JP3952442B2 - Ventilation spacer for ceiling heat insulating material and construction method of ceiling heat insulating material using the same - Google Patents

Ventilation spacer for ceiling heat insulating material and construction method of ceiling heat insulating material using the same Download PDF

Info

Publication number
JP3952442B2
JP3952442B2 JP2001216238A JP2001216238A JP3952442B2 JP 3952442 B2 JP3952442 B2 JP 3952442B2 JP 2001216238 A JP2001216238 A JP 2001216238A JP 2001216238 A JP2001216238 A JP 2001216238A JP 3952442 B2 JP3952442 B2 JP 3952442B2
Authority
JP
Japan
Prior art keywords
ceiling
heat insulating
insulating material
spacer
ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001216238A
Other languages
Japanese (ja)
Other versions
JP2003027614A (en
Inventor
惠一 冨山
正美 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP2001216238A priority Critical patent/JP3952442B2/en
Publication of JP2003027614A publication Critical patent/JP2003027614A/en
Application granted granted Critical
Publication of JP3952442B2 publication Critical patent/JP3952442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、天井断熱材用通気スペーサ及びそれを用いた天井断熱材の施工方法に関するものである。
【0002】
【従来の技術】
従来、寒冷地等の住宅における天井断熱工事においては、ALC(Autoclaved light weight concrete)版等からなる天井スラブと、その下方に所定の間隔を隔てて配置される石膏ボード等からなる天井板との間の空間に断熱材を出来るだけ隙間なく充填するために、断熱材を現場で上記隙間内に吹き込むことが行われている。
【0003】
その場合、上記天井板の取付前に天井板の直上位置に防湿フィルムを略水平方向に張り渡し、現場で上記天井スラブと防湿フィルムとの間の空間にセルロースファイバー等からなる天井断熱材をブローイング装置で吹き込んだ後、防湿フィルムの下面に沿わせて天井板を取り付けるようにしている。
【0004】
【発明が解決しようとする課題】
ところが、上記の天井断熱材の施工方法では、吹き込まれた天井断熱材が天井スラブに密着するため、天井スラブの下面側での通気性が悪くなり、天井断熱材に含まれる湿気が容易に屋外側へ排出されない問題があった。
【0005】
そこで、上記天井断熱材の吹込み時に吹込み量を少な目に調整して、天井スラブと天井断熱材との間に通気用の隙間を残すことも考えられる。しかし、吹込み中には、天井スラブと天井断熱材との間にどの程度の隙間が残存しているかを目視で確認することはできないため、逆に吹込み量が過小となった場合は、天井スラブの下面側に隙間ができて断熱性が低下する等の不具合を回避できなかった。
【0006】
【課題を解決するための手段】
本発明は前記の課題を解決するため、天井スラブと天井断熱材との間に必要最小限度の通気スペースを容易に確保できる天井断熱材用通気スペーサ及びそれを用いた天井断熱材の施工方法を提供することを目的とする。
【0007】
そのため、本発明の請求項1の天井断熱材用通気スペーサは、略水平に設置された天井スラブと該天井スラブの下方に所定の間隔を隔てて配置され、その上面側に防湿フィルムが設けられ略水平に設置された天井板との間の空間に現場で天井断熱材を吹き込む場合に上記天井スラブの下面側に取り付けられる天井断熱材用通気スペーサであって、前記天井スラブと前記スペーサの上面との間に通気スペースを形成するための凹凸と、前記天井スラブの下面に直接接触する箇所の上方から見て略円形の前記凹凸の上面に、該天井スラブの下面と該凹凸の上面とを連結するための膨出部の水平部と、前記スペーサの下面側と上面側との間で空気の流通を許容する通気孔を有する合成樹脂板からなることを特徴とするものである。
【0008】
請求項2の天井断熱材用通気スペーサを用いた天井断熱材の施工方法は、請求項1の天井断熱材用通気スペーサを天井スラブの下面側に取り付けた後、上記天井スラブと、該天井スラブの下方に所定の間隔を隔てて配置される天井板との間の空間に現場で天井断熱材を吹き込むことを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1乃至図3に示すように、本実施の形態の天井断熱材用通気スペーサ1(以下、通気スペーサ1という)は、例えば、上方から見て略矩形状の合成樹脂板からなる。上記通気スペーサ1には、上方から見て各々略円形をなすとともに各々基準平面部2から上向きに膨出した1対の大径の膨出部3と、各膨出部3の周囲に配置され、かつ上方から見て略円形をなす複数の小径の膨出部4とが形成されている。
【0010】
また、各膨出部4の両側には、各々上方から見て略三角形状をなすとともに各々基準平面部2から下向きに凹入した1対の凹入部5が形成されている。更に、通気スペーサ1の周縁部に沿って基準平面部2から下向きに凹入した凹入部6が形成されている。上記膨出部3、4及び凹入部5、6は、通気スペーサ1の凹凸を形成する。
【0011】
上記基準平面部2と各膨出部3、4との間には斜め上向きに傾斜した傾斜部が設けられるとともに、基準平面部2と各凹入部5、6との間は斜め下向きに傾斜した傾斜部が設けられている。更に、凹入部5、6には、これら凹入部5、6から斜め上向きに張り出す傾斜部7が形成され、各傾斜部7の上端には略円形の通気孔7aが形成されている。
【0012】
上記通気スペーサ1の大きさ及び材料となる合成樹脂の種類は、特に限定されないが、例えば、縦寸法Lを略1000mm程度、横寸法Wを略500mm程度、厚み寸法を略0.25mm程度としたポリスチレン板を使用できる。ポリスチレン板を用いれば、通気スペーサ1を比較的安価に構成できる。
【0013】
また、基準平面部2に対する各膨出部3、4の上向きの突出量を、例えば、略25mm程度とすれば、通気スペーサ1を、以下の図4のALC版30の下面側に取り付けた状態で、通気スペーサ1とALC版30との間に十分な通気スペースを確保することができる。
【0014】
通気孔7aの大きさは、通気孔7aの個数にもよるが、例えば、直径を略10mm程度とすれば、通気スペーサ1の下面側と上面側との間で十分な通気性を確保することができる。なお、基準平面部2に対する各凹入部5、6の下向きの凹入量は、例えば、略5mm程度とすることができる。
【0015】
次に、上記通気スペーサ1を組み込んだ鉄骨式の住宅の天井付近の構造を図4に示す。鋼製等の縦部材10(縦柱)と横部材11とを組み合わせてなる軸組12の屋外側に外壁パネル13が配置されるとともに、この軸組12の屋内側に壁断熱材14及び内壁パネル15が順次配置されている。
【0016】
軸組12の上方には、H型鋼からなる梁16が外壁パネル13と略平行に配置され、また、この梁16と略直交する方向にもH型鋼からなる梁17が配置されている。図5及び図6に示すように、梁17の下側のフランジ17aには複数の吊り金具18(図5、図6には1つのみ図示)が係止され、この吊り金具18からボルト20及びナット21を介して略コ字形断面の野縁受け22が梁17と略平行に延びるように吊り下げられている。
【0017】
野縁受け22には、所定の間隔で複数の野縁金具23(図5には一つのみ図示)が取り付けられ、各野縁金具23には野縁24が取り付けられている。野縁24は野縁受け22と略直交する方向に延び、この野縁24の下方に、石膏ボード等からなる天井板25が取り付けられている。なお、天井板25の上面側には、ポリエチレンフィルム等からなる防湿フィルム26が貼られている。
【0018】
図7にも示すように、梁16、17における上側のフランジ16b、17b上には、間隔保持材27を介して通気プレート28が配置され、該通気プレート28上にALC版30(天井スラブ)の端部が載置されている。上記間隔保持材27によって、フランジ16b、17bとALC版30間に通気用のスペースS1が形成されている。
【0019】
また、ALC版30より屋外側で、フランジ16b、17b上に鋼製等の縦部材31と横部材32とを組み合わせてなるパラペット軸組33(図4参照)が配置されている。このパラペット軸組33の屋外側にはパラペット用の外壁パネル34が取り付けられるとともに、パラペット軸組33の上端部には、略L字形断面の木製の下地材35が取り付けられている。
【0020】
下地材35の上面には、金属製のパラペット笠木36が取り付けられ、パラペット笠木36は外壁パネル34の上端部の表面付近まで延びている。また、下地材35の屋内側からパラペット軸組33の屋内側に渡って、パネル37が配置されている。
【0021】
ALC版30の上面には、勾配断熱材(38)および耐火ボードの上から、また、下地材35の上面からパネル37の表面、仕上げコンクリート層38の上面に渡って、防水層39が設けられている。
【0022】
ALC版30の下面側には、上記通気スペーサ1が配置され、ALC版30の下面に直接接触する膨出部3、4が金属製のステープル41によってALC版30に取り付けられている。なお、天井の略全領域のALC版30の下面側が覆われるように、複数の通気スペーサ1が縦横に配列されて取り付けられている。そして、上記通気スペーサ1と防湿フィルム26間の空間に、セルロースファイバーやロックウール等からなる天井断熱材42が隙間なく充填されている。
【0023】
上記構成によれば、通気スペーサ1の凹凸によって、ALC版30の下面と通気スペーサ1の上面との間に通気用のスペースS2が形成されるため、天井断熱材42に含まれる湿気が通気スペーサ1の通気孔7aを介して上記スペースS2に流れ込み、更に、ALC版30と梁16、17間の上記スペースS1を介してパラペット軸組33内に流れ込む。
【0024】
その後、図4に矢印Aで示すように、パラペット軸組33及びパラペット笠木36内の隙間を通して屋外側へ排出される。このように、凹凸及び通気孔7aを有する通気スペーサ1を用いることで、天井断熱材42内の湿気等を容易に屋内側へ排出できる。また、後述する現場での天井断熱材42の吹き込み時に、通気スペーサ1と防湿フィルム26間に天井断熱材42を最大容量まで吹き込めるので、天井部分で十分な断熱性を確保できる。
【0025】
次に、通気スペーサ1を用いて現場で天井断熱材42を吹き込む場合の施工方法を説明する。図8に示すように、ALC版30の下面側に通気スペーサ1を取り付け、かつ、野縁受け22及び野縁24を取り付けた後、天井板25の施工前に、まず、野縁24の下面側に防湿フィルム26を張り渡す。
【0026】
この際、防湿フィルム26には、天井断熱材42の吹き込み用の孔26aを形成しておく。そして、住宅に隣接して駐車させた図示しない運搬車輌における天井断熱材42の収容タンクにその一端を接続したホース43を室内に引き込み、ホース43の他端を孔26aを介して防湿フィルム26の上方へ突出させる。
【0027】
この状態で、上記運搬車輌の収容タンクからホース43を介して天井断熱材42を防湿フィルム26と通気スペーサ1との間の隙間に吹き込む。この場合、屋外側への通気経路は通気スペーサ1により確保されるので、天井断熱材42は上記隙間を完全に満たす状態となるまで吹き込む。
【0028】
天井断熱材42の吹き込み完了後、防湿フィルム26の孔26aを不図示の粘着テープ等で閉じ、天井断熱材42が孔26aから下方へ漏れるのを防止する。その後、防湿フィルム26の下面に沿って天井板25を野縁24に取り付ければよい。
【0029】
【発明の効果】
以上説明したように、本発明の請求項1の天井断熱材用通気スペーサは、略水平に設置された天井スラブと該天井スラブの下方に所定の間隔を隔てて配置され、その上面側に防湿フィルムが設けられ略水平に設置された天井板との間の空間に現場で天井断熱材を吹き込む場合に上記天井スラブの下面側に取り付けられる天井断熱材用通気スペーサであって、前記天井スラブと前記スペーサの上面との間に通気スペースを形成するための凹凸と、前記天井スラブの下面に直接接触する箇所の上方から見て略円形の前記凹凸の上面に、該天井スラブの下面と該凹凸の上面とを連結するための膨出部の水平部と、前記スペーサの下面側と上面側との間で空気の流通を許容する通気孔を有する合成樹脂板からなるものであるから、本スペーサを取り付けた後に上記天井スラブと天井板間の空間に天井断熱材を吹き込むと、天井断熱材を上記空間内に隙間なく充填した状態で、上記凹凸によって天井スラブと本スペーサ間に通気スペースを確保できる。
【0030】
これにより、天井断熱材に含まれる湿気が上記通気孔を介して上記通気スペースに移動し、更に該通気スペースを介して容易に屋外側へ排出されるようになる。また、天井断熱材を天井スラブと天井板との間の空間に隙間なく充填できるので、天井部分で十分な断熱性を確保することができる。なお、本通気スペーサは合成樹脂製であるので、製造コストも比較的安価である。
【0031】
請求項2の天井断熱材用通気スペーサを用いた天井断熱材の施工方法は、請求項1の天井断熱材用通気スペーサを天井スラブの下面側に取り付けた後、上記天井スラブと、該天井スラブの下方に所定の間隔を隔てて配置される天井板との間の空間に現場で天井断熱材を吹き込むものであるから、上記空間内に天井断熱材を隙間なく充填した状態でも、上記通気スペーサの通気孔及び凹凸によって屋外側への通気経路を確保でき、天井断熱材等に含まれる湿気が屋外側へ容易に排出されるようになる。
【図面の簡単な説明】
【図1】本発明の実施の形態で使用する通気スペーサを示す斜視図。
【図2】上記通気スペーサを示す平面図。
【図3】上記通気スペーサを示す正面図。
【図4】上記通気スペーサを用いて天井断熱材の施工を行う住宅の天井部分周辺を示す概略断面図。
【図5】上記天井部分に配置される野縁等を示す概略断面図。
【図6】図5のVI-VI線に沿う概略断面図。
【図7】上記天井部分における梁及び通気プレート等を示す分解斜視図。
【図8】上記天井部分に断熱材を吹き込む様子を示す説明図。
【符号の説明】
1 通気スペーサ
3、4 膨出部(凹凸)
5、6 凹入部(凹凸)
25 天井板
30 ALC版(天井スラブ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ventilation spacer for a ceiling heat insulating material and a method for constructing a ceiling heat insulating material using the same.
[0002]
[Prior art]
Conventionally, in ceiling insulation work in houses such as cold districts, there is a ceiling slab made of ALC (Autoclaved light weight concrete) plate and a ceiling board made of gypsum board or the like arranged at a predetermined interval below it. In order to fill the space between the insulating materials as much as possible, the insulating materials are blown into the gaps on site.
[0003]
In that case, before installation of the ceiling panel, a moisture-proof film is stretched in a substantially horizontal direction directly above the ceiling panel, and a ceiling insulation material made of cellulose fiber or the like is blown into the space between the ceiling slab and the moisture-proof film at the site. After blowing with the device, the ceiling plate is attached along the bottom surface of the moisture-proof film.
[0004]
[Problems to be solved by the invention]
However, in the above-described method of installing the ceiling heat insulating material, the blown ceiling heat insulating material is in close contact with the ceiling slab, so that the air permeability on the lower surface side of the ceiling slab deteriorates, and the moisture contained in the ceiling heat insulating material is easily reduced. There was a problem of not being discharged to the outside.
[0005]
Therefore, it is also conceivable to leave a ventilation gap between the ceiling slab and the ceiling insulating material by adjusting the amount of blowing when the ceiling insulating material is blown. However, since it is not possible to visually check how much space remains between the ceiling slab and the ceiling insulation during blowing, if the blowing amount is too small, It was not possible to avoid problems such as a gap on the lower surface side of the ceiling slab and a decrease in heat insulation.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a ventilation spacer for a ceiling insulation material that can easily secure a necessary minimum ventilation space between a ceiling slab and a ceiling insulation material, and a method for constructing a ceiling insulation material using the same. The purpose is to provide.
[0007]
Therefore, the ventilation spacer for ceiling heat insulating material according to claim 1 of the present invention is arranged at a predetermined interval below the ceiling slab installed substantially horizontally and below the ceiling slab, and a moisture-proof film is provided on the upper surface side thereof. A ventilation spacer for ceiling heat insulating material that is attached to the lower surface side of the ceiling slab when the ceiling heat insulating material is blown into the space between the ceiling plate installed substantially horizontally, and the upper surface of the ceiling slab and the spacer Between the lower surface of the ceiling slab and the upper surface of the unevenness on the upper surface of the substantially uneven surface as viewed from above the portion directly contacting the lower surface of the ceiling slab. It is characterized by comprising a synthetic resin plate having a horizontal portion of the bulging portion for connection and a vent hole that allows air to flow between the lower surface side and the upper surface side of the spacer.
[0008]
The construction method of the ceiling heat insulating material using the ventilation spacer for ceiling heat insulating material according to claim 2 is characterized in that the ceiling heat insulating material ventilation spacer according to claim 1 is attached to the lower surface side of the ceiling slab, and then the ceiling slab and the ceiling slab A ceiling heat insulating material is blown on site in a space between the ceiling board and a ceiling plate arranged at a predetermined interval below the ceiling.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 3, the ceiling heat insulating material ventilation spacer 1 (hereinafter referred to as the ventilation spacer 1) according to the present embodiment is made of, for example, a substantially rectangular synthetic resin plate as viewed from above. The ventilation spacer 1 has a pair of large-diameter bulging portions 3 each having a substantially circular shape when viewed from above and bulging upward from the reference plane portion 2, and is disposed around each bulging portion 3. In addition, a plurality of small-diameter bulging portions 4 having a substantially circular shape when viewed from above are formed.
[0010]
Further, on both sides of each bulging portion 4, a pair of recessed portions 5 are formed which are substantially triangular as viewed from above and are recessed downward from the reference plane portion 2. Further, a recessed portion 6 that is recessed downward from the reference plane portion 2 along the peripheral edge of the ventilation spacer 1 is formed. The bulging portions 3 and 4 and the recessed portions 5 and 6 form irregularities of the ventilation spacer 1.
[0011]
An inclined portion inclined obliquely upward is provided between the reference plane portion 2 and each of the bulging portions 3, 4, and between the reference plane portion 2 and each of the recessed portions 5, 6 is inclined obliquely downward. An inclined portion is provided. Further, the recessed portions 5 and 6 are formed with inclined portions 7 projecting obliquely upward from the recessed portions 5 and 6, and a substantially circular vent hole 7 a is formed at the upper end of each inclined portion 7.
[0012]
The size of the ventilation spacer 1 and the type of synthetic resin used as the material are not particularly limited. For example, the vertical dimension L is approximately 1000 mm, the lateral dimension W is approximately 500 mm, and the thickness dimension is approximately 0.25 mm. Polystyrene plates can be used. If a polystyrene board is used, the ventilation spacer 1 can be comprised comparatively cheaply.
[0013]
Moreover, if the upward protrusion amount of each bulging part 3 and 4 with respect to the reference plane part 2 is, for example, about 25 mm, the ventilation spacer 1 is attached to the lower surface side of the ALC plate 30 in FIG. Thus, a sufficient ventilation space can be secured between the ventilation spacer 1 and the ALC plate 30.
[0014]
The size of the air holes 7a depends on the number of air holes 7a. For example, if the diameter is about 10 mm, sufficient air permeability is ensured between the lower surface side and the upper surface side of the air spacer 1. Can do. In addition, the downward recessed amount of each recessed part 5 and 6 with respect to the reference | standard plane part 2 can be about 5 mm, for example.
[0015]
Next, FIG. 4 shows the structure near the ceiling of a steel-frame house incorporating the ventilation spacer 1. An outer wall panel 13 is disposed on the outdoor side of a shaft set 12 formed by combining a vertical member 10 (vertical column) made of steel and the horizontal member 11, and a wall heat insulating material 14 and an inner wall are provided on the indoor side of the shaft set 12. Panels 15 are sequentially arranged.
[0016]
Above the shaft set 12, a beam 16 made of H-shaped steel is arranged substantially parallel to the outer wall panel 13, and a beam 17 made of H-shaped steel is also arranged in a direction substantially perpendicular to the beam 16. As shown in FIGS. 5 and 6, a plurality of suspension fittings 18 (only one is shown in FIGS. 5 and 6) are engaged with the lower flange 17 a of the beam 17, and bolts 20 are connected to the suspension fitting 18. A field receiver 22 having a substantially U-shaped cross section is suspended via a nut 21 so as to extend substantially parallel to the beam 17.
[0017]
A plurality of field fittings 23 (only one is shown in FIG. 5) are attached to the field edge receptacle 22 at predetermined intervals, and a field edge 24 is attached to each field edge fitting 23. The field edge 24 extends in a direction substantially perpendicular to the field edge receiver 22, and a ceiling plate 25 made of gypsum board or the like is attached below the field edge 24. A moisture-proof film 26 made of a polyethylene film or the like is attached to the upper surface side of the ceiling board 25.
[0018]
As shown in FIG. 7, a ventilation plate 28 is disposed on the upper flanges 16 b and 17 b of the beams 16 and 17 via a spacing member 27, and an ALC plate 30 (ceiling slab) is provided on the ventilation plate 28. The end of is placed. A space S <b> 1 for ventilation is formed between the flanges 16 b and 17 b and the ALC plate 30 by the spacing member 27.
[0019]
Further, on the outdoor side of the ALC plate 30, a parapet shaft group 33 (see FIG. 4) formed by combining a vertical member 31 made of steel and a horizontal member 32 is disposed on the flanges 16b and 17b. A parapet outer wall panel 34 is attached to the outdoor side of the parapet shaft assembly 33, and a wooden base material 35 having a substantially L-shaped cross section is attached to the upper end portion of the parapet shaft assembly 33.
[0020]
A metal parapet headboard 36 is attached to the upper surface of the base material 35, and the parapet headboard 36 extends to the vicinity of the surface of the upper end portion of the outer wall panel 34. A panel 37 is arranged from the indoor side of the base material 35 to the indoor side of the parapet shaft assembly 33.
[0021]
A waterproof layer 39 is provided on the upper surface of the ALC plate 30 from above the gradient heat insulating material (38) and the fireproof board, and from the upper surface of the base material 35 to the surface of the panel 37 and the upper surface of the finished concrete layer 38. ing.
[0022]
The ventilation spacer 1 is disposed on the lower surface side of the ALC plate 30, and the bulging portions 3 and 4 that are in direct contact with the lower surface of the ALC plate 30 are attached to the ALC plate 30 with metal staples 41. In addition, the several ventilation spacer 1 is arranged in the vertical and horizontal direction, and is attached so that the lower surface side of the ALC plate 30 of the substantially whole area | region of a ceiling may be covered. A space between the ventilation spacer 1 and the moisture-proof film 26 is filled with a ceiling heat insulating material 42 made of cellulose fiber or rock wool without any gaps.
[0023]
According to the above-described configuration, the air space S2 is formed between the lower surface of the ALC plate 30 and the upper surface of the ventilation spacer 1 due to the unevenness of the ventilation spacer 1, so that the moisture contained in the ceiling heat insulating material 42 is removed from the ventilation spacer. It flows into the space S2 through the one air hole 7a, and further flows into the parapet shaft assembly 33 through the space S1 between the ALC plate 30 and the beams 16 and 17.
[0024]
Thereafter, as indicated by an arrow A in FIG. 4, it is discharged to the outdoor side through the gaps in the parapet shaft group 33 and the parapet headboard 36. Thus, by using the ventilation spacer 1 having the unevenness and the ventilation holes 7a, moisture and the like in the ceiling heat insulating material 42 can be easily discharged indoors. Moreover, since the ceiling heat insulating material 42 is blown up to the maximum capacity between the ventilation spacer 1 and the moisture-proof film 26 when the ceiling heat insulating material 42 is blown in the field, which will be described later, sufficient heat insulating properties can be secured at the ceiling portion.
[0025]
Next, a construction method in the case where the ceiling heat insulating material 42 is blown on site using the ventilation spacer 1 will be described. As shown in FIG. 8, after the ventilation spacer 1 is attached to the lower surface side of the ALC plate 30 and the field edge receiver 22 and the field edge 24 are attached, before the ceiling plate 25 is constructed, first, the lower surface of the field edge 24. A moisture-proof film 26 is stretched over the side.
[0026]
At this time, the moisture-proof film 26 is formed with a hole 26 a for blowing the ceiling heat insulating material 42. Then, the hose 43 having one end connected to the storage tank of the ceiling heat insulating material 42 in the transport vehicle (not shown) parked adjacent to the house is drawn into the room, and the other end of the hose 43 is connected to the moisture-proof film 26 through the hole 26a. Project upward.
[0027]
In this state, the ceiling heat insulating material 42 is blown into the gap between the moisture-proof film 26 and the ventilation spacer 1 through the hose 43 from the storage tank of the transport vehicle. In this case, since the ventilation path to the outdoor side is secured by the ventilation spacer 1, the ceiling heat insulating material 42 is blown until the gap is completely filled.
[0028]
After completion of blowing the ceiling heat insulating material 42, the hole 26a of the moisture-proof film 26 is closed with an adhesive tape (not shown) to prevent the ceiling heat insulating material 42 from leaking downward from the hole 26a. Thereafter, the ceiling plate 25 may be attached to the field edge 24 along the lower surface of the moisture-proof film 26.
[0029]
【The invention's effect】
As described above, the ventilation spacer for ceiling heat insulating material according to claim 1 of the present invention is arranged at a predetermined interval below the ceiling slab installed substantially horizontally and below the ceiling slab, and is moisture-proof on the upper surface side thereof. A ventilation spacer for ceiling heat insulating material that is attached to the lower surface side of the ceiling slab when blowing the ceiling heat insulating material in the field to the space between the ceiling plate provided with a film and installed substantially horizontally, and the ceiling slab Concavities and convexities for forming a ventilation space between the upper surface of the spacer and the upper surface of the concave and convex portions that are substantially circular when viewed from above the portion that directly contacts the lower surface of the ceiling slab. This spacer is composed of a synthetic resin plate having a horizontal portion of a bulging portion for connecting the upper surface of the spacer and a vent hole that allows air to flow between the lower surface side and the upper surface side of the spacer. Mounting When blown ceiling insulation material in the space between the ceiling slab and ceiling plate after the ceiling insulation material in a state filled with no clearance within the space, the ventilation space can be secured between the ceiling slab and the spacer by the uneven.
[0030]
Thereby, the moisture contained in the ceiling heat insulating material moves to the ventilation space via the vent hole, and is easily discharged to the outdoor side through the ventilation space. Moreover, since the space between the ceiling slab and the ceiling plate can be filled with the ceiling heat insulating material without a gap, sufficient heat insulating properties can be secured at the ceiling portion. In addition, since this ventilation | gas_flowing spacer is a product made from a synthetic resin, the manufacturing cost is also comparatively cheap.
[0031]
The construction method of the ceiling heat insulating material using the ventilation spacer for ceiling heat insulating material according to claim 2 is characterized in that the ceiling heat insulating material ventilation spacer according to claim 1 is attached to the lower surface side of the ceiling slab, and then the ceiling slab and the ceiling slab Since the ceiling heat insulating material is blown in the space between the ceiling plate and the ceiling plate arranged at a predetermined interval below the space, the ventilation spacer can be used even when the space is filled with the ceiling heat insulating material without any gaps. A ventilation path to the outdoor side can be ensured by the vent holes and the unevenness, and moisture contained in the ceiling heat insulating material or the like can be easily discharged to the outdoor side.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a ventilation spacer used in an embodiment of the present invention.
FIG. 2 is a plan view showing the ventilation spacer.
FIG. 3 is a front view showing the ventilation spacer.
FIG. 4 is a schematic cross-sectional view showing the vicinity of a ceiling portion of a house where ceiling heat insulating material is installed using the ventilation spacer.
FIG. 5 is a schematic cross-sectional view showing a field edge and the like arranged on the ceiling portion.
6 is a schematic cross-sectional view taken along line VI-VI in FIG.
7 is an exploded perspective view showing a beam, a ventilation plate and the like in the ceiling portion. FIG.
FIG. 8 is an explanatory view showing a state in which a heat insulating material is blown into the ceiling portion.
[Explanation of symbols]
1 Ventilation spacers 3, 4 bulges (unevenness)
5, 6 Recessed part (unevenness)
25 Ceiling board 30 ALC version (ceiling slab)

Claims (2)

略水平に設置された天井スラブと該天井スラブの下方に所定の間隔を隔てて配置され、その上面側に防湿フィルムが設けられ略水平に設置された天井板との間の空間に現場で天井断熱材を吹き込む場合に上記天井スラブの下面側に取り付けられる天井断熱材用通気スペーサであって、前記天井スラブと前記スペーサの上面との間に通気スペースを形成するための凹凸と、前記天井スラブの下面に直接接触する箇所の上方から見て略円形の前記凹凸の上面に、該天井スラブの下面と該凹凸の上面とを連結するための膨出部の水平部と、前記スペーサの下面側と上面側との間で空気の流通を許容する通気孔を有する合成樹脂板からなることを特徴とする天井断熱材用通気スペーサ。A ceiling slab installed substantially horizontally and a space between the ceiling slab arranged at a predetermined interval below the ceiling slab, a moisture-proof film provided on the upper surface thereof, and a ceiling plate installed substantially horizontally. A ventilation spacer for a ceiling insulation material that is attached to the lower surface side of the ceiling slab when the insulation material is blown, and an unevenness for forming a ventilation space between the ceiling slab and the upper surface of the spacer, and the ceiling slab A horizontal portion of the bulge portion for connecting the lower surface of the ceiling slab and the upper surface of the unevenness to the upper surface of the unevenness as viewed from above the portion directly contacting the lower surface of the spacer, and the lower surface side of the spacer A ventilation spacer for ceiling heat insulating material, comprising a synthetic resin plate having a ventilation hole that allows air to flow between the upper surface and the upper surface. 請求項1の天井断熱材用通気スペーサを天井スラブの下面側に取り付けた後、上記天井スラブと、該天井スラブの下方に所定の間隔を隔てて配置される天井板との間の空間に現場で天井断熱材を吹き込むことを特徴とする天井断熱材用通気スペーサを用いた天井断熱材の施工方法。After attaching the ventilation spacer for ceiling heat insulating material of Claim 1 to the lower surface side of a ceiling slab, it is a field in the space between the said ceiling slab and the ceiling board arrange | positioned below this ceiling slab at predetermined intervals A method for constructing a ceiling insulation material using a ventilation spacer for ceiling insulation material, wherein the ceiling insulation material is blown in.
JP2001216238A 2001-07-17 2001-07-17 Ventilation spacer for ceiling heat insulating material and construction method of ceiling heat insulating material using the same Expired - Fee Related JP3952442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001216238A JP3952442B2 (en) 2001-07-17 2001-07-17 Ventilation spacer for ceiling heat insulating material and construction method of ceiling heat insulating material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001216238A JP3952442B2 (en) 2001-07-17 2001-07-17 Ventilation spacer for ceiling heat insulating material and construction method of ceiling heat insulating material using the same

Publications (2)

Publication Number Publication Date
JP2003027614A JP2003027614A (en) 2003-01-29
JP3952442B2 true JP3952442B2 (en) 2007-08-01

Family

ID=19050741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001216238A Expired - Fee Related JP3952442B2 (en) 2001-07-17 2001-07-17 Ventilation spacer for ceiling heat insulating material and construction method of ceiling heat insulating material using the same

Country Status (1)

Country Link
JP (1) JP3952442B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713986B2 (en) * 2005-09-06 2011-06-29 パナホーム株式会社 Spacer

Also Published As

Publication number Publication date
JP2003027614A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
US20100199586A1 (en) Insulation system for cement walls
RU2640834C1 (en) Multi-layered restoration construction element
JP6463321B2 (en) Panel unit and curtain wall provided with the same
JP3952442B2 (en) Ventilation spacer for ceiling heat insulating material and construction method of ceiling heat insulating material using the same
JP2003184196A (en) Outer wall structure, building unit, and unit building
JP4700407B2 (en) Foundation and building with decorative panel
JP2863719B2 (en) Moistureproof structure of house and integrated panel method
JPH10205015A (en) Building equipped with ventilative layer
JP2602828Y2 (en) Ventilation prevention structure of wooden building
JP2021046754A (en) Vibration control ceiling structure
JP4264376B2 (en) Under-floor connection hardware
JP3729671B2 (en) Insulation structure of ceiling part of frame wall construction method building
CN214786284U (en) Steel construction assembled house periphery protects system
JP3142995B2 (en) Unit building
JPH0336343A (en) True wall-made heat insulating device
JPS6160943A (en) Outer walls structure
JP2001193211A (en) Ceiling embedded air-conditioner housing structure
JP4664083B2 (en) Fire stop structure in the shaft construction method
JPH0727284Y2 (en) Insulation wall panels
JP2578469Y2 (en) Closed ceiling support structure
JP2001123641A (en) Exterior panel
JPH0538170Y2 (en)
JP2024049226A (en) Underfloor insulation renovation structure and underfloor insulation renovation method
JP3615471B2 (en) Outer wall slit structure and outer wall structure
JP4434425B2 (en) Exterior wall construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070420

R150 Certificate of patent or registration of utility model

Ref document number: 3952442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees