metal can be effectively increased by precipitation hardening of carbides (or carbonitrides) of these elements during rolling without increasing the yield stress of the weld heat affected zone. it can.

こうしたNb,V,Tiの作用は、Nb:0.005%以上(より好ましくは0.008%以上)、V:0.005%以上(より好ましくは0.010%以上)、またはTi:0.005%以上(より好ましくは0.008%以上)含有させ、且つ「Nb/6.63N+V/3.64N+Ti/3.41N>1」を満たす場合に有効に発揮される。しかし、これらの元素は高価であり素材コストを高める原因になる他、それらの含量が多過ぎると、析出する炭化物(あるいは炭窒化物)の数や体積分率が過大となって、母材の低温靭性や引張延性などを低下させる他、溶接熱により溶解した析出物が再析出し易くなって溶接熱影響部の降伏応力が高くなり、その結果、やせ馬変形量も大きくなるといった問題が生じてくるので、Nbは0.03%以下(より好ましくは0.025%以下、更に好ましくは0.020%以下)、Vは0.075%以下(より好ましくは0.060%以下、更に好ましくは0.050%以下)、Tiは0.030%以下(より好ましくは0.025%以下、更に好ましくは0.020%以下)に抑えるべきである。   Such action of Nb, V, Ti is Nb: 0.005% or more (more preferably 0.008% or more), V: 0.005% or more (more preferably 0.010% or more), or Ti: 0. 0.005% or more (more preferably 0.008% or more) is contained, and this is effectively exhibited when “Nb / 6.63N + V / 3.64N + Ti / 3.41N> 1” is satisfied. However, these elements are expensive and cause the material cost to increase, and if their content is too large, the number of precipitated carbides (or carbonitrides) and the volume fraction will be excessive, and In addition to lowering the low temperature toughness and tensile ductility, there is a problem that precipitates melted by welding heat are easily reprecipitated and the yield stress of the weld heat affected zone is increased, resulting in an increase in deformation of the thin horse. Therefore, Nb is 0.03% or less (more preferably 0.025% or less, more preferably 0.020% or less), and V is 0.075% or less (more preferably 0.060% or less, more preferably Is 0.050% or less), and Ti is 0.030% or less (more preferably 0.025% or less, and still more preferably 0.020% or less).

そして上記成分要件を満足する鋼材2の好ましいDI値は、前記式によって計算される値で0.38以下であることが必要となる。   And the preferable DI value of the steel material 2 which satisfies the said component requirements needs to be 0.38 or less by the value calculated by the said Formula.

尚、鋼材が析出硬化元素として適量のNb,V,Tiを含有する場合は、それらの元素の炭化物や炭窒化物の析出硬化により母材強度が高まるので、当該鋼材のDI値の下限は0.09程度であってもよい。しかし、好ましいのは0.16程度以上である。   When the steel material contains appropriate amounts of Nb, V, and Ti as precipitation hardening elements, the base material strength is increased by precipitation hardening of carbides and carbonitrides of these elements, so the lower limit of the DI value of the steel material is 0. .09 or so. However, it is preferably about 0.16 or more.

本発明で好ましく使用される上記鋼材1,2の必須構成元素は上記の通りであり、残部はFeと不可避不純物であるが、場合によっては更に他の元素として、Ca:0.0005〜0.003%、Zr:0.0005〜0.004%、REM:0.0005〜0.005%よりなる群から選ばれる少なくとも1種、あるいは更に、Ni:0.2%以下、Cu:0.2%以下、Cr:0.2%以下、Mo:0.1%以下よりなる群から選択される少なくとも1種を含むものであってもよい。   The essential constituent elements of the steel materials 1 and 2 that are preferably used in the present invention are as described above, and the balance is Fe and inevitable impurities, but in some cases, as other elements, Ca: 0.0005 to 0.00. At least one selected from the group consisting of 003%, Zr: 0.0005-0.004%, REM: 0.0005-0.005%, or Ni: 0.2% or less, Cu: 0.2 % Or less, Cr: 0.2% or less, Mo: at least one selected from the group consisting of 0.1% or less may be included.

上記Ca,Zr,REMは、MnSなどのA系介在物(圧延時に圧延方向に伸び易い介在物)を球状化することで内部割れや溶接熱影響部からの亀裂発生を抑制する効果を有する点で同効元素であり、それらの効果は各々の単独添加もしくは2種以上の複合添加によって有効に発揮される。そうした効果を有効に発揮させるには、Caは0.0003%以上(より好ましくは0.0007%以上)、Zrは0.0005%以上(より好ましくは0.0010%以上)、REMは0.0005%以上(より好ましくは0.0010%以上)含有させるのがよい。しかしそれらの含有量が多過ぎると、各元素の酸化物(CaOなど)が多量生成し、母材靭性や引張延性が劣化するといった弊害が生じてくるので、Caは0.003%以下(より好ましくは0.0025%以下)、Zrは0.004%以下(より好ましくは0.004%以下)、REMは0.005%以下(より好ましくは0.0035%以下)にそれぞれ抑えるのがよい。   The above Ca, Zr, and REM have the effect of suppressing the occurrence of internal cracks and cracks from the heat affected zone by spheroidizing A-based inclusions (inclusions that are easy to extend in the rolling direction during rolling) such as MnS. These effects are effectively exerted by each single addition or two or more combined additions. In order to exhibit such an effect effectively, Ca is 0.0003% or more (more preferably 0.0007% or more), Zr is 0.0005% or more (more preferably 0.0010% or more), and REM is 0.00. It is good to make it contain 0005% or more (more preferably 0.0010% or more). However, if the content of these elements is too large, a large amount of oxides of each element (CaO, etc.) are generated, and the base material toughness and tensile ductility are deteriorated. Therefore, Ca is 0.003% or less (more Preferably, 0.0025% or less), Zr is 0.004% or less (more preferably 0.004% or less), and REM is 0.005% or less (more preferably 0.0035% or less). .

またNi,Cu,Cr,Moは、いずれも焼入れ性を高め、母材強度を高める作用を有する点で同効元素であり、それらの効果は各々の単独添加もしくは2種以上の複合添加によって有効に発揮される。しかしこれらの元素が多過ぎると、焼入れ性が高まり過ぎて溶接熱影響部の降伏応力が高くなり、その結果、やせ馬変形量も大きくなることに加えて、さらに原料費が高騰し製造コストが高くなるといった問題が生じてくるので、Niは0.2%以下(より好ましくは0.1%以下)、Cuは0.2%以下(より好ましくは0.1%以下)、Crは0.2%以下(より好ましくは0.1%以下)、Moは0.1%以下(より好ましくは0.05%以下)に抑えるのがよい。   Ni, Cu, Cr, and Mo are all effective elements in that they have the effect of increasing the hardenability and increasing the strength of the base material, and their effects are effective by adding each of them individually or in combination of two or more. To be demonstrated. However, if there are too many of these elements, the hardenability increases too much and the yield stress of the weld heat affected zone increases, resulting in an increase in the amount of deformation of the lean horse and, in addition, the raw material cost increases further and the manufacturing cost increases. Since a problem such as an increase occurs, Ni is 0.2% or less (more preferably 0.1% or less), Cu is 0.2% or less (more preferably 0.1% or less), and Cr is 0.2% or less. It is good to keep 2% or less (more preferably 0.1% or less) and Mo 0.1% or less (more preferably 0.05% or less).

次に、上記化学成分の特定された鋼材1,2は、いずれも炭素当量が低く且つ強化元素含量も少ないため、通常の鋼板の製造条件をそのまま適用したのでは、鋼板母材として十分な強度を確保することができず、構造用鋼として強度不足となる。従ってこれを実用化するには、船殻構造用鋼板として必要な強度を確保しつつ、当該鋼板を用いた溶接線近傍部は低降伏応力を示すという特性を両立させるための工夫が必要となる。そこで、そのための製造条件について検討を加えた。   Next, since the steel materials 1 and 2 with the above specified chemical components are both low in carbon equivalent and low in the strengthening element content, applying the normal steel plate production conditions as they are, the strength sufficient as a steel plate base material is sufficient. Cannot be secured, and the strength of the structural steel is insufficient. Therefore, in order to put this to practical use, it is necessary to devise a technique to ensure the necessary strength as a steel plate for ship hull structure, while at the same time exhibiting low yield stress in the vicinity of the weld line using the steel plate. . Therefore, the manufacturing conditions for that purpose were examined.

本発明で意図するような低炭素・低合金鋼の熱延組織は通常フェライト相が主体となり、この様なフェライト主体組織の鋼板の強度を高める手段としては、
1)フェライト結晶粒の微細化による強化、
2)Ar3変態点以下の温度域での圧延によるフェライト相の加工硬化を活用した強化、
3)合金元素の添加による固溶強化、
4)金属炭化物などの析出強化を活用した強化、
等が挙げられる。これらのうち、合金元素を添加することなく強化できる方法は上記1),2)であるが、1)を実施するには非常に大きな1パス圧下率で圧延しなければならず、非常に大きな圧延機の能力を必要とするか、或いは圧延サイズ(圧延幅が狭く、圧延厚も薄い)などの条件が揃った場合にしか実現できないなど、現状では安定的に実現することが困難である。また3)の強化法では、高々30〜50MPa程度の強化しか期待できない。これらに対し2)の強化法は、圧延温度を厳密に管理することで実現可能な技術であり、また上記4)の方法は、析出強化元素であるNb,V,Tiを含み「Nb/6.63N+V/3.64N+Ti/3.41N≧1」を満たす鋼材2に対しては適用可能である。
The hot-rolled structure of the low carbon / low alloy steel as intended in the present invention is mainly composed of a ferrite phase, and as a means for increasing the strength of the steel sheet having such a ferrite-based structure,
1) Strengthening by refinement of ferrite crystal grains,
2) Strengthening utilizing work hardening of ferrite phase by rolling in temperature range below Ar 3 transformation point,
3) Solid solution strengthening by adding alloying elements,
4) Strengthening using precipitation strengthening of metal carbide, etc.
Etc. Of these, the methods that can be strengthened without adding alloying elements are the above 1), 2), but in order to carry out 1), they must be rolled at a very large one-pass reduction, which is very large. It is difficult to achieve stably at present, for example, it can be realized only when the capacity of the rolling mill is required or the conditions such as the rolling size (the rolling width is narrow and the rolling thickness is thin) are met. Further, in the strengthening method of 3), only a strengthening of about 30 to 50 MPa can be expected. On the other hand, the strengthening method 2) is a technique that can be realized by strictly controlling the rolling temperature, and the method 4) includes Nb, V, Ti, which are precipitation strengthening elements, and is “Nb / 6.63”. It is applicable to the steel material 2 that satisfies “N + V / 3.64N + Ti / 3.41N ≧ 1”.

そこで本発明では、前記鋼材1の成分要件を満たす鋼片を使用する場合は、所定の母材強度(YP0)を確保しつつ、溶接熱影響部の降伏応力(YP1)と母材の降伏応力(YP0)の比(YP0/YP1)で1以上を確保するため、該鋼片を950℃以上に加熱した後、目標板厚まで圧延する際に、下記式によって算出されるAr3変態点以下の温度域での累積圧下率が30%以上となる様に圧延を行なう。
Ar3(℃)=910−310×C−80×Mn−20×Cu−15×Cr−55×Ni−80×Mo
[式中の化学記号は、各元素の含有率(質量%)を表わす]
Therefore, in the present invention, when using a steel piece that satisfies the component requirements of the steel material 1 , while ensuring a predetermined base material strength (YP 0 ), the yield stress (YP 1 ) of the weld heat affected zone and the base material In order to ensure that the yield stress (YP 0 ) ratio (YP 0 / YP 1 ) is 1 or more, the steel slab is heated to 950 ° C. or higher and then rolled to the target plate thickness. Rolling is performed so that the cumulative rolling reduction in the temperature range below the Ar 3 transformation point is 30% or more.
Ar 3 (° C.) = 910−310 × C−80 × Mn-20 × Cu-15 × Cr-55 × Ni-80 × Mo
[The chemical symbol in the formula represents the content (% by mass) of each element]

このとき、Ar3変態点以下の温度域での圧下率を高めるにつれて加工フェライト組織が増大し、それに伴って母材の降伏強度は高くなる。特に、降伏強度は引張強度と比較して大きく上昇する。一方、溶接熱影響部がAr3変態点以上に加熱されるとフェライト(α)からオーステナイト(γ)に変態するので、加熱前に存在していた加工フェライト組織はリセットされ、その後の冷却過程で生成したフェライト組織に応じた降伏応力を示す様になる。その降伏応力は、第二相(主としてパーライト)分率と固溶強化されたフェライト組織の割合によりほぼ決まってくるので、添加合金元素量に応じて降伏応力は決定される。従って、鋼板を製造する際の圧延時におけるA3変態点以下の温度域での圧下率を高くすると、加工硬化によって鋼板母材の降伏応力および引張応力、特に降伏応力を大きく高めることができる。 At this time, as the rolling reduction in the temperature range below the Ar 3 transformation point is increased, the processed ferrite structure increases, and the yield strength of the base material increases accordingly. In particular, the yield strength is greatly increased compared to the tensile strength. On the other hand, if the weld heat affected zone is heated above the Ar 3 transformation point, it transforms from ferrite (α) to austenite (γ), so the processed ferrite structure that existed before heating is reset, and in the subsequent cooling process It shows the yield stress according to the generated ferrite structure. Since the yield stress is almost determined by the fraction of the second phase (mainly pearlite) and the solid solution strengthened ferrite structure, the yield stress is determined according to the amount of the added alloy element. Therefore, increasing the reduction ratio in the temperature range below A 3 transformation point at the time of rolling in the production of the steel sheet, the yield stress and tensile stress of the plate matrix by work hardening, in particular the yield stress can be enhanced greatly.

こうした観点から実験を重ねた結果、該Ar3変態点以下の温度域での圧下率を30%以上にしてやれば、鋼板の降伏応力(YP0)で250MPa以上、引張強度で400MPa以上を確保しつつ、該鋼板の降伏応力(YP0)と溶接熱影響部の降伏応力(YP1)の比(YP0/YP1)で1以上を確保できることが分かった。この様なことから、鋼材1の成分要件を満たす鋼片を使用する場合は、該鋼片を950℃以上に加熱してから目標板厚に圧延する際に、Ar3変態点以下の温度域までの累積圧下率を30%以上とすることが必要であり、より好ましくは40%以上とするのがよい。 As a result of repeated experiments from this point of view, if the reduction rate in the temperature range below the Ar 3 transformation point is 30% or more, the yield stress (YP 0 ) of the steel sheet is 250 MPa or more and the tensile strength is 400 MPa or more. while, it has been found that can secure one or a ratio of the yield stress of the steel plate (YP 0) and weld heat affected zone of the yield stress (YP 1) (YP 0 / YP 1). For this reason, when using a steel slab that satisfies the component requirements of the steel material 1, when the steel slab is heated to 950 ° C. or higher and rolled to the target plate thickness, the temperature range below the Ar 3 transformation point. Up to 30% or more, more preferably 40% or more.

ちなみに図5は、炭化物形成元素無添加の鋼材(前記鋼材1)を用いた種々の実験データの中から、Ar3変態点以下の圧下率が母材の引張強度(TS0)に与える影響を整理して示したグラフであり、400MPaレベル以上の引張強度を確保するには、Ar3変態点以下の圧下率で30%以上を確保すべきであることが分かる。 Incidentally, FIG. 5 shows the influence of the rolling reduction below the Ar 3 transformation point on the tensile strength (TS 0 ) of the base metal from various experimental data using the steel material with no carbide forming element added (the steel material 1). This graph is organized and shows that in order to ensure a tensile strength of 400 MPa or higher, it is necessary to ensure 30% or more at a rolling reduction below the Ar 3 transformation point.

次に前記鋼材2の成分要件を満たす鋼片を使用する場合は、所定の母材強度(YP0)を確保しつつ、溶接熱影響部の降伏応力(YP1)と母材の降伏応力(YP0)の比(YP0/YP1)で1以上を確保するため、該鋼片を、950℃以上に加熱したのち目標板厚まで圧延する際に、850〜950℃の温度域での累積圧下率を50%以上で圧延を終了することで、析出強化元素であるNb,V,Tiの作用を有効に発揮させることが必要となる。 Next, when using a steel piece that satisfies the component requirements of the steel material 2, the yield stress (YP 1 ) of the weld heat-affected zone and the yield stress of the base material (YP 0 ) while securing a predetermined base material strength (YP 0 ) to ensure the least ratio of YP 0) (YP 0 / YP 1), a steel piece, when rolled to a target thickness after heating above 950 ° C., in the temperature range of 850 to 950 ° C. It is necessary to effectively exhibit the action of the precipitation strengthening elements Nb, V, and Ti by finishing the rolling at a cumulative reduction ratio of 50% or more.

ちなみに、Nb,V,Tiの炭化物(あるいは炭窒化物)の析出温度域は約900℃以下であるが、圧延することなく放置した場合は完全には析出せず、析出強化を有効に活用するには圧延後に焼戻し処理を施す必要がある。一方、それら炭化物等の析出温度域の直上で圧延を行なった場合、圧延によって導入された転位などの欠陥部が析出物形成元素(Nb,V,Ti)の集積サイトあるいは炭化物の生成サイトとなり、或いは転位拡散[通常の拡散(体拡散という)の約10倍以上の速度で拡散]により析出物形成元素の集積を促進することで炭化物の析出が促進され、圧延後に焼戻し処理をせずとも、焼戻し処理を実施した場合の70〜80%の強化が可能になることが分った。   Incidentally, the precipitation temperature range of carbides (or carbonitrides) of Nb, V, and Ti is about 900 ° C. or less, but when left without being rolled, it is not completely precipitated, and precipitation strengthening is effectively utilized. It is necessary to temper after rolling. On the other hand, when rolling is performed immediately above the precipitation temperature range of such carbides, defects such as dislocations introduced by rolling become accumulation sites of precipitate forming elements (Nb, V, Ti) or carbide generation sites, Alternatively, dislocation diffusion [diffusion at a rate of about 10 times or more of normal diffusion (referred to as body diffusion)] promotes the accumulation of precipitate forming elements to promote precipitation of carbides, and without tempering after rolling. It has been found that 70-80% strengthening is possible when tempering is performed.

但し、単に析出温度域の直上で圧延すればよいわけではなく、本発明で意図する上記母材強度(降伏応力;YP0で250MPa以上、引張強度;TS0で400MPa以上)を確保しつつ、(YP0/YP1)を1以上とするには、素材鋼片を950℃以上に加熱した後、目標板厚にまで圧延する際に、850〜950℃の温度域での累積圧下率を50%以上とすべきであることが分った。 However, it is not necessary to simply roll just above the precipitation temperature range, while ensuring the above-mentioned base material strength (yield stress; YP 0 of 250 MPa or more, tensile strength: TS 0 of 400 MPa or more) intended in the present invention, In order to set (YP 0 / YP 1 ) to 1 or more, when the raw steel slab is heated to 950 ° C. or higher and then rolled to the target plate thickness, the cumulative reduction ratio in the temperature range of 850 to 950 ° C. is set. It was found that it should be 50% or more.

ちなみに、上記炭化物などの析出温度域の直上での圧下率が増加するにつれて、圧延終了後の冷却時に析出する炭化物などの量は増大し、それに伴って鋼板母材の降伏強度および引張強度は上昇する。一方、溶接熱影響部がAr3変態点以上に加熱されるとα(フェライト)からγ(オーステナイト)への変態が生じ、また圧延後の冷却時に析出した炭化物等は固溶してしまうので、加熱前に存在していた析出強化されたフェライト組織はリセットされる。そのため、その後の冷却過程で析出するための生成サイトが不足することになって十分な強化ができなくなる。 By the way, as the rolling reduction ratio just above the precipitation temperature range of carbides etc. increases, the amount of carbides, etc. that precipitate during cooling after the end of rolling increases, and accordingly the yield strength and tensile strength of the steel plate base material increase. To do. On the other hand, when the weld heat affected zone is heated to the Ar 3 transformation point or higher, transformation from α (ferrite) to γ (austenite) occurs, and carbides and the like precipitated during cooling after rolling are dissolved. The precipitation strengthened ferrite structure present before heating is reset. For this reason, the generation sites for precipitation in the subsequent cooling process are insufficient, and sufficient strengthening cannot be performed.

従って、溶接熱影響を受けた部分の降伏応力および引張応力は、冷却後に生成したフェライト組織に応じた強度に若干(焼戻し処理時の40〜50%程度)の析出強化を加えた強度を示す様になる。他方、炭化物等の析出温度域直上での圧下率を高くすると、鋼板母材の強度、とりわけ降伏応力を効率よく高めることができる。その結果として、溶接熱影響部の降伏応力は最小限に抑えつつ、鋼板母材の降伏応力のみを高めることが可能となる。   Therefore, the yield stress and tensile stress of the part affected by the heat of welding seem to show a strength obtained by adding some precipitation strengthening (about 40-50% during tempering) to the strength corresponding to the ferrite structure generated after cooling. become. On the other hand, when the rolling reduction ratio just above the precipitation temperature region of carbide or the like is increased, the strength of the steel sheet base metal, particularly the yield stress, can be increased efficiently. As a result, it is possible to increase only the yield stress of the steel plate base material while minimizing the yield stress of the weld heat affected zone.

こうした観点から実験を重ねた結果、950℃以上に加熱した後、目標板厚にまで圧延する際に、850〜950℃の温度域での累積圧下率を50%以上、より好ましくは55%以上として圧延を終了するのがよいことが分った。   As a result of repeated experiments from such a viewpoint, when heated to 950 ° C. or higher and then rolled to the target plate thickness, the cumulative rolling reduction in the temperature range of 850 to 950 ° C. is 50% or higher, more preferably 55% or higher. As it turns out, rolling is good to finish.

ちなみに図6は、炭化物形成元素を添加した鋼材(前記鋼材2)を用いた種々の実験データの中から、850〜950℃の温度域での累積圧下率が母材の引張強度(TS0)に与える影響を整理して示したグラフであり、400MPaレベル以上の引張強度を確保するには、850〜950℃の温度域での累積圧下率で50%以上を確保すべきであることが分かる。 Incidentally, FIG. 6 shows that the cumulative rolling reduction in the temperature range of 850 to 950 ° C. is the tensile strength (TS 0 ) of the base material among various experimental data using the steel material added with the carbide forming element (the steel material 2 ). In order to secure a tensile strength of 400 MPa or more, it is understood that 50% or more should be secured in the cumulative rolling reduction in the temperature range of 850 to 950 ° C. .

更に図7は、後述する実施例を含めた実験データの中から、DI値と溶接熱影響部の降伏応力の関係を纏めて示したグラフであり、この図からは、DI値(インチ)を0.38以下に抑えることで、溶接熱影響部の降伏応力を400MPa以下の低い値に抑制できることが分かる。   Further, FIG. 7 is a graph summarizing the relationship between the DI value and the yield stress of the weld heat-affected zone from the experimental data including examples described later. From this figure, the DI value (inch) is shown. It can be seen that the yield stress of the weld heat-affected zone can be suppressed to a low value of 400 MPa or less by suppressing it to 0.38 or less.

なお本発明に係る鋼板の板厚は特に制限されず、様々の厚さの鋼板に適用できるが、本発明の効果がより有効に発揮されるのは、厚さが4.5mm程度以上の厚鋼板である。板厚の上限は特に制限されないが、通常は10mm程度以下である。   The plate thickness of the steel plate according to the present invention is not particularly limited and can be applied to steel plates having various thicknesses, but the effect of the present invention is more effectively exhibited when the thickness is about 4.5 mm or more. It is a steel plate. The upper limit of the plate thickness is not particularly limited, but is usually about 10 mm or less.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 なお下記実験例で採用した試験法は下記の通りである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and both are included in the technical scope of the present invention. The test methods employed in the following experimental examples are as follows.

[降伏応力(YP0),(YP1)の測定]
試験片形状;図8参照、
熱履歴付与装置;富士電波工機社製の50キロワット熱サイクル再現装置を使用。
[Measurement of yield stress (YP 0 ), (YP 1 )]
Test piece shape; see FIG.
Thermal history imparting device: A 50 kilowatt thermal cycle reproduction device manufactured by Fuji Radio Engineering Co., Ltd. is used.

[面外座屈変形両量(やせ馬減少量)の測定]
各供試鋼板(肉厚は6mm)の片面側に、図2示す如く同じ鋼板から切り出したリブ材を下記の条件で溶接した後、図2のA−A線端図の様に表れる面外座屈変形量(a)を、各区画(1)〜(12)について各々測定し、その平均値を求める。
[Measurement of both amounts of out-of-plane buckling deformation (decreased leanness)]
After welding the rib material cut out from the same steel plate as shown in FIG. 2 to one side of each test steel plate (thickness is 6 mm), the out-of-plane appearance as shown in the end view of line AA in FIG. The buckling deformation amount (a) is measured for each of the sections (1) to (12), and the average value is obtained.

(溶接条件)
溶接電流;280A、
溶接電圧;32V、
溶接速度;58〜62cm/min、
溶接入熱;約9kJ/cm、
脚長;5mm、
溶材;(株)神戸製鋼所製「MG−50」(直径1.2mm)。
(Welding conditions)
Welding current; 280 A,
Welding voltage: 32V
Welding speed: 58-62 cm / min,
Welding heat input: about 9 kJ / cm,
Leg length: 5mm,
Melting material: “MG-50” (diameter: 1.2 mm) manufactured by Kobe Steel, Ltd.

実験例1
表1に示す化学成分の鋼を溶製し鋳造して得た鋼片を、表2,3に示す条件で制御圧延し、得られた鋼板から所定寸法の試験板(日本海事協会;U1号試験片)を切り出して引張試験を行った。また、同じ供試板について、溶接熱影響を模擬した前記加熱処理を施してから引張試験を行い、結果を表2,3に併記した。
Experimental example 1
Steel slabs obtained by melting and casting steels having the chemical components shown in Table 1 were controlled and rolled under the conditions shown in Tables 2 and 3, and test plates of the predetermined dimensions (Japan Maritime Association; No. U1) from the obtained steel plates. A test piece) was cut out and subjected to a tensile test. Further, the same test plate was subjected to the heat treatment simulating the influence of welding heat and then subjected to a tensile test. The results are also shown in Tables 2 and 3.

Figure 0003954607
Figure 0003954607

Figure 0003954607
Figure 0003954607

Figure 0003954607
Figure 0003954607

表1〜3から次の様に解析できる。   It can analyze as follows from Tables 1-3.

表1において、鋼種A〜Gは本発明で規定する成分組成とDI値が全て本発明の規定要件を満たす鋼材であり、鋼種H〜Nは、本発明で規定する成分組成とDI値の何れかが規定要件を各比較材である。   In Table 1, steel types A to G are steel materials in which the component composition and DI value specified in the present invention all satisfy the specified requirements of the present invention, and steel types H to N are any of the component composition and DI value specified in the present invention. Kaga is a comparative requirement for each comparative material.

そして表2のうち、符号4〜6、13〜21は、成分組成、DI値、製造条件の全てが本発明の規定要件を満たす実施例であり、やせ馬変形量はいずれも4.0mm以下の小さな値を示している。   And in Table 2, the code | symbols 4-6, 13-21 are Examples which all satisfy | fill the prescription | regulation requirements of this invention for a component composition, DI value, and manufacturing conditions, and all of a thin horse deformation amount are 4.0 mm or less. Indicates a small value.

これらに対し表3は、成分組成、DI値、製造条件の何れかが本発明の規定要件を欠く比較例であり、やせ馬変形量が許容範囲である4.0mmを超えているか、或いは母材の引張強度が400MPaレベルに達しておらず、本発明の目的に合致していない。   On the other hand, Table 3 is a comparative example in which any one of the component composition, DI value, and manufacturing conditions lacks the requirement of the present invention, and the deformation amount of the lean horse exceeds the allowable range of 4.0 mm, or the mother The tensile strength of the material does not reach the 400 MPa level and does not meet the object of the present invention.

溶接時の熱影響を模擬した供試鋼板に与える熱履歴のヒートパターンを示す図である。It is a figure which shows the heat pattern of the heat history given to the test steel plate which simulated the thermal influence at the time of welding. 鋼板を溶接建造する際に見られる“やせ馬現象”の説明図である。It is explanatory drawing of the "skin horse phenomenon" seen when welding construction of a steel plate. 鋼板母材の降伏応力(YP0)/溶接熱影響部の降伏応力(YP1)比が、“やせ馬現象”による面外座屈変形量に与える影響を示すグラフである。Yield stress (YP 0) / weld heat affected zone of the yield stress of the steel sheet base material (YP 1) ratio is a graph showing the effect on out-of-plane seat屈変shape amount of "lean horse phenomenon". 溶接熱影響部の降伏応力と“やせ馬現象”による面外座屈変形量との関係を示すグラフである。It is a graph which shows the relationship between the yield stress of a welding heat affected zone, and the amount of out-of-plane buckling deformation by a "skin horse phenomenon". 炭化物形成元素無添加の鋼材(前記鋼材1)を用いた種々の実験データの中から、Ar3変態点以下の圧下率が母材の引張強度(TS0)に与える影響を整理して示したグラフである。From the various experimental data using steel materials with no carbide-forming element added (steel material 1 ), the influence of the rolling reduction below the Ar 3 transformation point on the tensile strength (TS 0 ) of the base material is shown. It is a graph. 炭化物形成元素を添加した鋼材(前記鋼材2)を用いた種々の実験データの中から、850〜950℃の温度域での累積圧下率が母材の引張強度(TS0)に与える影響を整理して示したグラフである。From the various experimental data using steel material added with carbide-forming elements (steel material 2), the effect of the cumulative reduction ratio in the temperature range of 850 to 950 ° C. on the tensile strength (TS 0 ) of the base material is arranged. It is the graph shown. DI値と溶接熱影響部の降伏応力の関係を纏めて示したグラフである。It is the graph which showed collectively the relationship between the DI value and the yield stress of a welding heat affected zone. 実験で使用した供試鋼板の引張試験片の寸法・サイズを示す図である。It is a figure which shows the dimension and size of the tensile test piece of the test steel plate used in experiment.

Claims (6)

鋼板の降伏応力を(YP0)、引張強度を(TS0)、当該鋼板に、溶接時の熱影響を模擬して下記の熱履歴を付与した後の降伏応力を(YP1)としたときに、YP0が250MPa以上、TS0が400MPa以上、YP1が400MPa以下であり、且つYP0/YP1が1以上であり、鋼材が下記化学成分を有し、且つ下記焼入れ性指数(DI値)を満たすものであることを特徴とする溶接座屈変形の少ない鋼板。
(熱履歴付与条件)
熱履歴パターン:100℃/sで昇温し、最高加熱温度1350℃で5秒間保持し、800℃から500℃までを20秒(15℃/s)で冷却する(図1)
(化学成分)
C :0.005〜0.12%(質量%の意味、以下同じ)、
Si:0.05〜0.5%、
Mn:0.05〜1.2%、
N :0.002〜0.007%を満たす他、
Nb:0.005〜0.03%、V:0.005〜0.075%、Ti:0.005〜0.03%よりなる群から選ばれる少なくとも1種を含み、
残部:Feおよび不可避不純物、
DI=1.16×[√(C/10)]×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3.0×Mo+1)×(1.75×V+1)×(200×B+1)≦0.38
[式中の記号は、各元素の含有率(質量%)を表わす]。
When the yield stress of a steel sheet is (YP 0 ), the tensile strength is (TS 0 ), and the yield stress after applying the following thermal history to the steel sheet by simulating the thermal effect during welding is (YP 1 ). a, YP 0 or more 250 MPa, TS 0 is more than 400 MPa, YP 1 is less than or equal 400 MPa and YP 0 / YP 1 is Ri der 1 or more, the steel has a following chemical composition, and the following hardenability index ( welding seat屈変form less steel, characterized in der Rukoto satisfy the DI value).
(Heat history provision conditions)
Thermal history pattern: The temperature is raised at 100 ° C./s, held at a maximum heating temperature of 1350 ° C. for 5 seconds, and cooled from 800 ° C. to 500 ° C. in 20 seconds (15 ° C./s) (FIG. 1) .
(Chemical composition)
C: 0.005 to 0.12% (meaning mass%, the same applies hereinafter),
Si: 0.05 to 0.5%,
Mn: 0.05 to 1.2%,
N: Besides satisfying 0.002 to 0.007%,
Including at least one selected from the group consisting of Nb: 0.005-0.03%, V: 0.005-0.075%, Ti: 0.005-0.03%,
Balance: Fe and inevitable impurities,
DI = 1.16 × [√ (C / 10)] × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) x (3.0 x Mo + 1) x (1.75 x V + 1) x (200 x B + 1) ≤ 0.38
[The symbol in the formula represents the content (% by mass) of each element].
鋼板の降伏応力を(YP0)、引張強度を(TS0)、当該鋼板に、溶接時の熱影響を模擬して下記の熱履歴を付与した後の降伏応力を(YP1)としたときに、YP0が250MPa以上、TS0が400MPa以上、YP1が400MPa以下であり、且つYP0/YP1が1以上であり、鋼材が下記化学成分を有し、且つ下記焼入れ性指数(DI値)を満たすものであることを特徴とする溶接座屈変形の少ない鋼板。
(熱履歴付与条件)
熱履歴パターン:100℃/sで昇温し、最高加熱温度1350℃で5秒間保持し、800℃から500℃までを20秒(15℃/s)で冷却する(図1)
(化学成分)
C :0.005〜0.12%、
Si:0.05〜0.5%、
Mn:0.05〜1.2%、
N :0.002〜0.007%を満たす他、
Nb:0.005〜0.03%、V:0.005〜0.075%、Ti:0.005〜0.03%よりなる群から選ばれる少なくとも1種を含有すると共に、下記式(I)の関係を満たし、
Nb/6.63N+V/3.64N+Ti/3.41N>1……(I)
残部:Feおよび不可避不純物、
DI=1.16×[√(C/10)]×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3.0×Mo+1)×(1.75×V+1)×(200×B+1)≦0.38
[式中の記号は、各元素の含有率(質量%)を表わす]。
When the yield stress of a steel sheet is (YP 0 ), the tensile strength is (TS 0 ), and the yield stress after applying the following thermal history to the steel sheet by simulating the thermal effect during welding is (YP 1 ). a, YP 0 or more 250 MPa, TS 0 is more than 400 MPa, YP 1 is less than or equal 400 MPa and YP 0 / YP 1 is Ri der 1 or more, the steel has a following chemical composition, and the following hardenability index ( welding seat屈変form less steel, characterized in der Rukoto satisfy the DI value).
(Heat history provision conditions)
Thermal history pattern: The temperature is raised at 100 ° C./s, held at a maximum heating temperature of 1350 ° C. for 5 seconds, and cooled from 800 ° C. to 500 ° C. in 20 seconds (15 ° C./s) (FIG. 1) .
(Chemical composition)
C: 0.005-0.12%,
Si: 0.05 to 0.5%,
Mn: 0.05 to 1.2%,
N: Besides satisfying 0.002 to 0.007%,
It contains at least one selected from the group consisting of Nb: 0.005 to 0.03%, V: 0.005 to 0.075%, Ti: 0.005 to 0.03%, and the following formula (I )
Nb / 6.63N + V / 3.64N + Ti / 3.41N> 1 …… (I)
Balance: Fe and inevitable impurities,
DI = 1.16 × [√ (C / 10)] × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) x (3.0 x Mo + 1) x (1.75 x V + 1) x (200 x B + 1) ≤ 0.38
[The symbol in the formula represents the content (% by mass) of each element].
前記鋼材が、更に他の元素として、
Ca:0.0005〜0.003%、Zr:0.0005〜0.004%、REM:0.0005〜0.005%よりなる群から選ばれる少なくとも1種を含むものである請求項1または2に記載の鋼板。
The steel material is still another element,
3. At least one selected from the group consisting of Ca: 0.0005 to 0.003%, Zr: 0.0005 to 0.004%, and REM: 0.0005 to 0.005%. The steel sheet described.
鋼材が、更に他の元素として、Ni:0.2%以下、Cu:0.2%以下、Cr:0.10%以下、Mo:0.1%以下よりなる群から選択される少なくとも1種を含むものである請求項のいずれかに記載の鋼板。 The steel material is at least one selected from the group consisting of Ni: 0.2% or less, Cu: 0.2% or less, Cr: 0.10 % or less, and Mo: 0.1% or less as another element. The steel plate according to any one of claims 1 to 3 , comprising: 前記請求項のいずれかに記載された成分要件を満たす鋼片を950℃以上に加熱した後、目標板厚にまで圧延する際に、下記式によって算出されるAr3変態点以下の温
度域での累積圧下率が30%以上となる様に圧延することにより、前記請求項1に記載の特性を与えることを特徴とする溶接座屈変形の少ない鋼板の製法。
Ar3(℃)=910−310×C−80×Mn−20×Cu−15×Cr−55×Ni−80×Mo
[式中の化学記号は、各元素の含有率(質量%)を表わす]。
When a steel slab that satisfies the component requirements described in any one of claims 1 to 4 is heated to 950 ° C or higher and then rolled to a target plate thickness, an Ar 3 transformation point or less calculated by the following formula: A method for producing a steel sheet with less weld buckling deformation, characterized by giving the characteristics according to claim 1 by rolling so that the cumulative rolling reduction in the temperature range is 30% or more.
Ar 3 (° C.) = 910−310 × C−80 × Mn-20 × Cu-15 × Cr-55 × Ni-80 × Mo
[The chemical symbol in the formula represents the content (% by mass) of each element].
前記請求項のいずれかに記載された成分要件を満たす鋼片を950℃以上に加熱した後、目標板厚にまで圧延する際に、板厚方向平均温度850〜900℃の温度域での累積圧下率を50%以上とし、目標板厚まで圧延して圧延を終了することにより、前記請求項に記載の特性を与えることを特徴とする溶接座屈変形の少ない鋼板の製法。 After heating the steel slab satisfying the component requirements described in any one of claims 2 to 4 to 950 ° C or higher and then rolling the steel slab to a target plate thickness, a temperature range of a plate thickness direction average temperature of 850 to 900 ° C. A method for producing a steel plate with less weld buckling deformation, characterized in that the characteristic reduction according to claim 2 is given by rolling the steel sheet to a target plate thickness after rolling up to a target sheet thickness of 50% or more.
JP2004320715A 2004-11-04 2004-11-04 Steel plate with less weld buckling deformation and its manufacturing method Active JP3954607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320715A JP3954607B2 (en) 2004-11-04 2004-11-04 Steel plate with less weld buckling deformation and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320715A JP3954607B2 (en) 2004-11-04 2004-11-04 Steel plate with less weld buckling deformation and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2006131937A JP2006131937A (en) 2006-05-25
JP3954607B2 true JP3954607B2 (en) 2007-08-08

Family

ID=36725747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320715A Active JP3954607B2 (en) 2004-11-04 2004-11-04 Steel plate with less weld buckling deformation and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3954607B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400813A (en) * 2006-04-26 2009-04-01 株式会社神户制钢所 Steel sheet with less weld buckling deformation, and process for producing the same
US20120136589A1 (en) * 2009-12-25 2012-05-31 Mitsubishi Heavy Industries, Ltd. Nuclear-power-plant soundness evaluation system
JP5970796B2 (en) * 2010-12-10 2016-08-17 Jfeスチール株式会社 Steel foil for solar cell substrate and manufacturing method thereof, and solar cell substrate, solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP2006131937A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
EP2006407B1 (en) High-strength steel plate with superior crack arrestability
KR100957970B1 (en) High-strength and high-toughness thick steel plate and method for producing the same
JP6779320B2 (en) Clad steel sheet with excellent strength and formability and its manufacturing method
JP5924058B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5604842B2 (en) Steel material for large heat input welding
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
JP6883107B2 (en) High-strength steel with excellent fracture initiation and propagation resistance at low temperatures and its manufacturing method
JP4700769B2 (en) Steel for welding and method for manufacturing the same
JP2010229528A (en) High tensile strength steel sheet having excellent ductility and method for producing the same
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
WO2013080398A1 (en) Steel material with excellent crashworthiness and manufacturing process therefor
CN1989265A (en) Steel for welded structures excellent in low temperature toughness of weld heat affected zone and method of production of same
JP5605136B2 (en) High strength steel plate with excellent material uniformity in steel plate and method for producing the same
JP2004124113A (en) Non-water-cooled thin low yield ratio high tensile steel, and production method therefor
JP7076325B2 (en) Thick steel plate and its manufacturing method and welded structure
JP3954607B2 (en) Steel plate with less weld buckling deformation and its manufacturing method
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP7410438B2 (en) steel plate
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JP5157749B2 (en) Steel plate with small welding deformation
KR101096991B1 (en) Steel sheet with less weld buckling deformation, and process for producing the same
JP2005298962A (en) Method for manufacturing high-strength steel plate superior in workability
KR101949025B1 (en) Cold rolled steel sheet for flux cored wire and method of manufacturing the same
JP3536752B2 (en) Thin-walled steel plate with excellent resistance to hydrogen-induced cracking and method for producing the same
JP6135595B2 (en) High-efficiency manufacturing method for steel plates with excellent impact resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070426

R150 Certificate of patent or registration of utility model

Ref document number: 3954607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7