JP3952621B2 - Objective lens for high-density optical recording media - Google Patents

Objective lens for high-density optical recording media Download PDF

Info

Publication number
JP3952621B2
JP3952621B2 JP00241699A JP241699A JP3952621B2 JP 3952621 B2 JP3952621 B2 JP 3952621B2 JP 00241699 A JP00241699 A JP 00241699A JP 241699 A JP241699 A JP 241699A JP 3952621 B2 JP3952621 B2 JP 3952621B2
Authority
JP
Japan
Prior art keywords
lens
optical recording
recording medium
objective lens
rms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00241699A
Other languages
Japanese (ja)
Other versions
JP2000206404A (en
Inventor
敏明 勝間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP00241699A priority Critical patent/JP3952621B2/en
Priority to US09/472,006 priority patent/US6466536B1/en
Publication of JP2000206404A publication Critical patent/JP2000206404A/en
Application granted granted Critical
Publication of JP3952621B2 publication Critical patent/JP3952621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Description

【0001】
【発明の属する技術分野】
本発明は高密度光記録媒体用対物レンズに関し、特に、高密度記録が求められる光ディスク、光磁気ディスク、光カード等の光記録媒体に対して、情報信号の書込みあるいは読取りを行う光ピックアップ装置に用いられる高密度光記録媒体用対物レンズに関するものである。
【0002】
【従来の技術】
近年、音声情報、映像情報さらにはコンピュータ用のデータ情報等を記録するための光記録媒体として、CD(コンパクトディスク)、MO(光磁気ディスク)あるいはDVD(デジタルビデオディスク)等がよく用いられるようになってきている。
【0003】
これらの光記録媒体に対して情報信号の書込みあるいは読取りを行うための光ピックアップ装置においては、対物レンズとしてその開口数が、CDにおいては0.45、MOにおいては0.5〜0.6程度、DVDにおいては0.6のものが用いられている。
【0004】
また、上記光ピックアップ装置においては小型化、軽量化、低価格化の要求が強く、その要求を満たすため、上記対物レンズに合成樹脂材料やガラス材料からなる非球面単レンズを採用したものが一般的となっている。
【0005】
ところで、近年では、情報記録容量の飛躍的な増加に伴い、少しでも高密度な記録媒体の出現が切望されており、光記録媒体の記録密度を向上させるための努力が日夜なされている。
【0006】
ここで、光記録媒体の記録密度を向上させるためには対物レンズによる集光スポット径を小さくすることが必要となる。集光スポット径は、光源の波長をλ、対物レンズの開口数をNAとした場合、
k×λ/NA (ただし、kは定数)
なる式で表されるから、集光スポット径を小さくするためには光源の短波長化と対物レンズの高NA化の2条件の少なくともいずれかを満足することが必要となる。
【0007】
そのうち、光源の短波長化は半導体レーザーの短波長化とSHG光源の開発によって、より改善されたものとなってきている。
【0008】
一方、対物レンズの高NA化なる条件は、従来非球面単レンズを採用することにより進められてきておりNAが0.6程度まではこの手法によっても達成可能である。しかし、さらなる高NA化を進めるためには、単玉レンズの製造がより難しいものとなることから非球面単レンズを採用することの限界が問題となっている。例えば特開平10−123410号公報に開示された対物レンズではNA0.7程度を達成するために2群2枚のレンズ構成としている。
【0009】
【発明が解決しようとする課題】
しかしながら、上記公報記載のものにおいては、従来の単レンズの対物レンズに比して、設計上も製造上も難しいものとなり、手間やコストが上昇する。さらに評価方法が容易でないことから製品検査の手間やコストも上昇する。
【0010】
本発明は上記事情に鑑み、光ピックアップ装置に用いられる対物レンズにおいて、NA0.75以上の高NAで2群2枚のレンズ構成でありながら、レンズの設計、製造、検査が容易で、収差を良好に補正し得る高密度光記録媒体用対物レンズを提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明の高密度光記録媒体用対物レンズは、光束を光記録媒体に集光するための光ピックアップ用の対物レンズであって、
光源側から順に、少なくとも1面を非球面とされた両凸レンズからなる第1のレンズと、光源側に凸面を向けた第2のレンズを配列してなり、
該第2のレンズが下記条件式(1)を満足するとともに、
前記第1のレンズが、下記条件式(3)を満足するように単独で収差が補正されたレンズであって下記条件式(2) 満足するように構成され、
系全体の開口数が0.75以上とされていることを特徴とするものである。
【0012】
0.588 < β ≦ 0.676 ……(1)
0.45≦ NA ≦ 0.60 ……(2)
RMS ≦ 0.07λ ……(3)
ただし、
β :第2のレンズの結像倍率
NA :第1のレンズの開口数
RMS:第1のレンズの波面収差のRMS
λ :基準波長
なお、前記第2のレンズが光源側は球面とされ、光記録媒体側は平面とされていることが好ましい。
【0015】
【発明の実施の形態】
以下、本発明の実施形態の高密度光記録媒体用対物レンズについて図面を参照しつつ説明する。
【0016】
図1は、本実施形態を代表するものとして、実施例1に係る高密度光記録媒体用対物レンズの構成を示す図である。
【0017】
図1に示すとおり、本実施形態に係る高密度光記録媒体用対物レンズは光源側から順に、少なくとも1面を非球面とされた両凸レンズからなる第1レンズLと、平凸レンズからなる第2レンズLを配列してなる2群2枚構成のレンズである。ここで、第2レンズLは、光源側は凸面を光源側に向けた球面とされ、光記録媒体側が平面とされている。なお、第1レンズLの非球面形状は下記に示す非球面深さ式により表される。
【0018】
【数1】

Figure 0003952621
【0019】
ここで、光源(図示せず)からの光はこの高密度光記録媒体用対物レンズを透過し、第2レンズLの光記録媒体側の集光点に集光される。集光点の位置は光軸Z上で第2レンズLから1〜2μmの距離であり、図示できない程度に第2レンズLに至近である。
【0020】
また、本実施形態に係る高密度光記録媒体用対物レンズは下記条件式(1’)〜(3’)を満足する。
【0021】
0.588 < β ≦ 0.676 ……(1’)
NA ≧ 0.45 ……(2’)
RMS ≦ 0.07λ ……(3’)
ただし、
β :第2レンズLの結像倍率
NA:第1レンズLの開口数
RMS:第1レンズLの波面収差のRMS
λ :基準波長
【0022】
以下、本実施形態の作用について説明する。
【0023】
まず、レンズ形状としては、第1レンズLの少なくとも1面を非球面とすることで、第1レンズLは単独でも対物レンズとして利用可能であるような収差補正されたレンズとすることができる。
【0024】
また、第2レンズLを平凸レンズとすることで、レンズ研磨等について製造が容易になるほか芯取りが容易になるという利点もあり、レンズの低コスト化が可能になる。
【0025】
つぎに、条件式(1’)は第2レンズLの単独での結像倍率βを規定している。
【0026】
この上限値を上回ると、全系の高NA化を図るためには第1レンズL単体での開口数を大きくしなければならなくなり、第1レンズLの収差補正が難しくなる。
【0027】
結像倍率βがこの下限値を下回るということは、第2レンズLの焦点距離が変わらずに物点距離が長くなるか、または物点距離が変わらずに焦点距離が短くなることを意味する。ここで、第2レンズLの物点距離を長くする場合は、第1レンズLの焦点距離も長くする必要が生じるため、レンズ全体が大きくなりレンズを小型化するのが難しくなる。他方、第2レンズLの焦点距離を短くする場合は、第2レンズLの屈折力が大きくなり、製造による誤差がレンズ性能に大きく影響する。
【0028】
このように、条件式(1’)を満足する第2レンズLを、前述のとおり単独でも収差補正された第1レンズLと組み合わせて2群2枚構成のレンズとすることによりレンズの更なる高NA化が可能になる。
【0029】
条件式(2’)は、第1レンズLを単独で使用したときの開口数を規定している。第1レンズLが条件式(2’)を満足することにより、第2レンズLと組み合わせて、開口数が0.75以上でありながら小型の高密度光記録媒体用対物レンズを容易に得ることができる。
【0030】
すなわち、対物レンズ全系の開口数NAは、第1レンズL単独での開口数をNA、第2レンズLの結像倍率をβとすると、以下の式により表される。
NA = NA / β
【0031】
ここで例えば、第1レンズLの開口数を条件式(2’)の下限値以下の0.44とし、開口数0.75以上の高密度光記録媒体用対物レンズを設計しようとする場合、第2レンズLの結像倍率が0.588より小さくなり、前述したように対物レンズを小型化するのが難しくなる。
【0032】
なお、従来より製造実績のあるレンズを用いることにより製造が容易になるという点で、第1レンズLは開口数が最高でも0.6程度のものとすることが好ましい。
【0033】
例えば、本実施形態に係る高密度光記録媒体用対物レンズの第1レンズLに開口数0.6の対物レンズを採用し、第2レンズLを結像倍率0.667のレンズとすると、対物レンズ全系の開口数が0.9となり、高NAの高密度光記録媒体用対物レンズを得ることができる。
【0034】
条件式(3’)は、マルシャル評価基準と称される波面収差の評価基準であり、この条件式(3’)を満足するレンズは一般に無収差レンズと称される。条件式(3’)を満足することにより、第1レンズLは単独でも収差補正がなされるように構成される。
【0035】
第1レンズLが単独でも収差補正がなされたレンズであることにより、レンズ全系を設計あるいは評価する際には第2レンズLのみの収差補正に配慮すればよいこととなり、設計、評価の労力が軽減される。また、第1レンズLが一般に性能検査の難しい非球面レンズであっても、第1レンズL単品での性能検査が可能となるので工程が簡易化される。
【0036】
<実施例1>
実施例1に係る高密度光記録媒体用対物レンズは、上記実施形態に詳述した構成と作用効果を奏するもので、第1レンズLは両面に非球面を備えたレンズを用いている。
【0037】
表1に、実施例1の各レンズ面の曲率半径R(非球面の場合は光軸近傍の曲率半径)(mm)、各レンズの軸上面間隔(各レンズの中心厚および各レンズ間の空気間隔)D(mm)、および各レンズの波長410nmにおける屈折率Nを示す。なお、表1および以下の表において、曲率半径R、軸上面間隔D、屈折率Nに対応させた数字は光源側から順次増加するようになっている。
【0038】
また、表1の中段には実施例1における上記非球面深さ式に示される非球面の各定数の値を示し、下段には実施例1における入射光束径φ(mm)、レンズ全系の焦点距離f(mm)、レンズ全系の開口数NA、レンズ全系の波面収差のRMS(RMS)、第1レンズLの焦点距離f(mm)、第1レンズLの開口数NA、第1レンズLの波面収差のRMS(RMS)、第2レンズLの焦点距離f(mm)、ならびに第2レンズLの結像倍率βの値を示す。
【0039】
【表1】
Figure 0003952621
【0040】
表1に示すように、実施例1は条件式(1’)〜(3’)をすべて満足している。
【0041】
<実施例2>
実施例2に係る高密度光記録媒体用対物レンズは、実施例1と略同様の構成とされ同様の作用効果を奏するもので、第1レンズLとしては実施例1と同じレンズを用いている。
【0042】
表2に、実施例2の各レンズ面の曲率半径R(非球面の場合は光軸近傍の曲率半径)(mm)、各レンズの軸上面間隔(各レンズの中心厚および各レンズ間の空気間隔)D(mm)、および各レンズの波長410nmにおける屈折率Nを示す。
【0043】
また、表2の中段には実施例2における上記非球面深さ式に示される非球面の各定数の値を示し、下段には実施例2における入射光束径φ(mm)、レンズ全系の焦点距離f(mm)、レンズ全系の開口数NA、レンズ全系の波面収差のRMS(RMS)、第1レンズLの焦点距離f(mm)、第1レンズLの開口数NA、第1レンズLの波面収差のRMS(RMS)、第2レンズLの焦点距離f(mm)、ならびに第2レンズLの結像倍率βの値を示す。
【0044】
【表2】
Figure 0003952621
【0045】
表2に示すように、実施例2は条件式(1’)〜(3’)をすべて満足している。
【0046】
<実施例3>
図2は、実施例3に係る高密度光記録媒体用対物レンズの構成を示す図である。
【0047】
実施例3に係る高密度光記録媒体用対物レンズは、実施例1と略同様の構成とされ同様の作用効果を奏するものである。なお、第1レンズLは実施例1と同曲率半径、同面間隔、同屈折率であるが、レンズ径が実施例1のものより大きいレンズを用いている。
【0048】
表3に、実施例3の各レンズ面の曲率半径R(非球面の場合は光軸近傍の曲率半径)(mm)、各レンズの軸上面間隔(各レンズの中心厚および各レンズ間の空気間隔)D(mm)、および各レンズの波長410nmにおける屈折率Nを示す。
【0049】
また、表3の中段には実施例3における上記非球面深さ式に示される非球面の各定数の値を示し、下段には実施例3における入射光束径φ(mm)、レンズ全系の焦点距離f(mm)、レンズ全系の開口数NA、レンズ全系の波面収差のRMS(RMS)、第1レンズLの焦点距離f(mm)、第1レンズLの開口数NA、第1レンズLの波面収差のRMS(RMS)、第2レンズLの焦点距離f(mm)、ならびに第2レンズLの結像倍率βの値を示す。
【0050】
【表3】
Figure 0003952621
【0051】
表3に示すように、実施例3は条件式(1’)〜(3’)をすべて満足している。
【0052】
<実施例4>
図3は、実施例4に係る高密度光記録媒体用対物レンズの構成を示す図である。
【0053】
実施例4に係る高密度光記録媒体用対物レンズは、図3に示すとおり、実施例3と略同様の2枚のレンズからなる構成とされ、第2レンズLの光記録媒体側に光記録媒体のカバーガラス1が配されている。なお、第1レンズLとしては実施例3と同じレンズを用いており、レンズ全系としては実施例1と同様の作用効果を奏する。
【0054】
なお、カバーガラス1は、第2レンズLの光記録媒体側の面と集光点の間の位置に配することが可能である。
【0055】
このカバーガラス1は種々の態様のものとし得るのであって、例えば、光記録媒体の裏面(第2レンズLとは反対側の面)部分に信号面が形成されている場合には光記録媒体の透明基板をこのカバーガラス1とすることができ、また、例えば、光記録媒体の表面(第2レンズLと対向する側の面)部分に信号面が形成されている場合においては、第2レンズLと光記録媒体の間の任意の位置に配された光路長調整用あるいは媒体保護用等の透明板をこのカバーガラス1とすることができる。
【0056】
表4に、実施例4の各レンズ面の曲率半径R(非球面の場合は光軸近傍の曲率半径)(mm)、各レンズの軸上面間隔(各レンズの中心厚および各レンズ間の空気間隔)D(mm)、および各レンズの波長410nmにおける屈折率Nを示す。
【0057】
また、表4の中段には実施例4における上記非球面深さ式に示される非球面の各定数の値を示し、下段には実施例4における入射光束径φ(mm)、レンズ全系の焦点距離f(mm)、レンズ全系の開口数NA、レンズ全系の波面収差のRMS(RMS)、第1レンズLの焦点距離f(mm)、第1レンズLの開口数NA、第1レンズLの波面収差のRMS(RMS)、第2レンズLの焦点距離f(mm)、ならびに第2レンズLの結像倍率βの値を示す。
【0058】
【表4】
Figure 0003952621
【0059】
表4に示すように、実施例4は条件式(1’)〜(3’)をすべて満足している。
【0060】
<実施例5>
図4は、実施例5に係る高密度光記録媒体用対物レンズの構成を示す図である。
【0061】
実施例5に係る高密度光記録媒体用対物レンズは、実施例1と略同様の構成とされ同様の作用効果を奏するものである。なお、第1レンズLは光源側の面が非球面とされ、光記録媒体側の面は球面とされている。
【0062】
表5に、実施例5の各レンズ面の曲率半径R(非球面の場合は光軸近傍の曲率半径)(mm)、各レンズの軸上面間隔(各レンズの中心厚および各レンズ間の空気間隔)D(mm)、および各レンズの波長410nmにおける屈折率Nを示す。
【0063】
また、表5の中段には実施例5における上記非球面深さ式に示される非球面の各定数の値を示し、下段には実施例5における入射光束径φ(mm)、レンズ全系の焦点距離f(mm)、レンズ全系の開口数NA、レンズ全系の波面収差のRMS(RMS)、第1レンズLの焦点距離f(mm)、第1レンズLの開口数NA、第1レンズLの波面収差のRMS(RMS)、第2レンズLの焦点距離f(mm)、ならびに第2レンズLの結像倍率βの値を示す。
【0064】
【表5】
Figure 0003952621
【0065】
表5に示すように、実施例5は条件式(1’)〜(3’)をすべて満足している。
【0066】
図5は、実施例1〜4および実施例5における第1レンズLの、波長410nmにおける波面収差を表す図である。図5に示すとおり、実施例1〜5における第1レンズLは単独でも収差補正が良好なレンズである。
【0067】
図6は、各々実施例1〜5におけるレンズ全系の、波長410nmにおける波面収差を表す図である。図6に示すとおり、各実施例1〜5に係る高密度光記録媒体用対物レンズは、収差を良好に補正したレンズであることが明らかである。
【0068】
なお、本発明の高密度光記録媒体用対物レンズとしては、上記実施例のものに限られるものではなく種々の態様の変更が可能であり、例えば各レンズの曲率半径Rおよびレンズ間隔(もしくはレンズ厚)Dを適宜変更することが可能である。
【0069】
また、第2レンズLの光記録媒体側の面は、一般に加工性の点で平面であることが好ましいが、若干の曲率を有する面であってもよい。
【0070】
また、本発明に係る対物レンズは、物点(光源)を無限遠方とする場合のみに適用されるものではなく、物点を有限距離に配したいわゆる有限系のレンズとしても使用可能である。
【0071】
【発明の効果】
以上説明したように、本発明の高密度光記録媒体用対物レンズによれば、2群2枚構成とし、第1のレンズとして従前から単玉光ピックアップ用対物レンズとして知られている非球面レンズを用い、第2のレンズとして所定の結像倍率を備え光源側に凸面を向けたレンズを用いることにより、レンズの設計、製造、検査の労力およびコストを増大させることなく、かつ収差を良好なものとしつつ高NAな対物レンズとすることができる。
【図面の簡単な説明】
【図1】実施例1に係る高密度光記録媒体用対物レンズの構成を示す図
【図2】実施例3に係る高密度光記録媒体用対物レンズの構成を示す図
【図3】実施例4に係る高密度光記録媒体用対物レンズの構成を示す図
【図4】実施例5に係る高密度光記録媒体用対物レンズの構成を示す図
【図5】実施例1〜4および実施例5の第1レンズの波長410nmにおける波面収差図
【図6】各実施例1〜5のレンズ全系の波長410nmにおける波面収差図
【符号の説明】
〜L レンズ
〜R 曲率半径(非球面の場合は光軸近傍の曲率半径)
〜D 軸上面間隔
光軸
カバーガラス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an objective lens for a high-density optical recording medium, and more particularly to an optical pickup device for writing or reading information signals on an optical recording medium such as an optical disk, a magneto-optical disk, or an optical card that requires high-density recording. The present invention relates to an objective lens for a high-density optical recording medium used.
[0002]
[Prior art]
In recent years, CD (compact disc), MO (magneto-optical disc), DVD (digital video disc), etc. are often used as optical recording media for recording audio information, video information, and computer data information. It is becoming.
[0003]
In an optical pickup device for writing or reading information signals on these optical recording media, the numerical aperture as an objective lens is about 0.45 for CD, about 0.5 to 0.6 for MO, and 0.6 for DVD. Things are used.
[0004]
In addition, in the optical pickup device, there is a strong demand for downsizing, weight reduction, and cost reduction. In order to satisfy the demand, the objective lens generally adopts an aspherical single lens made of a synthetic resin material or a glass material. It is the target.
[0005]
By the way, in recent years, with the dramatic increase in information recording capacity, the appearance of a recording medium that is as high as possible is eagerly desired, and efforts are being made day and night to improve the recording density of optical recording media.
[0006]
Here, in order to improve the recording density of the optical recording medium, it is necessary to reduce the focused spot diameter by the objective lens. The condensed spot diameter is λ as the wavelength of the light source and NA as the numerical aperture of the objective lens.
k x λ / NA (where k is a constant)
Therefore, it is necessary to satisfy at least one of the two conditions of shortening the wavelength of the light source and increasing the NA of the objective lens in order to reduce the focused spot diameter.
[0007]
Among them, the shortening of the wavelength of the light source has been improved by the shortening of the wavelength of the semiconductor laser and the development of the SHG light source.
[0008]
On the other hand, the condition for increasing the NA of the objective lens has been advanced by adopting a conventional aspherical single lens, and can be achieved by this method until the NA is about 0.6. However, in order to further increase the NA, it is more difficult to manufacture a single lens, and therefore the limit of adopting an aspheric single lens is a problem. For example, the objective lens disclosed in Japanese Patent Laid-Open No. 10-123410 has a two-group, two-lens configuration in order to achieve about NA 0.7.
[0009]
[Problems to be solved by the invention]
However, those described in the above publication are more difficult to design and manufacture than conventional single-lens objective lenses, increasing labor and cost. Furthermore, since the evaluation method is not easy, the labor and cost of product inspection also increase.
[0010]
In view of the above circumstances, the present invention has an objective lens used in an optical pickup device that has a high NA of 0.75 or more and a two-group, two-lens configuration, but can be easily designed, manufactured, and inspected, and has aberrations. An object of the present invention is to provide an objective lens for a high-density optical recording medium that can be corrected satisfactorily.
[0011]
[Means for Solving the Problems]
An objective lens for a high-density optical recording medium of the present invention is an objective lens for an optical pickup for condensing a light beam on an optical recording medium,
In order from the light source side, a first lens composed of a biconvex lens having at least one aspherical surface and a second lens having a convex surface facing the light source side are arranged,
The second lens satisfies the following conditional expression (1), and
Said first lens is configured to satisfy the following Symbol conditional expression (2) a lens whose aberration is corrected individually so as to satisfy the following conditional expression (3),
The numerical aperture of the entire system is 0.75 or more.
[0012]
0.588 <β 2 ≦ 0.676 (1)
0.45 ≦ NA 1 ≦ 0.60 (2)
RMS 1 ≦ 0.07λ (3)
However,
β 2 : imaging magnification of the second lens NA 1 : numerical aperture of the first lens RMS 1 : RMS of wavefront aberration of the first lens
λ: Reference wavelength It is preferable that the second lens has a spherical surface on the light source side and a flat surface on the optical recording medium side.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an objective lens for a high-density optical recording medium according to an embodiment of the present invention will be described with reference to the drawings.
[0016]
FIG. 1 is a diagram illustrating a configuration of an objective lens for a high-density optical recording medium according to Example 1 as a representative of the present embodiment.
[0017]
As shown in FIG. 1, the objective lens for the high density optical recording medium according to the present embodiment in order from the light source side, a first lens L 1 having a biconvex lens that is at least one aspherical surface, consisting of a plano-convex lens the by arranging the second lens L 2 is a 2 two lenses of a lens group made. Here, the second lens L 2, the light source side is a spherical surface having a convex surface on the light source side, the optical recording medium side is flat. The non-spherical shape of the first lens L 1 is represented by the depth of an aspheric surface expression shown below.
[0018]
[Expression 1]
Figure 0003952621
[0019]
Here, the light source light from the (not shown) the high-density optical recording transmitted through the objective lens medium, is focused on the focal point of the second lens L 2 of the optical recording medium side. The position of the condensing point is a distance of 1 to 2 μm from the second lens L 2 on the optical axis Z, and is as close to the second lens L 2 as cannot be shown.
[0020]
Moreover, the objective lens for a high-density optical recording medium according to this embodiment satisfies the following conditional expressions (1 ′) to (3 ′).
[0021]
0.588 <β 2 ≤ 0.676 (1 ')
NA 1 ≧ 0.45 (2 ')
RMS 1 ≤ 0.07λ (3 ')
However,
beta 2: a second lens L 2 of the imaging magnification NA 1: first lens L 1 of the numerical aperture of RMS 1: RMS of the first wave front aberration of the lens L 1
λ : Reference wavelength [0022]
Hereinafter, the operation of the present embodiment will be described.
[0023]
First, as a lens shape, by making at least one surface of the first lens L 1 an aspherical surface, the first lens L 1 may be an aberration-corrected lens that can be used alone as an objective lens. it can.
[0024]
In addition, by setting the second lens L 2 plano-convex lens, there is also the advantage that other centering the manufacturing becomes easy for the lens grinding or the like is facilitated, it is possible to lower the cost of the lens.
[0025]
Next, conditional expression (1 ′) defines the imaging magnification β 2 of the second lens L 2 alone.
[0026]
If this upper limit is exceeded, the numerical aperture of the first lens L 1 alone must be increased in order to increase the NA of the entire system, making it difficult to correct aberrations of the first lens L 1 .
[0027]
The imaging magnification β 2 being lower than the lower limit means that the object distance is increased without changing the focal distance of the second lens L 2 , or the focal distance is reduced without changing the object distance. means. Here, When the longer the object distance of the second lens L 2, since the need to also increase the focal length of the first lens L 1 occurs, the entire lens is miniaturized increased and the lens is difficult. On the other hand, if a shorter focal length of the second lens L 2, the refractive power of the second lens L 2 becomes large, the error caused by manufacturing a large effect on lens performance.
[0028]
As described above, the second lens L 2 that satisfies the conditional expression (1 ′) is combined with the first lens L 1 that has been corrected for aberrations alone as described above to form a two-group two-lens lens. Higher NA can be achieved.
[0029]
Conditional expression (2 ′) defines the numerical aperture when the first lens L 1 is used alone. When the first lens L 1 satisfies the conditional expression (2 ′), it is possible to easily obtain a small objective lens for a high-density optical recording medium while having a numerical aperture of 0.75 or more in combination with the second lens L 2. Can do.
[0030]
That is, the numerical aperture NA of the entire objective lens system is expressed by the following equation, where NA 1 is the numerical aperture of the first lens L 1 alone and β 2 is the imaging magnification of the second lens L 2 .
NA = NA 1 / β 2
[0031]
Here, for example, if the numerical aperture of the first lens L 1 and the lower limit value below 0.44 of the condition (2 '), to be designed to a numerical aperture of 0.75 or more objective lens for the high density optical recording medium, the second lens magnification of the L 2 is smaller than 0.588, it becomes difficult to miniaturize the objective lens as described above.
[0032]
Incidentally, in terms of production by the use of certain lenses conventionally manufacturing results it is facilitated, the first lens L 1 is preferably intended numerical aperture of about 0.6 at most.
[0033]
For example, the first lens L numerical aperture of 0.6 of the objective lens 1 of the high density optical recording medium for an objective lens according to the present embodiment employs, when the second lens L 2 and the lens of the imaging magnification 0.667, the overall objective lens The numerical aperture of the system is 0.9, and an objective lens for a high-density optical recording medium having a high NA can be obtained.
[0034]
Conditional expression (3 ′) is a wavefront aberration evaluation standard referred to as a Marshall evaluation standard, and a lens that satisfies this conditional expression (3 ′) is generally referred to as an aberration lens. By satisfying the conditional expression (3 ′), the first lens L 1 is configured so that aberration correction can be performed by itself.
[0035]
Since the first lens L 1 is a lens that has been subjected to aberration correction alone, when designing or evaluating the entire lens system, it is only necessary to consider aberration correction of the second lens L 2 alone. The effort is reduced. Even if the first lens L 1 is an aspherical lens that is generally difficult to perform a performance test, the performance test can be performed with the first lens L 1 alone, thereby simplifying the process.
[0036]
<Example 1>
An objective lens for the high density optical recording medium according to the first embodiment, in which exhibits the configuration and operation effects detailed above embodiment, the first lens L 1 is a lens having aspherical surfaces on both sides.
[0037]
Table 1 shows the radius of curvature R of each lens surface in Example 1 (the radius of curvature near the optical axis in the case of an aspheric surface) (mm), the distance between the upper surfaces of each lens (the center thickness of each lens and the air between each lens). Distance) D (mm) and the refractive index N of each lens at a wavelength of 410 nm are shown. In Table 1 and the following tables, the numbers corresponding to the radius of curvature R, the shaft upper surface distance D, and the refractive index N are sequentially increased from the light source side.
[0038]
The middle part of Table 1 shows the values of each constant of the aspheric surface shown in the above aspherical surface depth formula in Example 1, and the lower part shows the incident light beam diameter φ (mm) in Example 1 and the total lens system. focal length f (mm), the whole lens system aperture NA, the entire lens system in the wavefront aberration RMS of (RMS), the focal length f 1 of the first lens L 1 (mm), the first lens L 1 of the numerical aperture NA 1, the first lens L 1 of the wavefront aberration RMS (RMS 1), the focal length f 2 of the second lens L 2 (mm), as well as the value of the imaging magnification beta 2 of the second lens L 2.
[0039]
[Table 1]
Figure 0003952621
[0040]
As shown in Table 1, Example 1 satisfies all the conditional expressions (1 ′) to (3 ′).
[0041]
<Example 2>
An objective lens for the high density optical recording medium according to the second embodiment, in which the same effects are substantially the same structure as in Example 1, the first lens L 1 using the same lens as in Example 1 Yes.
[0042]
Table 2 shows the curvature radius R of each lens surface of Example 2 (the radius of curvature near the optical axis in the case of an aspheric surface) (mm), the distance between the upper surfaces of each lens (the center thickness of each lens and the air between the lenses). Distance) D (mm) and the refractive index N of each lens at a wavelength of 410 nm are shown.
[0043]
The middle part of Table 2 shows the values of each constant of the aspheric surface shown in the above aspherical surface depth formula in Example 2, and the lower part shows the incident light beam diameter φ (mm) in Example 2 and the total lens system. focal length f (mm), the whole lens system aperture NA, the entire lens system in the wavefront aberration RMS of (RMS), the focal length f 1 of the first lens L 1 (mm), the first lens L 1 of the numerical aperture NA 1, the first lens L 1 of the wavefront aberration RMS (RMS 1), the focal length f 2 of the second lens L 2 (mm), as well as the value of the imaging magnification beta 2 of the second lens L 2.
[0044]
[Table 2]
Figure 0003952621
[0045]
As shown in Table 2, Example 2 satisfies all the conditional expressions (1 ′) to (3 ′).
[0046]
<Example 3>
FIG. 2 is a diagram illustrating a configuration of an objective lens for a high density optical recording medium according to the third embodiment.
[0047]
The objective lens for a high-density optical recording medium according to Example 3 has substantially the same configuration as that of Example 1, and has the same effects. The first lens L 1 has the same radius of curvature, the same surface spacing, and the same refractive index as in the first embodiment, but uses a lens having a larger lens diameter than that in the first embodiment.
[0048]
Table 3 shows the radius of curvature R of each lens surface of Example 3 (in the case of an aspherical surface, the radius of curvature near the optical axis) (mm), the distance between the upper surface of each lens (the center thickness of each lens and the air between each lens). Distance) D (mm) and the refractive index N of each lens at a wavelength of 410 nm are shown.
[0049]
The middle part of Table 3 shows the values of each constant of the aspheric surface shown in the above aspherical surface depth formula in Example 3, and the lower part shows the incident light beam diameter φ (mm) in Example 3 and the total lens system. focal length f (mm), the whole lens system aperture NA, the entire lens system in the wavefront aberration RMS of (RMS), the focal length f 1 of the first lens L 1 (mm), the first lens L 1 of the numerical aperture NA 1, the first lens L 1 of the wavefront aberration RMS (RMS 1), the focal length f 2 of the second lens L 2 (mm), as well as the value of the imaging magnification beta 2 of the second lens L 2.
[0050]
[Table 3]
Figure 0003952621
[0051]
As shown in Table 3, Example 3 satisfies all conditional expressions (1 ′) to (3 ′).
[0052]
<Example 4>
FIG. 3 is a diagram illustrating a configuration of an objective lens for a high density optical recording medium according to the fourth embodiment.
[0053]
An objective lens for the high density optical recording medium according to the fourth embodiment, as shown in FIG. 3, is configured to a substantially same two lenses as in Example 3, the light on the optical recording medium side of the second lens L 2 A cover glass 1 for the recording medium is arranged. As the first lens L 1 and using the same lens as in Example 3, the same effects as in Example 1 as the whole lens system.
[0054]
The cover glass 1 can be located in position between the face and the focal point of the second lens L 2 of the optical recording medium side.
[0055]
The cover glass 1 is a than be of a variety of embodiments, for example, when the signal surface (opposite surface to the second lens L 2) parts are formed the back surface of the optical recording medium is an optical recording can be a transparent substrate of the medium between the cover glass 1, also, for example, when the signal surface is formed on the surface (the second lens L 2 facing the surface on the side) portion of the optical recording medium, any transparent plate such as an optical path length adjusting or medium protection arranged at a position between the second lens L 2 and the optical recording medium can be the cover glass 1.
[0056]
Table 4 shows the curvature radius R of each lens surface in Example 4 (in the case of an aspherical surface, the radius of curvature near the optical axis) (mm), the distance between the upper surfaces of each lens (the center thickness of each lens and the air between each lens). Distance) D (mm) and the refractive index N of each lens at a wavelength of 410 nm are shown.
[0057]
The middle part of Table 4 shows the values of each constant of the aspheric surface shown in the above aspherical surface depth formula in Example 4, and the lower part shows the incident light beam diameter φ (mm) in Example 4 and the total lens system. focal length f (mm), the whole lens system aperture NA, the entire lens system in the wavefront aberration RMS of (RMS), the focal length f 1 of the first lens L 1 (mm), the first lens L 1 of the numerical aperture NA 1, the first lens L 1 of the wavefront aberration RMS (RMS 1), the focal length f 2 of the second lens L 2 (mm), as well as the value of the imaging magnification beta 2 of the second lens L 2.
[0058]
[Table 4]
Figure 0003952621
[0059]
As shown in Table 4, Example 4 satisfies all the conditional expressions (1 ′) to (3 ′).
[0060]
<Example 5>
FIG. 4 is a diagram illustrating a configuration of an objective lens for a high density optical recording medium according to the fifth embodiment.
[0061]
The objective lens for a high-density optical recording medium according to Example 5 has substantially the same configuration as that of Example 1, and has the same effects. The first lens L 1 is a surface on the light source side is aspheric, the surface of the optical recording medium side is a spherical surface.
[0062]
Table 5 shows the radius of curvature R of each lens surface of Example 5 (in the case of an aspherical surface, the radius of curvature near the optical axis) (mm), the distance between the upper surfaces of each lens (the center thickness of each lens and the air between the lenses). Distance) D (mm) and the refractive index N of each lens at a wavelength of 410 nm are shown.
[0063]
The middle part of Table 5 shows the values of each constant of the aspheric surface shown in the above-mentioned aspheric depth formula in Example 5, and the lower part shows the incident light beam diameter φ (mm) in Example 5 and the total lens system. focal length f (mm), the whole lens system aperture NA, the entire lens system in the wavefront aberration RMS of (RMS), the focal length f 1 of the first lens L 1 (mm), the first lens L 1 of the numerical aperture NA 1, the first lens L 1 of the wavefront aberration RMS (RMS 1), the focal length f 2 of the second lens L 2 (mm), as well as the value of the imaging magnification beta 2 of the second lens L 2.
[0064]
[Table 5]
Figure 0003952621
[0065]
As shown in Table 5, Example 5 satisfies all the conditional expressions (1 ′) to (3 ′).
[0066]
FIG. 5 is a diagram illustrating the wavefront aberration of the first lens L 1 in Examples 1 to 4 and Example 5 at a wavelength of 410 nm. As shown in FIG. 5, the first lens L 1 in Examples 1 to 5 is a lens with good aberration correction even when used alone.
[0067]
FIG. 6 is a diagram illustrating wavefront aberration at a wavelength of 410 nm of the entire lens system in each of Examples 1 to 5. As shown in FIG. 6, it is clear that the objective lenses for high-density optical recording media according to Examples 1 to 5 are lenses in which aberrations are favorably corrected.
[0068]
The objective lens for a high-density optical recording medium of the present invention is not limited to the above-described embodiments, and various modifications can be made. For example, the curvature radius R of each lens and the lens interval (or lens) (Thickness) D can be appropriately changed.
[0069]
The surface of the optical recording medium side of the second lens L 2 is preferably a generally workability plane in terms of, or may be a surface having a slight curvature.
[0070]
Further, the objective lens according to the present invention is not applied only when the object point (light source) is set at infinity, but can also be used as a so-called finite lens in which the object points are arranged at a finite distance.
[0071]
【The invention's effect】
As described above, according to the objective lens for a high-density optical recording medium of the present invention, an aspherical lens that has been known as a single lens optical pickup objective lens as a first lens has a two-group two-element configuration. By using a lens having a predetermined imaging magnification and having a convex surface directed toward the light source as the second lens, it is possible to improve aberrations without increasing lens design, manufacturing, inspection labor and cost. A high NA objective lens can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an objective lens for a high density optical recording medium according to Example 1. FIG. 2 is a diagram showing a configuration of an objective lens for a high density optical recording medium according to Example 3. FIG. 4 is a diagram showing a configuration of an objective lens for a high-density optical recording medium according to Example 4. FIG. 5 is a diagram showing a configuration of an objective lens for a high-density optical recording medium according to Example 5. FIG. FIG. 6 is a wavefront aberration diagram at a wavelength of 410 nm of each lens system of Examples 1 to 5.
L 1 to L 2 lenses R 1 to R 6 radius of curvature (in the case of an aspherical surface, the radius of curvature near the optical axis)
D 1 to D 5 axial distance Z Optical axis 1 cover glass

Claims (2)

光束を光記録媒体に集光するための光ピックアップ用の対物レンズであって、
光源側から順に、少なくとも1面を非球面とされた両凸レンズからなる第1のレンズと、光源側に凸面を向けた第2のレンズを配列してなり、
該第2のレンズが下記条件式(1)を満足するとともに、
前記第1のレンズが、下記条件式(3)を満足するように単独で収差が補正されたレンズであって下記条件式(2) 満足するように構成され、
系全体の開口数が0.75以上とされていることを特徴とする高密度光記録媒体用対物レンズ。
0.588 < β ≦ 0.676 ……(1)
0.45≦ NA ≦ 0.60 ……(2)
RMS ≦ 0.07λ ……(3)
ただし、
β :第2のレンズの結像倍率
NA :第1のレンズの開口数
RMS:第1のレンズの波面収差のRMS
λ :基準波長
An objective lens for an optical pickup for condensing a light beam on an optical recording medium,
In order from the light source side, a first lens composed of a biconvex lens having at least one aspherical surface and a second lens having a convex surface facing the light source side are arranged,
The second lens satisfies the following conditional expression (1), and
Said first lens is configured to satisfy the following Symbol conditional expression (2) a lens whose aberration is corrected individually so as to satisfy the following conditional expression (3),
An objective lens for a high-density optical recording medium, characterized in that the numerical aperture of the entire system is 0.75 or more.
0.588 <β 2 ≦ 0.676 (1)
0.45 ≦ NA 1 ≦ 0.60 (2)
RMS 1 ≦ 0.07λ (3)
However,
β 2 : imaging magnification of the second lens NA 1 : numerical aperture of the first lens RMS 1 : RMS of wavefront aberration of the first lens
λ: Reference wavelength
前記第2のレンズが光源側は球面とされ、光記録媒体側は平面とされていることを特徴とする請求項1に記載された高密度光記録媒体用対物レンズ。  The objective lens for a high-density optical recording medium according to claim 1, wherein the second lens has a spherical surface on the light source side and a flat surface on the optical recording medium side.
JP00241699A 1999-01-08 1999-01-08 Objective lens for high-density optical recording media Expired - Fee Related JP3952621B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP00241699A JP3952621B2 (en) 1999-01-08 1999-01-08 Objective lens for high-density optical recording media
US09/472,006 US6466536B1 (en) 1999-01-08 1999-12-27 Objective lens for high-density optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00241699A JP3952621B2 (en) 1999-01-08 1999-01-08 Objective lens for high-density optical recording media

Publications (2)

Publication Number Publication Date
JP2000206404A JP2000206404A (en) 2000-07-28
JP3952621B2 true JP3952621B2 (en) 2007-08-01

Family

ID=11528657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00241699A Expired - Fee Related JP3952621B2 (en) 1999-01-08 1999-01-08 Objective lens for high-density optical recording media

Country Status (2)

Country Link
US (1) US6466536B1 (en)
JP (1) JP3952621B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4083955B2 (en) * 2000-06-12 2008-04-30 パイオニア株式会社 Objective lens, optical pickup device, and optical recording / reproducing device
JP4817036B2 (en) * 2001-06-20 2011-11-16 コニカミノルタホールディングス株式会社 Objective lens, optical pickup device and recording / reproducing device
JP2003005036A (en) 2001-06-21 2003-01-08 Minolta Co Ltd Objective lens for optical pickup
JP4572989B2 (en) 2008-07-08 2010-11-04 セイコーエプソン株式会社 Illumination device, projection display device, and optical integrator
JP7010865B2 (en) * 2019-02-27 2022-01-26 富士フイルム株式会社 Illumination lenses, illumination optics, and endoscopes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3932578B2 (en) * 1996-10-24 2007-06-20 ソニー株式会社 Objective lens and optical pickup device
US6192022B1 (en) * 1997-05-23 2001-02-20 U.S. Philips Corporation Focusing a light beam more than thirty focal depths from the aplanatic point with a plano-convex lens
WO1998053450A2 (en) * 1997-05-23 1998-11-26 Koninklijke Philips Electronics N.V. Device for optically scanning a record carrier
CN1122987C (en) * 1998-12-21 2003-10-01 皇家菲利浦电子有限公司 Optical scanning device

Also Published As

Publication number Publication date
JP2000206404A (en) 2000-07-28
US6466536B1 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
JP3932578B2 (en) Objective lens and optical pickup device
JPWO2002027715A1 (en) Optical system for optical disk, optical head device for optical disk, and optical drive device
US7167317B2 (en) Objective optical system employing grin lens
KR100882063B1 (en) Objective lens, optical pickup apparatus, and recording or reproducing apparatus
KR20090119708A (en) Objective lens, optical pickup device, and optical recording/reproducing apparatus
JP3952621B2 (en) Objective lens for high-density optical recording media
KR100506565B1 (en) Objective lens for an optical disk
US4684221A (en) Graded refractive index single lens system
JP2000260056A (en) Composite objective lens, spherical aberration correction element, and optical information recording/reproducing device
JP4364328B2 (en) Objective lens for high-density optical recording media
JPH11258497A (en) Objective lens optical system
JP2003167189A (en) Objective lens for optical disk
JP4081857B2 (en) Optical device
JP2511275B2 (en) Optical system for recording / reproducing optical information media
JP2001337269A (en) Optical device for compensating chromatic aberration and optical pickup device
JP4240769B2 (en) Optical pickup lens
EP1376186A1 (en) Objective lens for optical pickup apparatus and recording/reproducing apparatus
JPH10221595A (en) Objective lens for optical disc, optical head device, and optical information recording reproducing device
JPS63163318A (en) Condenser lens
JPS61132915A (en) Object lens for optical pickup
JP2003005062A (en) Objective lens for optical pickup
JP2005017525A (en) Objective lens for optical disk
JP2003005055A (en) Objective lens for optical pickup
JPS60247213A (en) Objective lens for optical pickup
JP2003005054A (en) Objective lens for optical pickup

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees