JP3953940B2 - High frequency acceleration cavity and particle beam accelerator using the same - Google Patents

High frequency acceleration cavity and particle beam accelerator using the same Download PDF

Info

Publication number
JP3953940B2
JP3953940B2 JP2002327917A JP2002327917A JP3953940B2 JP 3953940 B2 JP3953940 B2 JP 3953940B2 JP 2002327917 A JP2002327917 A JP 2002327917A JP 2002327917 A JP2002327917 A JP 2002327917A JP 3953940 B2 JP3953940 B2 JP 3953940B2
Authority
JP
Japan
Prior art keywords
cooling air
inner conductor
conductor
outer conductor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002327917A
Other languages
Japanese (ja)
Other versions
JP2004164941A (en
Inventor
陽 牧田
重明 松井
久 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002327917A priority Critical patent/JP3953940B2/en
Publication of JP2004164941A publication Critical patent/JP2004164941A/en
Application granted granted Critical
Publication of JP3953940B2 publication Critical patent/JP3953940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、荷電粒子にエネルギーを与えて加速するイオンビーム高周波加速空胴に関し、特に医療用又は物理実験用加速器に用いるのに好適な高周波加速空胴及びこれを用いた粒子線加速装置に関するものである。
【0002】
【従来の技術】
同軸円筒状の内導体と外導体とで構成される空間内に複数の磁性部材を装荷し、外部からの高周波電力を内導体と外導体の間に印可し高周波磁界を発生させ、これによってイオンを加速する高周波加速空胴においては、磁性部材は内部の透磁率のロス成分から発熱する。
【0003】
従来、この発熱する磁性部材を冷却する目的で、外導体の対向する2側壁にファン或いは通風孔等の送風手段を設け、外導体内部の空間に冷媒としての空気を循環させ、これにより磁性部材を冷却する提案がされている(例えば、非特許文献1参照)。
【0004】
【非特許文献1】
ロマリンダ大学医療センター(Loma Linda University Medical Center)、「陽子治療ファシリティ・エンジニアリング・デザイン・レポート」(Proton Therapy Facility Engineering Design Report)、フェルミ国立大型加速器研究所(Fermi National Accelerator Laboratory)、1987年2月(February 1987)
【0005】
【発明が解決しようとする課題】
このような構成の従来の高周波加速空胴においては、磁性部材を効率的に冷却することができなかった。そして、特に磁性部材の発熱量が多い中央部を効率的に冷却することができないので問題であった。
【0006】
この発明は、上述のような課題を解決するためになされたもので、磁性部材を効率的に冷却できるとともに、加速空胴の空胴容量成分に影響を与えることが少ない高周波加速空胴を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明に係る高周波加速空胴は、軸線に沿って延びる筒状を成し所定の間隔を空けて直列に配置され、内部をイオンビームが走行する第1の内導体と第2の内導体と、絶縁体で作製され第1の内導体及び第2の内導体を密閉して連結する筒状の加速ギャップ体と、第1の内導体、第2の内導体及び加速ギャップ体を同軸的に覆いこれらの外周に密閉空間を形成する外導体と、第1の内導体及び第2の内導体の少なくとも1方の内導体の外周に設けられ、内導体を囲繞する円板状をなし主面を軸線に対して直交するように複数併設された磁性部材と、外導体の軸線と平行な第1の側壁に設けられ密閉空間内に気体を流入する第1の送風手段と、外導体の第1の側壁と対向する第2の側壁に設けられ密閉空間から気体を流出するとともに第1の送風手段と協同して密閉空間内に軸線に対して概略直交する冷却風を発生させる第2の送風手段と、低誘電率の誘電体で作製され隣り合う2つの磁性部材間にそれぞれ設けられ冷却風を磁性部材の中心方向に誘導する冷却風案内手段とを備えている。
【0008】
【発明の実施の形態】
実施の形態1.
イオン加速に使用される加速空胴について説明する。イオンは、最も軽い陽子でもその質量が電子質量の約2000倍と重いため相対論効果が小さい。従って、イオン速度は一般に小さいうえに、加速途中でイオン速度が大幅に変化する。そこで、これを所望のエネルギーまで加速するには、加速空胴内に磁性体を装荷し、磁性体の透磁率により加速空胴の共振周波数が大幅に低下する性質を利用し、イオンの周回周波数と加速空胴の共振周波数を一致させてイオンを加速する磁性体装荷型加速空胴が用いられる。
【0009】
この磁性体装荷型加速空胴には、磁性損失の少ない磁性体を用い、バイアス電流によるバイアス磁場を磁性体に印加することにより、磁性体の透磁率を制御して加速空胴の共振周波数をイオンの周回周波数に同調するように変化させる同調型の高周波加速空胴と、磁性損失の大きな磁性体を用い、空胴電圧は低いがその磁性体損失により、イオンを加速するのに必要な全ての周回周波数の範囲以上に共振周波数を広帯域化することにより、バイアス装置が不必要で制御の容易な非同調型の高周波加速空胴との2種類がある。本実施の形態は、非同調型の高周波加速空胴の構造を有するものであるが、この発明は同調型の高周波加速空胴にも適用できるものである。
【0010】
図1はこの発明の実施の形態1の高周波加速空胴を示す横断面図である。図2は図1の高周波加速空胴のII−II線に沿う矢視断面図である。尚、図1は図2のI−I線に沿う矢視横断面図である。図において、高周波加速空胴100は、長尺円筒状をなす第1の内導体1aと第2の内導体1bとを有している。第1の内導体1aと第2の内導体1bは、軸線Aに沿って延び所定の間隔を空けて直列に配置されている。そして、所定の間隔を空けた第1の内導体1aと第2の内導体1bの間には、両筒を密閉して連結するように絶縁体で作製された円筒状の加速ギャップ体2が設けられている。第1の内導体1aと第2の内導体1bのそれぞれの他端は、円形加速器としての粒子線加速装置の真空ダクトに接続される。そして、第1の内導体1aと第2の内導体1bと加速ギャップ体2は、内部を真空に保たれて内部にイオンビームを走行させる。
【0011】
直列に連結された第1の内導体1a、第2の内導体1b及び加速ギャップ体2を同軸的に覆うように矩形箱状の外導体3が設けられている。第1の内導体1aは外導体3の一側の端壁3aを貫通している。貫通する部分の第1の内導体1aの外周面と端壁3aとは密閉されている。同じように、第2の内導体1bは外導体3の他側の端壁3bを貫通し、貫通する部分の第2の内導体1bの外周面と端壁3bとは密閉されている。このようにして、外導体3は、第1の内導体1a、第2の内導体1b及び加速ギャップ体2の外周に密閉空間を形成している。
【0012】
外導体3の形成する密閉空間の内側で、第1の内導体1aの外周に4枚の磁性部材4が配置されている。磁性部材4は概略円板状をなし、中央穴に第1の内導体1aを貫通させている。4枚の磁性部材4は、主面が第1の内導体1aに対して直交するように等間隔に並べて配設されている。第2の内導体の外周にも同様に4枚の磁性部材4が配置されている。
【0013】
図示しない高周波電力発生装置から出力される高周波電力は、同軸構造の内導体1a,1bと外導体3の間に印加される。この給電方式は、直接結合又は直接給電と呼ばれる。この直接給電によって、内導体1a,1bと外導体3の間に高周波電流が発生する。この高周波電流は磁性部材4内に高周波磁界を発生させ、これにより加速ギャップ体2内にイオンを加速する加速電圧が発生する。
【0014】
外導体3の軸線Aと平行な第1の側壁3cに、冷媒としての空気を外導体3の内部空間に流入する第1の送風手段として働く第1のファン5aが設けられている。また、第1の側壁3cと対向する第2の側壁3dに、外導体3の内部の空気を外部に流出する第2の送風手段として働く第2のファン5bが設けられている。第1のファン5aと第2のファン5bとは互いに協同して、外導体3の内部の密閉空間内に軸線Aに対して概略直交するように流れる冷却風を発生させる。
【0015】
隣り合う2つの磁性部材4の間に各々冷却風案内板6が設けられている。冷却風案内板6は、例えば、エポキシ樹脂、プラスチック等の低誘電率の誘電体で作製されている。冷却風案内板6は、第1のファン5a及び第2のファン5bが設けられていない軸線Aと平行な対向する2内壁面3e,3fにそれぞれ設けられている。冷却風案内板6は、内壁面3e,3fに各々底辺部を固定され頂角部を軸線A方向に向けて立設された三角形の平板である。さらに詳細には、冷却風案内板6は、鈍角の頂角を有する二等辺三角形の断面を有する非常に短尺な三角柱であり、二等辺三角形の底辺を含む底面を内壁面3e,3fに固着されて頂角を含む稜線が軸線Aと平行になるように立設されている。そして、各々の冷却風案内板6は、外導体3の内壁面3e,3fから軸線A方向に延設され冷却風を磁性部材4の中心側に導くように傾斜する斜面6aを有している。すなわち、冷却風案内板6は、隣り合う2つの磁性部材4間にそれぞれ設けられて、冷却風を磁性部材4の中心方向に誘導する冷却風案内手段を構成している。
【0016】
冷却風案内板6は、図1に矢印で示すように、冷却風を磁性部材4の中心方向に誘導する。比較するために図3に冷却風案内板6が設けられてない高周波加速空胴内の冷却風の流れ方を示す。冷却風案内板6が無い加速空胴においては、第1のファン5aから流入した冷却風は、内導体1aに当たって図3の左右方向に分かれ、その後、外導体3の内壁面を伝わって流れ、第2のファン5bから外部に流出する。このように内導体1aに勢いよく衝突した冷却風は、内導体1aに当たって2方向に分かれる。そのため、内導体1aの裏側、すなわち、内導体1aの第2のファン5b側の外周付近には、強い冷却風が流れない。内導体1bにおいても同様である。
【0017】
ここで、磁性部材4の発熱に関して説明する。図4は高周波加速空胴の磁場の分布を説明する説明図である。図4において、(a)は一般的な高周波加速空胴の同軸円筒状の内導体1と外導体3を示している。(b)は(a)の高周波加速空胴に発生する磁場Hの強さを示している。このような構造の高周波加速空胴において、磁場Hは、次の式(1)に示されるように1/半径rに比例する。
【0018】
H∝1/r 式(1)
【0019】
すなわち、磁場Hは、内導体1と外導体3とが構成する空間の中で、一番内側の内導体1の外周部付近において一番強い。そして、この内導体1を囲繞する磁性部材の発熱は、磁性体内の透磁率のロス成分からなるので、磁場Hの大きい場所ほど発熱が大きくなる。そのため、円板状の磁性部材4において、比較的内導体1に近い部分、すなわち、磁性部材4の中心に近い部分の発熱が最も大きい。これは、本実施の形態のように、円筒状の内導体と四角筒状の外導体の場合でも同様である。
【0020】
そして、図3に示される高周波加速空胴においては、内導体1aの冷却風の吹き付ける側と反対側の外周付近には、上述のように強い冷却風が流れないので磁性部材4の最も発熱の多い部分が冷やされず効率が悪い。また、磁性体温度がキュリー点付近になると透磁率が急激に減少しはじめ、インピーダンスが急激に低下し、回路破壊、磁性体自身が割れたりする。
【0021】
これに対して、本実施の形態の高周波加速空胴においては、冷却風を磁性部材4の中心方向に誘導する冷却風案内板6を有するので、図1に示されるように、内導体1aの冷却風の吹き付ける側と反対側の外周付近にも強い冷却風が流れ、さらに、冷却風は磁性部材4の最も発熱の多い部分に集中するので冷却能力が格段に向上する。そして、磁性部材4の発熱の集中を回避し冷却効率を向上させることができる。また、冷却風案内板6は、低誘電率の誘電体で作製されているので、加速空胴のインピーダンス特性を悪化させることがなく、加速空胴の空胴容量成分に影響を与えることが少ない。
尚、冷却風案内板6の三角形の頂部は、磁性部材4の外周部に向かう冷却風を遮ることになるが、上述のように磁性部材4の外周部の発熱量は内周部に比べて小さいので、全体的な冷却効率は冷却風案内板6のないものに対して非常に向上する。
【0022】
また、冷却風案内板6は、外導体3の内壁面3e,3fから軸線A方向に延設され冷却風を磁性部材4の中心側に導く方向に傾斜する斜面6aを有しているので、簡単な構成で確実に冷却風を磁性部材4の中心側に導くことができ、また内導体1aの裏側にも冷却風を効率よく誘導することができる。
【0023】
さらに、冷却風案内板6は、内壁面3e,3fに各々底辺部を固定され頂角部を軸線A方向に向けて立設された三角形の平板であるので、冷却風を磁性部材4の中心方向に誘導する冷却風案内手段を容易に実現することができる。
【0024】
尚、本実施の形態において、冷却風案内手段は三角形の平板であるが、これに限られるものでなく、冷却風を磁性部材4の中心側に導くように傾斜する斜面6aを有するものであれば、種々の形状であっても所定の効果を得ることができるものである。
【0025】
また、本実施の形態の外導体3は、内導体1a,1bを同軸的に覆う矩形箱状をなすが、外導体3は断面が矩形なものに限らず、断面が円であってもよい。
【0026】
さらにまた、本実施の形態の送風手段は、対をなす第1のファン5aと第2のファン5bによって構成されているが、冷却風を流入するファンと流出するファンは必ずしも1対1で設けられる必要はなく、さらには、流入側、流出側のいずれかは、単なる通風孔であってもよい。
【0027】
また、本実施の形態の磁性部材4は、第1の内導体1aと第2の内導体1bの両方に設けられているが、いずれか一方のみに設けられてもよい。
【0028】
実施の形態2.
図5はこの発明の実施の形態2の高周波加速空胴を示す横断面図である。本実施の形態の高周波加速空胴110においては、冷却風案内手段として機能する冷却風案内板16は、低誘電率の誘電体で作製され、外導体3の内壁面3e,3fに各々底辺部を固定され頂角部を軸線A方向に向けて立設された三角形の平板であるが、主面に複数の小径穴16bが穿孔されている。三角形の平板には、実施の形態1と同じように、冷却風を磁性部材4の中心側に導くように傾斜する斜面16aが形成されている。その他の構成は、実施の形態1と同じである。
【0029】
このような構成の高周波加速空胴においては、実施の形態1と同様な効果が得られるとともに、主面に複数の小径穴16aが穿孔されているので、加速空胴の軽量化を図ることができる。また、冷却風案内板16の体積が減るので、加速空胴のインピーダンス特性をさらに悪化させることがなく、加速空胴の空胴容量成分にさらに影響を与えることが少なくなる。
【0030】
実施の形態3.
図6はこの発明の実施の形態3の高周波加速空胴を示す横断面図である。本実施の形態の高周波加速空胴120においては、冷却風案内手段として機能する冷却風案内板26は、低誘電率の誘電体で作製され、くの字型に折れ曲がり両端部を外導体3の内壁面3e,3fに固定され屈折部を軸線A方向に向ける厚さの薄い帯状の板である。このくの字型に折れ曲がる帯状の板の片側の外周面は、冷却風を磁性部材4の中心側に導くように傾斜する斜面26aを構成している。その他の構成は、実施の形態1と同じである。
【0031】
このような構成の高周波加速空胴においては、実施の形態1と同様な効果が得られるとともに、冷却風案内板26が、くの字型に折れ曲がる厚さの薄い帯状の板であるので、加速空胴のさらなる軽量化を図ることができる。また、冷却風案内板26の体積がさらに減るので、加速空胴のインピーダンス特性をさらに悪化させることがなく、加速空胴の空胴容量成分にさらに影響を与えることが少なくなる。
【0032】
実施の形態4.
図7はこの発明の実施の形態4の高周波加速空胴を示す横断面図である。本実施の形態の高周波加速空胴130においては、冷却風案内手段として機能する冷却風案内板36は、低誘電率の誘電体で作製され、外導体3の第1の側壁3cと第2の側壁3dとの間に架け渡されるように設けられた厚さの薄い2枚の帯状の板である。そして、2枚の冷却風案内板36は、内壁面3e,3f(第3、4の側壁)概略平行となるように設置されている。
【0033】
この2枚の冷却風案内板36は、第1のファン5aによって外導体3内に流入する冷却風を、外導体3の内部空間の周辺部を流れる第1の冷却風f1と中央部を流れる第2の冷却風f2とに分ける。この際、例えば、2枚の冷却風案内板36は、中央部を流れる第2の冷却風f2が外導体3の内部空間の周辺部を流れる第1の冷却風f1よりも多くなるように、すなわち、第2の冷却風f2の流速が第1の冷却風f1の流速より速くなるように冷却風を分割する。
つまり、2枚の冷却風案内板36は、冷却風を、2枚の冷却風案内板36の外壁と内壁面3e,3f(第3、4の側壁)とで囲まれる外導体3の内部空間の周辺部を流れる第1の冷却風f1と2枚の冷却風案内板36の内壁間に囲まれる外導体3の内部空間の中央部を流れる第2の冷却風f2とに分け、第2の冷却風f2の流量を第1の冷却風f1の流量より多くする。
そしてさらに、2枚の冷却風案内板36は、第2の冷却風f2を磁性部材4の中心側に導く方向に傾斜する斜面36aを有している。
尚、本実施の形態においては、中央部を流れる第2の冷却風f2が外導体3の内部空間の周辺部を流れる第1の冷却風f1よりも多くなるように2枚の冷却風案内板36を設けているが、必ずしも第2の冷却風f2が第1の冷却風f1よりも多くなるようにする必要はなく、要するに2枚の冷却風案内板36によって冷却風が誘導されて、内導体1aの裏側、すなわち、内導体1aの第2のファン5b側の外周付近に強い冷却風が流れるようにされればよい。2枚の冷却風案内板36は、第2の冷却風f2を磁性部材4の中心側に導く方向に傾斜する斜面36aを有しているので、第1の冷却風f1と第2の冷却風f1の流量が同じであっても、冷却風を内導体1aの裏側に効率よく誘導することができる。
【0034】
このような構成の高周波加速空胴においては、例えば、外導体3の内部空間の中央部を流れる第2の冷却風f2の風量を多くすることにより、磁性部材4の中心側をより効率的に冷却することができ、また内導体1aの裏側に冷却風を効率よく誘導することができる。また、冷却風案内板36は薄い帯状の板であるので冷却風案内手段の体積を減らすことができ、加速空胴のインピーダンス特性を悪化させることがなく、加速空胴の空胴容量成分にさらに影響を与えることが少なくなる。
【0035】
上述した実施の形態1から4の実施の形態の高周波加速空胴を用いて、第1の内導体1aと第2の内導体1bのそれぞれの他端を図示しない円形加速器の真空ダクトに接続し粒子線加速装置を構成することで、冷却効率が高く、小型、軽量、高性能な粒子線加速装置とすることができる。
【0036】
【発明の効果】
この発明に係る高周波加速空胴は、軸線に沿って延びる筒状を成し所定の間隔を空けて直列に配置され、内部をイオンビームが走行する第1の内導体と第2の内導体と、絶縁体で作製され第1の内導体及び第2の内導体を密閉して連結する筒状の加速ギャップ体と、第1の内導体、第2の内導体及び加速ギャップ体を同軸的に覆いこれらの外周に密閉空間を形成する外導体と、第1の内導体及び第2の内導体の少なくとも1方の内導体の外周に設けられ、内導体を囲繞する円板状をなし主面を軸線に対して直交するように複数併設された磁性部材と、外導体の軸線と平行な第1の側壁に設けられ密閉空間内に気体を流入する第1の送風手段と、外導体の第1の側壁と対向する第2の側壁に設けられ密閉空間から気体を流出するとともに第1の送風手段と協同して密閉空間内に軸線に対して概略直交する冷却風を発生させる第2の送風手段と、低誘電率の誘電体で作製され隣り合う2つの磁性部材間にそれぞれ設けられ冷却風を磁性部材の中心方向に誘導する冷却風案内手段とを備えているので、磁性部材の発熱の集中を回避し冷却効率を向上させることができる。また、冷却風案内板は、低誘電率の誘電体で作製されているので、加速空胴のインピーダンス特性を悪化させることがなく、加速空胴の空胴容量成分に影響を与えることが少ない。
【図面の簡単な説明】
【図1】 この発明の実施の形態1の高周波加速空胴を示す横断面図である。
【図2】 図1の高周波加速空胴のII−II線に沿う矢視断面図である。
【図3】 冷却風案内板が設けられてない従来の高周波加速空胴の冷却風の流れ方を示す横断面図である。
【図4】 高周波加速空胴の磁場の分布を説明する説明図である。
【図5】 この発明の実施の形態2の高周波加速空胴を示す横断面図である。
【図6】 この発明の実施の形態3の高周波加速空胴を示す横断面図である。
【図7】 この発明の実施の形態4の高周波加速空胴を示す横断面図である。
【符号の説明】
1a 第1の内導体、1b 第2の内導体、2 加速ギャップ体(絶縁部材)、3 外導体、3c 第1の側壁、3d 第2の側壁、4 磁性部材、5a 第1のファン(第1の送風手段)、5b 第2のファン(第2の送風手段)、6,16,26,36 冷却風案内板(冷却風案内手段)、6a,16a,26a,36a 斜面、16b 小径穴、100,110,120,130 高周波加速空胴、f1 第1の冷却風、f2 第2の冷却風、A 軸線。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ion beam radio frequency acceleration cavity for accelerating charged particles by applying energy, and more particularly to a radio frequency acceleration cavity suitable for use in a medical or physical experiment accelerator and a particle beam accelerator using the same. It is.
[0002]
[Prior art]
A plurality of magnetic members are loaded in a space composed of a coaxial cylindrical inner conductor and an outer conductor, and high-frequency power from the outside is applied between the inner conductor and the outer conductor to generate a high-frequency magnetic field. In the high-frequency accelerating cavity that accelerates, the magnetic member generates heat from the loss component of the internal magnetic permeability.
[0003]
Conventionally, for the purpose of cooling the magnetic member that generates heat, air blowing means such as a fan or a ventilation hole is provided on two opposing side walls of the outer conductor, and air as a refrigerant is circulated in the space inside the outer conductor, thereby the magnetic member. Has been proposed (for example, see Non-Patent Document 1).
[0004]
[Non-Patent Document 1]
Loma Linda University Medical Center, “Proton Therapy Facility Engineering Design Report”, Fermi National Accelerator Laboratory, February 1987 ( February 1987)
[0005]
[Problems to be solved by the invention]
In the conventional high-frequency acceleration cavity having such a configuration, the magnetic member cannot be efficiently cooled. In particular, the central portion where the heat generation amount of the magnetic member is large cannot be efficiently cooled, which is a problem.
[0006]
The present invention has been made to solve the above-described problems, and provides a high-frequency acceleration cavity that can efficiently cool a magnetic member and has little influence on the cavity capacity component of the acceleration cavity. For the purpose.
[0007]
[Means for Solving the Problems]
A high-frequency acceleration cavity according to the present invention has a first inner conductor and a second inner conductor, which are formed in a cylindrical shape extending along an axis, are arranged in series at predetermined intervals, and in which an ion beam travels. The cylindrical acceleration gap body made of an insulator and sealingly connecting the first inner conductor and the second inner conductor, and the first inner conductor, the second inner conductor, and the acceleration gap body are coaxially connected. The outer surface of the outer conductor that forms a sealed space on the outer periphery of these and the outer surface of the inner conductor of at least one of the first inner conductor and the second inner conductor, and has a disk shape surrounding the inner conductor. A plurality of magnetic members arranged side by side so as to be orthogonal to the axis, a first air blower that is provided on a first side wall parallel to the axis of the outer conductor and flows gas into the sealed space, and a first of the outer conductor Provided on the second side wall opposite to the side wall of the first gas to flow out of the sealed space and the first side The second air blowing means that generates cooling air substantially orthogonal to the axis in the sealed space in cooperation with the air means, and the cooling provided between the two adjacent magnetic members made of a low dielectric constant dielectric. Cooling air guide means for guiding the wind toward the center of the magnetic member.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
An acceleration cavity used for ion acceleration will be described. Since the mass of ions, even the lightest proton, is about 2000 times as large as the electron mass, the relativistic effect is small. Therefore, the ion velocity is generally small, and the ion velocity changes greatly during acceleration. Therefore, in order to accelerate this to a desired energy, a magnetic body is loaded in the acceleration cavity, and the resonance frequency of the acceleration cavity is greatly reduced by the magnetic permeability of the magnetic body. And a magnetically loaded acceleration cavity that accelerates ions by matching the resonance frequency of the acceleration cavity.
[0009]
This magnetic material loaded acceleration cavity uses a magnetic material with little magnetic loss, and by applying a bias magnetic field by a bias current to the magnetic material, the permeability of the magnetic material is controlled and the resonance frequency of the acceleration cavity is adjusted. A tuning type high-frequency accelerating cavity that changes to tune to the circulating frequency of the ion and a magnetic material with a large magnetic loss are used. There are two types of non-tunable high-frequency accelerating cavities that do not require a biasing device and are easy to control by widening the resonance frequency beyond the range of the frequency of rotation. Although the present embodiment has a structure of a non-tunable high-frequency acceleration cavity, the present invention can also be applied to a tuning high-frequency acceleration cavity.
[0010]
FIG. 1 is a cross-sectional view showing a high-frequency acceleration cavity according to Embodiment 1 of the present invention. 2 is a cross-sectional view taken along the line II-II of the high-frequency acceleration cavity shown in FIG. 1 is a cross-sectional view taken along the line II in FIG. In the figure, the high-frequency acceleration cavity 100 has a first inner conductor 1a and a second inner conductor 1b each having a long cylindrical shape. The first inner conductor 1a and the second inner conductor 1b extend along the axis A and are arranged in series at a predetermined interval. And between the 1st inner conductor 1a and the 2nd inner conductor 1b which left the predetermined space | interval, the cylindrical acceleration gap body 2 produced with the insulator so that both cylinders may be sealed and connected is provided. Is provided. The other ends of the first inner conductor 1a and the second inner conductor 1b are connected to a vacuum duct of a particle beam accelerator as a circular accelerator. The first inner conductor 1a, the second inner conductor 1b, and the acceleration gap body 2 allow the ion beam to travel inside while being kept in a vacuum.
[0011]
A rectangular box-shaped outer conductor 3 is provided so as to coaxially cover the first inner conductor 1a, the second inner conductor 1b, and the acceleration gap body 2 connected in series. The first inner conductor 1 a passes through the end wall 3 a on one side of the outer conductor 3. The outer peripheral surface of the first inner conductor 1a in the penetrating portion and the end wall 3a are sealed. Similarly, the second inner conductor 1b passes through the end wall 3b on the other side of the outer conductor 3, and the outer peripheral surface of the second inner conductor 1b and the end wall 3b in the penetrating portion are sealed. In this way, the outer conductor 3 forms a sealed space on the outer periphery of the first inner conductor 1a, the second inner conductor 1b, and the acceleration gap body 2.
[0012]
Four magnetic members 4 are arranged on the outer periphery of the first inner conductor 1 a inside the sealed space formed by the outer conductor 3. The magnetic member 4 has a substantially disk shape, and the first inner conductor 1a is passed through the central hole. The four magnetic members 4 are arranged at equal intervals so that the main surface is orthogonal to the first inner conductor 1a. Similarly, four magnetic members 4 are arranged on the outer periphery of the second inner conductor.
[0013]
High frequency power output from a high frequency power generator (not shown) is applied between the inner conductors 1 a and 1 b and the outer conductor 3 having a coaxial structure. This power feeding method is called direct coupling or direct power feeding. By this direct power supply, a high-frequency current is generated between the inner conductors 1 a and 1 b and the outer conductor 3. This high frequency current generates a high frequency magnetic field in the magnetic member 4, thereby generating an acceleration voltage for accelerating ions in the acceleration gap body 2.
[0014]
A first fan 5 a that functions as a first blowing means for flowing air as a refrigerant into the internal space of the outer conductor 3 is provided on the first side wall 3 c parallel to the axis A of the outer conductor 3. In addition, a second fan 5b that functions as a second air blowing unit that discharges air inside the outer conductor 3 to the outside is provided on the second side wall 3d that faces the first side wall 3c. The first fan 5a and the second fan 5b cooperate with each other to generate cooling air that flows in the sealed space inside the outer conductor 3 so as to be substantially orthogonal to the axis A.
[0015]
Cooling air guide plates 6 are respectively provided between two adjacent magnetic members 4. The cooling air guide plate 6 is made of a low dielectric constant dielectric such as epoxy resin or plastic. The cooling air guide plate 6 is provided on the two inner wall surfaces 3e and 3f facing each other in parallel with the axis A where the first fan 5a and the second fan 5b are not provided. The cooling air guide plate 6 is a triangular flat plate whose bottom portions are fixed to the inner wall surfaces 3e and 3f, respectively, and whose apex angle portion is erected in the direction of the axis A. More specifically, the cooling air guide plate 6 is a very short triangular prism having an isosceles triangular cross section with an obtuse apex angle, and the bottom surface including the base of the isosceles triangle is fixed to the inner wall surfaces 3e and 3f. The ridge line including the vertical angle is erected so as to be parallel to the axis A. Each cooling air guide plate 6 has a slope 6 a that extends in the direction of the axis A from the inner wall surfaces 3 e and 3 f of the outer conductor 3 and is inclined so as to guide the cooling air to the center side of the magnetic member 4. . That is, the cooling air guide plate 6 is provided between two adjacent magnetic members 4 to constitute cooling air guide means for guiding the cooling air toward the center of the magnetic member 4.
[0016]
The cooling air guide plate 6 guides the cooling air toward the center of the magnetic member 4 as indicated by arrows in FIG. For comparison, FIG. 3 shows how the cooling air flows in the high-frequency accelerating cavity where the cooling air guide plate 6 is not provided. In the accelerating cavity without the cooling air guide plate 6, the cooling air flowing in from the first fan 5a hits the inner conductor 1a and is divided in the left-right direction in FIG. 3, and then flows along the inner wall surface of the outer conductor 3, It flows out from the second fan 5b. Thus, the cooling air which collided with the inner conductor 1a vigorously hits the inner conductor 1a and is divided into two directions. Therefore, strong cooling air does not flow on the back side of the inner conductor 1a, that is, near the outer periphery of the inner conductor 1a on the second fan 5b side. The same applies to the inner conductor 1b.
[0017]
Here, the heat generation of the magnetic member 4 will be described. FIG. 4 is an explanatory diagram for explaining the magnetic field distribution of the high-frequency acceleration cavity. 4A shows a coaxial cylindrical inner conductor 1 and outer conductor 3 of a general high-frequency acceleration cavity. (B) has shown the strength of the magnetic field H which generate | occur | produces in the high frequency acceleration cavity of (a). In the high-frequency acceleration cavity having such a structure, the magnetic field H is proportional to 1 / radius r as shown in the following equation (1).
[0018]
H∝1 / r Formula (1)
[0019]
That is, the magnetic field H is strongest in the vicinity of the outer peripheral portion of the innermost inner conductor 1 in the space formed by the inner conductor 1 and the outer conductor 3. And since the heat generation of the magnetic member surrounding the inner conductor 1 is composed of a loss component of the magnetic permeability in the magnetic body, the heat generation increases as the magnetic field H increases. For this reason, in the disk-shaped magnetic member 4, heat generation is greatest at a portion relatively close to the inner conductor 1, that is, a portion near the center of the magnetic member 4. The same applies to the case of a cylindrical inner conductor and a square cylindrical outer conductor as in the present embodiment.
[0020]
In the high-frequency accelerating cavity shown in FIG. 3, the strong cooling air does not flow as described above near the outer periphery of the inner conductor 1a opposite to the side where the cooling air is blown. Many parts are not cooled and the efficiency is poor. In addition, when the magnetic body temperature is close to the Curie point, the magnetic permeability starts to decrease rapidly, the impedance rapidly decreases, the circuit is broken, and the magnetic body itself is cracked.
[0021]
On the other hand, the high-frequency accelerating cavity according to the present embodiment has the cooling air guide plate 6 that guides the cooling air toward the center of the magnetic member 4, and therefore, as shown in FIG. Strong cooling air also flows in the vicinity of the outer periphery on the side opposite to the side where the cooling air is blown, and the cooling air is concentrated on the portion of the magnetic member 4 where heat is generated most, so that the cooling capacity is remarkably improved. And the concentration of the heat generation of the magnetic member 4 can be avoided and the cooling efficiency can be improved. Further, since the cooling air guide plate 6 is made of a dielectric material having a low dielectric constant, the impedance characteristic of the acceleration cavity is not deteriorated, and the cavity capacity component of the acceleration cavity is hardly affected. .
In addition, although the triangular top part of the cooling air guide plate 6 blocks the cooling air toward the outer peripheral part of the magnetic member 4, as described above, the amount of heat generated at the outer peripheral part of the magnetic member 4 is larger than that of the inner peripheral part. Since it is small, the overall cooling efficiency is greatly improved over those without the cooling air guide plate 6.
[0022]
Further, the cooling air guide plate 6 has an inclined surface 6a that extends in the direction of the axis A from the inner wall surfaces 3e and 3f of the outer conductor 3 and is inclined in a direction for guiding the cooling air to the center side of the magnetic member 4. The cooling air can be reliably guided to the center side of the magnetic member 4 with a simple configuration, and the cooling air can be efficiently guided to the back side of the inner conductor 1a.
[0023]
Further, since the cooling air guide plate 6 is a triangular flat plate whose base portions are fixed to the inner wall surfaces 3e and 3f and whose apex portion is directed in the direction of the axis A, the cooling air is supplied to the center of the magnetic member 4. Cooling air guiding means for guiding in the direction can be easily realized.
[0024]
In the present embodiment, the cooling air guide means is a triangular flat plate, but is not limited to this, and may have an inclined surface 6 a that is inclined so as to guide the cooling air to the center side of the magnetic member 4. For example, a predetermined effect can be obtained even in various shapes.
[0025]
The outer conductor 3 of the present embodiment has a rectangular box shape that covers the inner conductors 1a and 1b coaxially. However, the outer conductor 3 is not limited to a rectangular cross section, and the cross section may be a circle. .
[0026]
Furthermore, the air blowing means of the present embodiment is configured by the first fan 5a and the second fan 5b that make a pair, but the fan that flows in the cooling air and the fan that flows out are not necessarily provided in a one-to-one relationship. It is not necessary to be provided, and any one of the inflow side and the outflow side may be a simple ventilation hole.
[0027]
Moreover, although the magnetic member 4 of this Embodiment is provided in both the 1st inner conductor 1a and the 2nd inner conductor 1b, it may be provided only in any one.
[0028]
Embodiment 2. FIG.
FIG. 5 is a cross-sectional view showing a high-frequency acceleration cavity according to Embodiment 2 of the present invention. In the high-frequency accelerating cavity 110 according to the present embodiment, the cooling air guide plate 16 functioning as cooling air guiding means is made of a dielectric material having a low dielectric constant, and the bottom surfaces of the inner wall surfaces 3e and 3f of the outer conductor 3 are respectively provided. Are fixed, and the apex angle portion is erected in the direction of the axis A, but a plurality of small-diameter holes 16b are drilled in the main surface. As in the first embodiment, the triangular flat plate is formed with an inclined surface 16 a that is inclined so as to guide the cooling air toward the center of the magnetic member 4. Other configurations are the same as those of the first embodiment.
[0029]
In the high-frequency acceleration cavity having such a configuration, the same effects as those of the first embodiment can be obtained, and the plurality of small-diameter holes 16a are drilled in the main surface, so that the acceleration cavity can be reduced in weight. it can. Further, since the volume of the cooling air guide plate 16 is reduced, the impedance characteristics of the acceleration cavity are not further deteriorated, and the influence of the cavity capacity component of the acceleration cavity is further reduced.
[0030]
Embodiment 3 FIG.
FIG. 6 is a transverse sectional view showing a high-frequency acceleration cavity according to Embodiment 3 of the present invention. In the high-frequency accelerating cavity 120 of the present embodiment, the cooling air guide plate 26 that functions as the cooling air guiding means is made of a low dielectric constant dielectric material, is bent in a dogleg shape, and both ends are formed of the outer conductor 3. It is a thin strip-shaped plate that is fixed to the inner wall surfaces 3e and 3f and that directs the refracting portion in the direction of the axis A. The outer peripheral surface on one side of the belt-like plate that is bent in a dogleg shape forms an inclined surface 26 a that is inclined so as to guide the cooling air toward the center side of the magnetic member 4. Other configurations are the same as those of the first embodiment.
[0031]
In the high-frequency accelerating cavity configured as described above, the same effects as those of the first embodiment can be obtained, and the cooling air guide plate 26 is a thin strip-shaped plate that is bent into a square shape. The weight of the cavity can be further reduced. Further, since the volume of the cooling air guide plate 26 is further reduced, the impedance characteristic of the acceleration cavity is not further deteriorated, and the influence of the cavity capacity component of the acceleration cavity is further reduced.
[0032]
Embodiment 4 FIG.
FIG. 7 is a transverse sectional view showing a high-frequency acceleration cavity according to Embodiment 4 of the present invention. In the high-frequency accelerating cavity 130 of the present embodiment, the cooling air guide plate 36 that functions as cooling air guide means is made of a dielectric material having a low dielectric constant, and the first side wall 3c and the second side wall 3c of the outer conductor 3 are formed. It is two strip-shaped plates with a small thickness provided so as to be bridged between the side wall 3d. The two cooling air guide plates 36 are installed so as to be substantially parallel to the inner wall surfaces 3e and 3f (third and fourth side walls).
[0033]
The two cooling air guide plates 36 cause the cooling air flowing into the outer conductor 3 by the first fan 5a to flow in the central portion with the first cooling air f1 flowing in the peripheral portion of the inner space of the outer conductor 3. Divided into the second cooling air f2. At this time, for example, the two cooling air guide plates 36 are configured such that the second cooling air f2 flowing through the central portion is larger than the first cooling air f1 flowing through the peripheral portion of the inner space of the outer conductor 3. That is, the cooling air is divided so that the flow velocity of the second cooling air f2 is faster than the flow velocity of the first cooling air f1.
That is, the two cooling air guide plates 36 allow the cooling air to pass through the inner space of the outer conductor 3 surrounded by the outer walls of the two cooling air guide plates 36 and the inner wall surfaces 3e and 3f (third and fourth side walls). Are divided into a first cooling air f1 flowing in the peripheral part of the first cooling air and a second cooling air f2 flowing in the center of the inner space of the outer conductor 3 surrounded by the inner walls of the two cooling air guide plates 36, The flow rate of the cooling air f2 is made larger than the flow rate of the first cooling air f1.
Further, the two cooling air guide plates 36 have inclined surfaces 36 a that are inclined in a direction in which the second cooling air f 2 is guided to the center side of the magnetic member 4.
In the present embodiment, the two cooling air guide plates are such that the second cooling air f2 flowing through the central portion is larger than the first cooling air f1 flowing through the peripheral portion of the inner space of the outer conductor 3. However, it is not always necessary that the second cooling air f2 be larger than the first cooling air f1. In short, the cooling air is guided by the two cooling air guide plates 36 and It is sufficient that strong cooling air flows on the back side of the conductor 1a, that is, near the outer periphery of the inner conductor 1a on the second fan 5b side. Since the two cooling air guide plates 36 have slopes 36a that are inclined in a direction in which the second cooling air f2 is guided to the center side of the magnetic member 4, the first cooling air f1 and the second cooling air are provided. Even if the flow rate of f1 is the same, the cooling air can be efficiently guided to the back side of the inner conductor 1a.
[0034]
In the high-frequency accelerating cavity having such a configuration, for example, by increasing the amount of the second cooling air f2 flowing through the central portion of the inner space of the outer conductor 3, the center side of the magnetic member 4 can be more efficiently moved. Cooling air can be efficiently guided to the back side of the inner conductor 1a. Further, since the cooling air guide plate 36 is a thin strip-shaped plate, the volume of the cooling air guide means can be reduced, the impedance characteristic of the acceleration cavity is not deteriorated, and the cavity capacity component of the acceleration cavity is further increased. Less impact.
[0035]
Using the high-frequency acceleration cavity of the first to fourth embodiments described above, the other ends of the first inner conductor 1a and the second inner conductor 1b are connected to a vacuum duct of a circular accelerator (not shown). By configuring the particle beam accelerator, it is possible to provide a particle beam accelerator with high cooling efficiency, small size, light weight, and high performance.
[0036]
【The invention's effect】
A high-frequency acceleration cavity according to the present invention has a first inner conductor and a second inner conductor, which are formed in a cylindrical shape extending along an axis, are arranged in series at predetermined intervals, and in which an ion beam travels. The cylindrical acceleration gap body made of an insulator and sealingly connecting the first inner conductor and the second inner conductor, and the first inner conductor, the second inner conductor, and the acceleration gap body are coaxially connected. The outer surface of the outer conductor that forms a sealed space on the outer periphery of these and the outer surface of the inner conductor of at least one of the first inner conductor and the second inner conductor, and has a disk shape surrounding the inner conductor. A plurality of magnetic members arranged side by side so as to be orthogonal to the axis, a first air blower that is provided on a first side wall parallel to the axis of the outer conductor and flows gas into the sealed space, and a first of the outer conductor Provided on the second side wall opposite to the side wall of the first gas to flow out of the sealed space and the first side The second air blowing means that generates cooling air substantially orthogonal to the axis in the sealed space in cooperation with the air means, and the cooling provided between the two adjacent magnetic members made of a low dielectric constant dielectric. Since cooling air guide means for guiding the wind toward the center of the magnetic member is provided, concentration of heat generated by the magnetic member can be avoided and cooling efficiency can be improved. In addition, since the cooling air guide plate is made of a dielectric having a low dielectric constant, the impedance characteristics of the acceleration cavity are not deteriorated, and the cavity capacity component of the acceleration cavity is hardly affected.
[Brief description of the drawings]
FIG. 1 is a transverse sectional view showing a high-frequency acceleration cavity according to Embodiment 1 of the present invention.
2 is a cross-sectional view taken along the line II-II of the high-frequency acceleration cavity shown in FIG.
FIG. 3 is a cross-sectional view showing how cooling air flows in a conventional high-frequency acceleration cavity without a cooling air guide plate.
FIG. 4 is an explanatory diagram for explaining a magnetic field distribution in a high-frequency acceleration cavity.
FIG. 5 is a cross sectional view showing a high frequency acceleration cavity according to a second embodiment of the present invention.
FIG. 6 is a transverse sectional view showing a high frequency acceleration cavity according to a third embodiment of the present invention.
FIG. 7 is a transverse sectional view showing a high frequency acceleration cavity according to a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a 1st inner conductor, 1b 2nd inner conductor, 2 acceleration gap body (insulation member), 3 outer conductor, 3c 1st side wall, 3d 2nd side wall, 4 magnetic member, 5a 1st fan (1st 1b), 5b second fan (second blower), 6, 16, 26, 36 cooling air guide plate (cooling air guide), 6a, 16a, 26a, 36a slope, 16b small diameter hole, 100, 110, 120, 130 High-frequency acceleration cavity, f1 first cooling air, f2 second cooling air, A axis.

Claims (7)

軸線に沿って延びる筒状を成し所定の間隔を空けて直列に配置され、内部をイオンビームが走行する第1の内導体と第2の内導体と、
絶縁体で作製され前記第1の内導体及び前記第2の内導体を密閉して連結する筒状の加速ギャップ体と、
前記第1の内導体、前記第2の内導体及び前記加速ギャップ体を同軸的に覆いこれらの外周に密閉空間を形成する外導体と、
前記第1の内導体及び前記第2の内導体の少なくとも1方の内導体の外周に設けられ、該内導体を囲繞する円板状をなし主面を前記軸線に対して直交するように複数併設された磁性部材と、
前記外導体の前記軸線と平行な第1の側壁に設けられ前記密閉空間内に気体を流入する第1の送風手段と、
前記外導体の前記第1の側壁と対向する第2の側壁に設けられ前記密閉空間から気体を流出するとともに前記第1の送風手段と協同して前記密閉空間内に前記軸線に対して概略直交する冷却風を発生させる第2の送風手段と、
低誘電率の誘電体で作製され隣り合う2つの前記磁性部材間にそれぞれ設けられ前記冷却風を該磁性部材の中心方向に誘導する冷却風案内手段と
を備えたことを特徴とする高周波加速空胴。
A first inner conductor and a second inner conductor, which are formed in a cylindrical shape extending along an axis, arranged in series at a predetermined interval, and in which an ion beam travels;
A cylindrical acceleration gap body made of an insulator and sealingly connecting the first inner conductor and the second inner conductor;
An outer conductor that coaxially covers the first inner conductor, the second inner conductor, and the acceleration gap body to form a sealed space on the outer periphery thereof;
A plurality of discs are provided on the outer periphery of at least one inner conductor of the first inner conductor and the second inner conductor, surrounding the inner conductor and having a principal surface orthogonal to the axis. An attached magnetic member;
A first air blowing means that is provided on a first side wall parallel to the axis of the outer conductor and flows gas into the sealed space;
Provided on the second side wall of the outer conductor facing the first side wall, gas flows out from the sealed space and cooperates with the first air blowing means to be substantially orthogonal to the axis in the sealed space. Second air blowing means for generating cooling air to be
A high-frequency accelerating air comprising cooling air guide means that is made of a dielectric material having a low dielectric constant and is provided between two adjacent magnetic members to guide the cooling air toward the center of the magnetic member. Torso.
前記冷却風案内手段は、前記外導体の内壁面から前記軸線方向に延設され前記冷却風を該磁性部材の中心側に導くように傾斜する斜面を有することを特徴とする請求項1に記載の高周波加速空胴。The said cooling air guide means has an inclined surface extended in the said axial direction from the inner wall surface of the said outer conductor, and inclined so that the said cooling air may be guide | induced to the center side of this magnetic member. High frequency acceleration cavity. 前記冷却風案内手段は、前記外導体の内壁面に底辺部が固定され頂角部が前記軸線方向に指向して立設する三角形の平板である
ことを特徴とする請求項2に記載の高周波加速空胴。
3. The high frequency according to claim 2, wherein the cooling air guide means is a triangular flat plate whose bottom is fixed to the inner wall surface of the outer conductor and whose apex angle is erected in the axial direction. Accelerated cavity.
前記三角形の平板は、主面に複数の小径穴が穿孔されている
ことを特徴とする請求項3に記載の高周波加速空胴。
The high-frequency accelerating cavity according to claim 3, wherein the triangular flat plate has a plurality of small-diameter holes drilled in a main surface.
前記冷却風案内手段は、くの字型に折れ曲がり両端部を前記外導体の内壁面に固定され屈折部を前記軸線方向に向ける帯状板である
ことを特徴とする請求項2に記載の高周波加速空胴。
The high-frequency acceleration according to claim 2, wherein the cooling air guide means is a belt-like plate that is bent in a dogleg shape and has both end portions fixed to the inner wall surface of the outer conductor and a refracting portion directed in the axial direction. Cavity.
前記冷却風案内手段は、前記外導体の前記第1の側壁と前記第2の側壁との間に架け渡されるように、且つ該第1、第2の側壁と直交して対向する第3、4の側壁に概略平行となるように設けられた一対の帯状板であり、前記冷却風を、前記一対の帯状板の外壁と前記第3、第4の側壁とで囲まれる前記外導体内部空間の周辺部を流れる第1の冷却風と前記一対の帯状板の内壁間に囲まれる前記外導体内部空間の中央部を流れる第2の冷却風とに分けるとともに、該第2の冷却風を該磁性部材の中心側に導く方向に傾斜する斜面を有する
ことを特徴とする請求項1に記載の高周波加速空胴。
The cooling air guide means is provided between the first side wall and the second side wall of the outer conductor, and third and opposite to the first and second side walls. The inner space of the outer conductor, which is a pair of belt-like plates provided so as to be substantially parallel to the four side walls, and is surrounded by the outer wall of the pair of belt-like plates and the third and fourth side walls. And a second cooling air flowing through the central portion of the inner space of the outer conductor surrounded by the inner walls of the pair of strip-shaped plates, and the second cooling air is divided into the second cooling air. The high-frequency accelerating cavity according to claim 1, further comprising a slope inclined in a direction leading to a center side of the magnetic member.
請求項1から6のいずれかに記載の高周波加速空胴を用いた
ことを特徴とする粒子線加速装置。
A particle beam accelerator using the high-frequency acceleration cavity according to claim 1.
JP2002327917A 2002-11-12 2002-11-12 High frequency acceleration cavity and particle beam accelerator using the same Expired - Lifetime JP3953940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327917A JP3953940B2 (en) 2002-11-12 2002-11-12 High frequency acceleration cavity and particle beam accelerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327917A JP3953940B2 (en) 2002-11-12 2002-11-12 High frequency acceleration cavity and particle beam accelerator using the same

Publications (2)

Publication Number Publication Date
JP2004164941A JP2004164941A (en) 2004-06-10
JP3953940B2 true JP3953940B2 (en) 2007-08-08

Family

ID=32806366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327917A Expired - Lifetime JP3953940B2 (en) 2002-11-12 2002-11-12 High frequency acceleration cavity and particle beam accelerator using the same

Country Status (1)

Country Link
JP (1) JP3953940B2 (en)

Also Published As

Publication number Publication date
JP2004164941A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
US7294969B2 (en) Two-stage hall effect plasma accelerator including plasma source driven by high-frequency discharge
US3914766A (en) Pulsating plasma device
Gilgenbach et al. Recirculating planar magnetrons for high-power high-frequency radiation generation
JP2012195279A (en) Circular accelerator and method for operating circular accelerator
CN207802493U (en) Petal-shaped accelerator and its c-type connector motor magnet
CN106535457A (en) Back-bombardment-preventing electron linear accelerator
JP2018006196A (en) Circular accelerator
JP3953940B2 (en) High frequency acceleration cavity and particle beam accelerator using the same
KR20000015861A (en) Rfq accelerator and ion implanter
JPH074672A (en) Microwave oven
JPS6127035A (en) Electron beam scranbler
JP2004193103A (en) Magnetron, microwave oven, and high frequency heating device
US20110121194A1 (en) Controlled transport system for an elliptic charged-particle beam
WO2018092483A1 (en) Accelerator, particle beam irradiation device, and method for extracting beam
JPS6110936B2 (en)
JP2014075322A (en) Cyclotron
JPS59114730A (en) Gyrotron oscillator of multibore cavity for reducing mode bycompetition
CN211792192U (en) Ion wind heat dissipation device capable of controlling blowing path
JPH11354299A (en) Cyclotron accelerator
KR20060060779A (en) Magnetron
RU2165671C1 (en) Parametric synchrotron converter
JP2019145404A (en) Particle accelerator
JPH05501632A (en) Fan-shaped concentrated cyclotron
CN113382524A (en) Ion wind heat dissipation device capable of controlling blowing path and path control method thereof
JP4106286B2 (en) Betatron accelerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

R150 Certificate of patent or registration of utility model

Ref document number: 3953940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term