JP3952329B2 - Airflow simulation method in a factory building - Google Patents

Airflow simulation method in a factory building Download PDF

Info

Publication number
JP3952329B2
JP3952329B2 JP23153497A JP23153497A JP3952329B2 JP 3952329 B2 JP3952329 B2 JP 3952329B2 JP 23153497 A JP23153497 A JP 23153497A JP 23153497 A JP23153497 A JP 23153497A JP 3952329 B2 JP3952329 B2 JP 3952329B2
Authority
JP
Japan
Prior art keywords
dust
factory building
dimensional model
concentration distribution
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23153497A
Other languages
Japanese (ja)
Other versions
JPH1163622A (en
Inventor
徳久 武鎗
敦司 三重野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP23153497A priority Critical patent/JP3952329B2/en
Publication of JPH1163622A publication Critical patent/JPH1163622A/en
Application granted granted Critical
Publication of JP3952329B2 publication Critical patent/JP3952329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Air Conditioning Control Device (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋳造工場など工場建屋内の環境改善を実施するために、コンピュータ・シミュレーションを利用して気流、温度分布、粉塵濃度分布などを予測し、解析する方法に関するものである。
【0002】
【従来の技術】
溶解炉や注湯装置、製品の冷却ラインなどが設置されている鋳造工場では、多量の粉塵が発生する。従来から、鋳造工場の作業環境を改善するために種々の対策が行われてきている。近年、コンピュータによるシミュレーション技術の発展に伴い、工場内の気流をシミュレーションにより予測し、粉塵対策など適切な環境改善案を事前に評価する気流シミュレーション方法が提案されている。
この気流シミュレーション方法は、工場建屋内の数カ所について風向、風速、温度などの作業環境データを測定し、この測定データを熱流体解析プログラムに入力し、工場建屋内の気流、温度の分布、相対的な粉塵濃度分布等を求めるものである。
【0003】
【発明が解決しようとする課題】
この従来の気流シミュレーション方法は、単一の粉塵発生源についての相対的な粉塵濃度分布の解析は行えるが、複数の粉塵発生源からの粉塵量あるいは粉塵濃度を合成した粉塵濃度分布の解析は行っていない。また、粉塵濃度分布の絶対値についての解析も行っていない。なお、前記相対的粉塵濃度とは、粉塵発生源から発生する粉塵濃度を1と仮定し、工場内の粉塵濃度分布を、粉塵発生源に対する比率で求めることをいう。また絶対的粉塵濃度とは、粉塵濃度を単位体積当たり(たとえば、1立方メートル)の空気中に含まれる粉塵の質量で求めたものをいう。
【0004】
【課題を解決するための手段】
本発明は、工場建屋内の気流、温度、粉塵濃度分布を、図1のS3、S5、S6に示す3段階のコンピュータによる計算を行い工場建屋内の粉塵濃度分布を予測する気流シミュレーション方法である。第1段階の換気計算手段では、工場建屋の開口部を通過する空気の流入及び流出速度を工場建屋外部の気象条件に基づいて求める。第2段階では、3次元モデル作成手段により作成した前記工場建屋の3次元モデルに開口部の位置と前記換気計算手段で求めたその開口部を通過する空気の流入及び流出速度と、発熱源の位置と放熱量Qを付加したデータを熱流体解析手段に入力して、前記工場建屋内の気流と温度分布とを求める。第3段階では、前記気流と温度分布を求めた3次元モデルに、前記建屋内の複数箇所にある粉塵発生源の位置とその粉塵発生量について経過時間との関係を前記熱流体解析手段にデータとして入力して計算し、前記複数の粉塵発生源から発生する粉塵量を合成した絶対的粉塵濃度分布の時系列変化を予測する。
さらに本発明の換気計算手段は、工場建屋外部の風速及び温度と、工場建屋の開口部の位置、面積、風圧係数、流量係数と、排気ファン等の排気装置の空気の吸い込み口の位置、排気風量あるいは給気装置の空気の吹き出し口の位置、給気風量と、前記工場建屋内の発熱源の放熱量Qを入力して計算することにより、前記工場建屋の開口部を通過する空気の流入及び流出速度を求めるようにした工場建屋内の気流シミュレーション方法である。
さらに、本発明によって把握される粉塵濃度分布は、絶対的粉塵濃度であることを特徴としている。
【0005】
【発明の実施の形態】
以下、本発明を鋳造工場の粉塵環境の改善に応用した例に基づいて説明する。
図6に、従来から実施されている工場内の粉塵対策の一例を示す。溶解炉1から発生した粉塵を集塵フード2で捕集し、ダクト3で集塵装置に排出している。
集塵フード2で捕集できない粉塵はモニタ4や排気ファン5により外部に排出している。なお、6は外気を取り入れる窓などの開口部である。また、溶解炉1の他に、図7に示す鋳型造型ラインLにおいても、粉塵発生源としては注湯装置7、注湯が完了した鋳型内の製品を冷却する冷却ライン8等がある。
これらの作業環境に対して、さらに適切な粉塵環境の改善を検討するために、まず本発明を用いて建屋内の粉塵の濃度分布を解析する。
【0006】
本発明を実施するための手順の概要を図1に基いて説明する。
まずS1において、粉塵の濃度分布を解析する対象領域を決定する。例えば、鋳造工場の建屋全体を対象にするか、溶解職場のみを対象にするかを決定する。
次にS2に示すように、この対象領域についての現場調査を行う。現場調査を行う項目とその調査目的は次の通りである。
1)工場建屋の形状及び建屋内に設置されている装置などの構造物の位置、形状の測定を行う。ただし図面が存在する場合は、図面の寸法を利用してもよい。これは、S4に示す3次元のコンピュータシミュレーションを実施するにあたり、シミュレーションの対象領域の形状を3次元モデル化するために必要である。
工場建屋の窓などの開口部の位置とその形状の測定を行う。ただし図面が存在する場合は、図面の寸法を利用してもよい。
モニタや排気ファン、集塵フードなど排気装置の空気の吸い込み口の位置と形状の測定を行う。ただし図面が存在する場合は、図面の寸法を利用してもよい。また、各排気装置の排気風量は仕様書の値、あるいは風速計により測定した値を利用する。上記2)と3)はS3に示す換気計算及びS5、S6に示す熱流体解析を行うための入力条件データとして使用するためである。
4)工場建屋内にある熱発生源の形状、表面温度の測定を行う。これは、溶解炉、注湯装置の取鍋等の熱発生源の表面温度を基に放熱量Qを手計算し、S3に示す換気計算及びS5、S6に示す熱流体解析を行うための入力条件データとして使用するためである。
表面温度から放熱量Qを求めるためには、下記の式を用いるとよい。
Q=αΔTA=α(Twall−Tair)A
Q:単位時間当たりの発熱量[W]
α:熱伝達率[W/m2K]
wall:熱源の表面温度[℃]
air:外気の温度[℃]
A:表面積[m2
5)建屋外部の風向、風速、温度等の気象条件の測定を行う。これは、工場の窓などの開口部を通過する空気の流入及び流出速度が、外気の影響(風向、風速、温度)を受けるので、換気計算で求めようとする時点の入力条件データとして使用するためである。この建屋外部の気象条件データとしては、地元気象台の過去の観測データを利用してもよい。
【0007】
6)工場内に存在する粉塵発生源から発生する粉塵量を求める。この粉塵発生量を求める手段の一例としては、レーザ透過光減衰法を応用した測定装置の利用がある。以下この測定方法を図8に基いて説明する。図8は、溶解炉1から発生する粉塵量の測定方法を示している。レーザ投光器15からエネルギーI0で出射されたレーザ平行光17が粉塵を含む空気19中を透過し、散乱及び吸収によってエネルギーIに減衰し、受光器16に到達する。演算装置21では、このエネルギー比率I/I0を対数変換したln(I/I0)を電圧により出力22する。あらかじめ図10に示す校正装置により、図9に示す電圧出力[mV]とレーザ平行光内の粉塵量[g]との関係を求めておき、実際に溶解炉などの測定を行う場合、その関係式を使用して、時間経過ごと(たとえば、0.5秒間隔)にレーザ光内を通過する粉塵量を求める。
【0008】
なお、上記レーザ光内通過粉塵量の測定時には、同時に高速ビデオカメラ20で粉塵を含む空気19の動きを撮影する。その撮影した映像より、レーザが透過した粉塵を含む空気19の幅と上昇速度を求める。粉塵を含む空気19の上昇方向断面積を円と見なし、粉塵がこの円内に一様に分布するとして積算することにより、単位時間あたりに粉塵発生源から発生する粉塵量が求まる。たえば1秒ごとの粉塵発生量を求めることができる。図11には、上記の方法で求めた粉塵発生量と時間経過との関係を示すグラフである。
前記校正装置の概要を図10に示す。この校正装置は透明アクリル材の筒24、粉塵投入口25、軸流ファン27から構成され、電圧出力ln(I/I0)と粉塵量の関係のグラフを作成するための装置である。容量が既知の校正装置内に、予め捕捉しておいた、粉塵サンプルを所定の質量だけ筒24内に投入し、軸流ファン27により粉塵を含む空気26を循環させ、その状態でレーザ光17を通過させて電圧出力を求める。このようにして投入する粉塵の質量を変化させることで、筒内の粉塵量と電圧出力との関係を示すグラフを作成する。ただし、粉塵発生源ごとに発生する粉塵の性状が異なるため、各発生源の粉塵サンプルを予め用意しておき、それを使用して図9に示す粉塵発生源ごとに電圧出力と粉塵の発生量との関係を求める(検査量線グラフ23a、23b、・・・)。
【0009】
次にS3において、S2における現場調査で得た外気の風向、風速、温度と、工場建屋の開口部の位置、面積、風圧係数、流量係数と、モニタや排気ファンや集塵フードなどの排気装置の空気吸い込み口の位置(例えば、開口部中心部の地上面からの高さ)、面積、排気風量と、発熱源からの放熱量Qを使用し、パソコン又はワークステーション上で稼動する換気計算手段により換気計算を行う。換気計算手段では、図2に示すように、例えば工場建屋内を開口部1、2、3・・を含む複数個の室1、室2、室3、・・に分けて、各開口部を通過する空気の流量と熱量の平衡をもとに計算し、各開口部を通過する空気の平均風速、あるいは室内の平均温度、平均圧力を求めるもので、熱流体解析手段への初期入力データになる。換気計算手段には、以下の計算式を登録して換気計算を行う。なお上記の入力データは予め作成し、外部記憶装置に保存しておき、そのデータを読み込ませて換気計算を行う。
【0010】
1)排気ファンなどの機械力の場合は、定格流量(一定値)とする。
2)開口の場合は、下記の計算式を用いる。
j−Pk−(ρj−ρk)ghi−Pwi
=±(1/αi2)(ρ0/2)(Qi/Ai)2
上式の開口iにおける風圧(Pwi)は、
wi=Ci0/2)V2
ここに、 i:開口部の番号
j,Pk:開口が接する前後の室内圧力
ρj,ρk:開口が接する前後の室の空気密度
g :重力加速度
hi :開口部の高さ
αi :開口部の流量係数
i :流量 [m3/s]
i :開口面積 [m2
ρ0 :外気温度での空気密度
i :風圧係数
:外気の風速
3)モニタのように、圧力差と風速との関係を示す通気特性図(図4に示す)を使用する場合には、下記の計算式を用いる。
j−Pk−(ρj−ρk)ghi=F(Qi,V,δ)
ここに、 F :モニタの通気特性
i:モニタを通過する空気の流量 [m3/s]
:外気の風速 [m/s]
δ :外気の風向 [ °]
なお、図4において曲線9、10、11はそれぞれ外気の風速が2m/秒、3m/秒、7m/秒のときのモニタ特性を示している。
なお、換気計算では、熱の移動は空気の移動によるもののみ考慮するようにする。
開口部iでの熱量は
i=ρ0p(Tj−Tk)Qi
p:等圧比熱 [kJ/kg・k]
i:開口iでの熱移動量 [kJ]
【0011】
そして、開口部を通過する空気の流量と熱量の平衡を考慮する。
室内の平均温度 :Tj
室内の平均圧力 :Pj
未知数 :2n個
各室の番号 : j
流量の平衡:第j室に接する開口部を通過する空気の流量Qiの合計=0
熱量の平衡:第j室に関する熱量Hiの合計=0
2n個の平衡式を作成し、ニュートン・ラプソン法を用いて計算すると各開口部を通過する空気の流量、各室内の平均温度、平均圧力が求まる。ただし、前記熱流体解析手段の開口部の入力データ形式においては、風速で指定するため、前記換気計算手段の各開口部の流量は、開口面積で除算した風速の値で出力する。
なお、本発明において、換気計算を行う利点は、工場内の各開口部の風速を実測することなく、計算によってその風速を求めることができることにある。
【0012】
続いて、S4において熱流体解析手段に組み込まれている3次元モデル作成手段により、図3に示すように内部の構造物も含んだ建屋形状をメッシュ分割した3次元モデルを作成する。この3次元モデルの作成は、例えば工場建屋及び構造物を1辺1mの立方体を積み上げた形状に簡略化し、空間部も含めるようにする。
次に、S5において工場建屋内の気流や温度分布を求める。まず、作成した前記の工場建屋の3次元モデルに、対話方式により発熱源の位置のメッシュを指定し、放熱量Qを入力する。次に、開口部の位置のメッシュを指定し、前記換気計算手段で求めた風速(流入および流出量を開口面積で除算)を入力し、熱流体解析手段により熱流体解析を行うことにより求める。
【0013】
本発明に使用する熱流体解析手段は、工場内部の気流、温度、粉塵濃度を解析するソフトウェアであり、ワークステーション等の高速コンピュータ上で稼動し、3次元モデルの作成機能、計算機能、計算結果のグラフィック処理機能を持っている。
熱流体解析を行う熱流体解析手段には、公知の次の基礎式が登録されている。
1)連続の式
2)Navier-Stokesの方程式
3)エネルギー方程式
4)拡散物質の輸送方程式
上記4式を有限体積法を用いて離散化し、全ての式を満足させる解(気流、温度、圧力、粉塵濃度)を求める。
なお、熱流体解析手段で気流、温度分布を求める場合、境界条件として、外気の温度及び計算値である熱発生源からの放熱量、窓などの開口部の風速、排気ファンの風速などを対話方式で位置の指定と共に入力して、定常計算を行う。計算結果は、グラフィック処理により、ベクトル表示あるいはコンタ(等値面)表示を行う。
【0014】
本発明のように、粉塵濃度分布の時間的な変化を求める場合は、前記定常計算で求めた結果に、境界条件として粉塵発生源の位置と単位時間当たりの粉塵発生量を時間関数で入力して、拡散計算を行い粉塵濃度分布の時間変化(非定常)を求める。計算結果は、グラフィック処理により、コンタ(等値面)表示を行う。
【0015】
続いてS6において、熱流体解析手段により粉塵濃度分布の時間的変化を求める。以下この方法について詳細に説明する。
前記の建屋内の気流、温度分布を求めた3次元モデルにおいて、分割したメッシュについて各粉塵発生源の位置および、各粉塵発生源からの粉塵発生量の時間的変化のデータを入力する。例えば、図11に示すように、時間軸を0〜10[秒]、10〜40[秒]、40〜50[秒]の3区間に分割し、その区間の開始と終了の時間、対応する粉塵発生量、計算で求めようとする区間毎の時間刻み幅(0〜10秒、の区間は1秒間隔)を入力する。それぞれの区間の粉塵発生量を、前記熱流体解析手段の中で、線形に変化させることにより、前記建屋内の粉塵濃度分布の時間的変化の状況を予測することができる。これら一連の作業により、所定条件の下における工場建屋内の気流、温度分布、粉塵濃度分布を指定する時間毎(1秒後、2秒後・・・)に3次元モデルにより再現することができる。
【0016】
以上をもとに工場の粉塵環境の改善を行う。S7において、まず上記の手順で求めた現状の工場建屋内の粉塵濃度分布の予測を基に、各改善案の3次元モデルを作成し、同様にして粉塵濃度分布の予測を行い、これを比較検討する。
この解析結果に基いて、S8において各改善案の効果の比較を行って最適な改善案を採用するようにする。
【0017】
この改善案の検討例を図5に示す注湯装置7、冷却ライン8から発生する粉塵について説明する。図5(a)は図11の40秒後の時点の現状の粉塵濃度分布、図5(b)は図5(a)と同時刻の改善案の粉塵濃度分布の計算結果を示す。粉塵濃度分布は色A(0.4mg/m3以上)、B( 0.4〜0.3mg/m3)、C(0.3〜0.2mg/m3)、D(0〜0.2mg/m3)で示す。各粉塵濃度分布は、注湯装置7、冷却ラインからの粉塵発生量が合成された値である。改善内容は、注湯装置7からの粉塵拡散を防止する垂れ壁12、粉塵を排出するための排気ファン13、工場内負圧化防止のための外気導入塔14である。図5(b)に示すように、垂れ壁12と排気ファン13を設置することにより、作業者高さでの粉塵濃度が0.2[mg/m3]以下に下げられ、改善効果が大であることが予測される。
【0018】
【発明の効果】
以上説明したように本発明は次の効果を有している。
1)粉塵の濃度分布の時間的変化を求めることで、粉塵の拡散していく様子、あるいは粉塵が集塵機などに捕集されていく様子を予測できるため、集塵機などの捕集効果を設計段階において事前に評価することができる。
2)換気計算手段と熱流体解析手段と粉塵量測定手段を組み合わせて、複数の粉塵発生源からの粉塵を合成した工場建屋内の粉塵濃度分布を解析することができる。このため実際の工場内の粉塵環境を気流シミュレーション方法により、再現することができ、最適な改善案を立案することができる。
3)粉塵の絶対濃度分布の解析(予測)ができるため、既存工場の粉塵環境改善だけでなく、新設工場の粉塵環境対策の設計にも利用でき、粉塵環境の良い工場の建設を支援することができる。
4)粉塵の絶対濃度分布の解析(予測)ができるため、気流シミュレーション方法により求めた、粉塵濃度分布と実測した粉塵濃度分布の比較が行え、精度の確認が可能となる。このため解析精度が向上する。
工場の全ての開口部の風速等を測定することなく、計算によって開口部の風速を求めることができるので、現場調査工数の削減を行うことができる。
【図面の簡単な説明】
【図1】本発明を実施するための手順の概要を示す流れ線図
【図2】換気計算を行うための建屋の開口部を示すモデル図
【図3】工場建屋3次元モデルの概要図
【図4】モニターに適用される圧力差と風速との関係を示す通気特性図
【図5】本発明により環境改善前後の粉塵濃度分布を解析した出力例
【図6】溶解工程の現状の環境対策例を示す図
【図7】鋳造ライン上の粉塵発生源の概要を示す図
【図8】粉塵量測定装置の一例を示す図
【図9】粉塵量測定装置において、レーザ透過出力値と粉塵量との関係を示す検量線図
【図10】粉塵量測定装置に用いる校正装置の概要を示す図
【図11】溶解炉から発生する粉塵量の時間的変化を示す線図
【符号の説明】
1 溶解炉
2 集塵フード
4 モニタ
5 排気ファン
6 開口部
7 注湯装置
15 レーザ投光器
16 受光器
17 レーザ平行光
19 粉塵を含む空気
20 高速ビデオカメラ
21 演算装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for predicting and analyzing airflow, temperature distribution, dust concentration distribution, and the like using computer simulation in order to improve the environment in a factory building such as a casting factory.
[0002]
[Prior art]
In a foundry where melting furnaces, pouring equipment, product cooling lines, etc. are installed, a large amount of dust is generated. Conventionally, various measures have been taken to improve the working environment of a foundry. In recent years, with the development of computer-based simulation technology, an airflow simulation method has been proposed in which an airflow in a factory is predicted by simulation and an appropriate environmental improvement plan such as dust countermeasures is evaluated in advance.
This airflow simulation method measures work environment data such as wind direction, wind speed, and temperature at several locations in a factory building, and inputs this measurement data into a thermal fluid analysis program to determine the airflow, temperature distribution, and relative To obtain a fine dust concentration distribution.
[0003]
[Problems to be solved by the invention]
Although this conventional airflow simulation method can analyze the relative dust concentration distribution for a single dust source, it can analyze the dust concentration distribution that combines the amount of dust or the dust concentration from multiple dust sources. Not. Also, the analysis of the absolute value of the dust concentration distribution is not performed. The relative dust concentration means that the dust concentration generated from the dust generation source is assumed to be 1, and the dust concentration distribution in the factory is obtained as a ratio to the dust generation source. The absolute dust concentration refers to the dust concentration determined by the mass of dust contained in air per unit volume (for example, 1 cubic meter).
[0004]
[Means for Solving the Problems]
The present invention is an air flow simulation method for predicting the dust concentration distribution in a factory building by calculating the air flow, temperature, and dust concentration distribution in the factory building by a three-stage computer shown in S3, S5, and S6 of FIG. . In the first stage ventilation calculation means, the inflow and outflow velocities of the air passing through the opening of the factory building are obtained based on the weather conditions of the outdoor part of the factory building . In the second stage, the position of the opening in the three-dimensional model of the factory building created by the three-dimensional model creating means, the inflow and outflow rates of air passing through the opening determined by the ventilation calculating means, and the heat source Data added with the position and the heat dissipation amount Q is input to the thermal fluid analyzing means, and the air flow and temperature distribution in the factory building are obtained. In the third stage, the relationship between the position of the dust generation source at a plurality of locations in the building and the elapsed time with respect to the amount of dust generation is stored in the thermofluid analysis means in the three-dimensional model in which the airflow and the temperature distribution are obtained. And calculating a time-series change in the absolute dust concentration distribution obtained by synthesizing the dust amounts generated from the plurality of dust generation sources.
Further, the ventilation calculation means of the present invention includes the wind speed and temperature of the outdoor part of the factory building, the position of the opening of the factory building, the area, the wind pressure coefficient, the flow coefficient, the position of the air inlet of the exhaust device such as an exhaust fan, the exhaust Inflow of air through the opening of the factory building by calculating the air volume or the position of the air outlet of the air supply device, the air supply air volume, and the heat dissipation amount Q of the heat source in the factory building And an air flow simulation method in a factory building in which the outflow speed is obtained.
Furthermore, the dust concentration distribution grasped by the present invention is characterized by an absolute dust concentration.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on an example in which the present invention is applied to the improvement of the dust environment of a foundry.
FIG. 6 shows an example of dust countermeasures in a factory that have been conventionally implemented. Dust generated from the melting furnace 1 is collected by a dust collecting hood 2 and discharged to a dust collecting device by a duct 3.
Dust that cannot be collected by the dust collection hood 2 is discharged to the outside by the monitor 4 and the exhaust fan 5. Reference numeral 6 denotes an opening such as a window for taking in outside air. In addition to the melting furnace 1, the mold making line L shown in FIG. 7 also includes a pouring device 7, a cooling line 8 for cooling the product in the mold after pouring, and the like as dust generation sources.
In order to consider further improvement of the dust environment for these working environments, first, the dust concentration distribution in the building is analyzed using the present invention.
[0006]
The outline of the procedure for carrying out the present invention will be described with reference to FIG.
First, in S1, a target region for analyzing the dust concentration distribution is determined. For example, it is determined whether to target the entire building of a foundry or only a melting workplace.
Next, as shown in S2, a field survey is performed on this target area. The items to be surveyed and the purpose of the survey are as follows.
1) Measure the shape of the factory building and the position and shape of structures such as devices installed in the building. However, if a drawing exists, the dimensions of the drawing may be used. This is necessary in order to make the shape of the simulation target region into a three-dimensional model when performing the three-dimensional computer simulation shown in S4.
Measure the position and shape of openings such as windows in factory buildings. However, if a drawing exists, the dimensions of the drawing may be used.
Measure the position and shape of the air inlet of the exhaust system such as a monitor, exhaust fan, and dust collection hood. However, if a drawing exists, the dimensions of the drawing may be used. The exhaust air volume of each exhaust device uses the value in the specification or the value measured by an anemometer. The above 2) and 3) are used as input condition data for performing the ventilation calculation shown in S3 and the thermal fluid analysis shown in S5 and S6.
4) Measure the shape and surface temperature of the heat generation source in the factory building. This is an input for manually calculating the heat dissipation amount Q based on the surface temperature of a heat generation source such as a melting furnace or a ladle of a pouring device, and performing the ventilation calculation shown in S3 and the thermal fluid analysis shown in S5 and S6. This is for use as condition data.
In order to obtain the heat dissipation amount Q from the surface temperature, the following formula may be used.
Q = αΔTA = α (T wall −T air ) A
Q: Calorific value per unit time [W]
α: Heat transfer coefficient [W / m 2 K]
T wall : surface temperature of heat source [° C.]
T air : outside air temperature [° C]
A: Surface area [m 2 ]
5) Measure meteorological conditions such as wind direction, wind speed, temperature, etc., outside the building. This is used as input condition data at the time of obtaining the ventilation calculation because the inflow and outflow rates of air passing through openings such as factory windows are affected by the outside air (wind direction, wind speed, temperature). Because. As the weather condition data of the outdoor part of the building, past observation data of the local weather station may be used.
[0007]
6) Obtain the amount of dust generated from the dust source in the factory. As an example of means for obtaining the amount of generated dust, there is use of a measuring apparatus to which a laser transmitted light attenuation method is applied. Hereinafter, this measurement method will be described with reference to FIG. FIG. 8 shows a method for measuring the amount of dust generated from the melting furnace 1. Laser parallel light 17 emitted from the laser projector 15 with energy I 0 passes through the air 19 containing dust, attenuates to energy I by scattering and absorption, and reaches the light receiver 16. The arithmetic device 21 outputs ln (I / I 0 ) obtained by logarithmically converting the energy ratio I / I 0 as a voltage 22. When the relationship between the voltage output [mV] shown in FIG. 9 and the amount of dust [g] in the laser parallel light is obtained in advance using the calibration device shown in FIG. Using the equation, the amount of dust passing through the laser beam is obtained every time (for example, at intervals of 0.5 seconds).
[0008]
When measuring the amount of dust passing through the laser beam, the high-speed video camera 20 simultaneously captures the movement of the air 19 containing dust. From the photographed image, the width and rising speed of the air 19 containing dust that has passed through the laser are obtained. The cross-sectional area in the upward direction of the air 19 containing dust is regarded as a circle, and the amount of dust generated from the dust generation source per unit time can be obtained by integrating the dust as uniformly distributed in the circle. For example, the amount of dust generated per second can be obtained. In FIG. 11, it is a graph which shows the relationship between the dust generation amount calculated | required with said method, and time passage.
An outline of the calibration apparatus is shown in FIG. This calibration apparatus is composed of a transparent acrylic cylinder 24, a dust inlet 25, and an axial fan 27, and is a device for creating a graph of the relationship between the voltage output ln (I / I 0 ) and the amount of dust. A dust sample, which has been captured in advance in a calibration device with a known capacity, is put into the cylinder 24 by a predetermined mass, and air 26 containing dust is circulated by an axial fan 27. In this state, the laser light 17 To obtain the voltage output. Thus, the graph which shows the relationship between the amount of dust in a cylinder, and a voltage output is created by changing the mass of the dust thrown in. However, since the properties of the dust generated by each dust source differ, prepare a dust sample for each source in advance, and use it to generate voltage output and the amount of dust generated for each dust source shown in FIG. (Inspection curve graphs 23a, 23b,...).
[0009]
Next, in S3, the wind direction, wind speed, temperature of the outside air obtained in the field survey in S2, the position, area, wind pressure coefficient, flow coefficient of the opening of the factory building, and exhaust devices such as a monitor, an exhaust fan, and a dust collecting hood Ventilation calculation means that operates on a personal computer or workstation using the position (for example, the height of the center of the opening from the ground surface), area, exhaust air volume, and heat release quantity Q from the heat source Calculate ventilation with. In the ventilation calculation means, as shown in FIG. 2, for example, a factory building is divided into a plurality of chambers 1, 2, 3,. Calculated based on the balance between the flow rate of air and the amount of heat, and calculates the average wind speed of the air passing through each opening, or the average temperature and average pressure in the room. Become. In the ventilation calculation means, the following calculation formula is registered and ventilation calculation is performed. The input data is created in advance and stored in an external storage device, and the ventilation calculation is performed by reading the data.
[0010]
1) In the case of mechanical force such as an exhaust fan, the rated flow rate (constant value) shall be used.
2) In the case of opening, the following calculation formula is used.
P j −P k − (ρ j −ρ k ) gh i −P wi
= ± (1 / αi 2) (ρ 0/2) (Q i / A i) 2
The wind pressure (P wi ) at the opening i in the above equation is
P wi = C i (ρ 0 /2) V 2
Here, i: number P j of the opening, P k: chamber pressure before and after the opening is in contact ρ j, ρ k: air density before and after the chamber opening in contact with g: gravitational acceleration hi: opening height .alpha.i: Opening flow coefficient Q i : Flow rate [m 3 / s]
A i : Opening area [m 2 ]
ρ 0 : Air density C i at outside air temperature: Wind pressure coefficient V : Wind velocity of outside air 3) When using a ventilation characteristic diagram (shown in FIG. 4) showing the relationship between the pressure difference and the wind velocity as in the monitor, the following calculation formula is used.
P j −P k − (ρ j −ρ k ) gh i = F (Q i , V, δ)
Where F : Monitor ventilation characteristics Q i : Flow rate of air passing through the monitor [m 3 / s]
V : Wind speed of outside air [m / s]
δ : Wind direction of outside air [°]
In FIG. 4, curves 9, 10, and 11 show the monitor characteristics when the wind speed of the outside air is 2 m / sec, 3 m / sec, and 7 m / sec, respectively.
In the ventilation calculation, heat transfer should be considered only by air movement.
The amount of heat at the opening i is H i = ρ 0 C p (T j −T k ) Q i
C p : specific pressure specific heat [kJ / kg · k]
H i : heat transfer amount at opening i [kJ]
[0011]
And the balance between the flow rate of air passing through the opening and the amount of heat is taken into consideration.
Average room temperature: T j
Average pressure in the room: P j
Unknown: 2n number of each room: j
Equilibrium flow rate: sum of flow rates Q i of air passing through openings contacting the j-th chamber = 0
Equilibrium of heat amount: total heat amount H i related to the j-th chamber = 0
When 2n equilibrium equations are created and calculated using the Newton-Raphson method, the flow rate of air passing through each opening, the average temperature in each chamber, and the average pressure are obtained. However, in the input data format of the opening of the thermal fluid analyzing means, since it is designated by the wind speed, the flow rate of each opening of the ventilation calculating means is output by the value of the wind speed divided by the opening area.
In the present invention, an advantage of performing ventilation calculation is that the wind speed can be obtained by calculation without actually measuring the wind speed of each opening in the factory.
[0012]
Subsequently, in S4, the three-dimensional model created by the three-dimensional model creating means incorporated in the thermal fluid analyzing means creates a three-dimensional model obtained by dividing the building shape including the internal structure as shown in FIG. For example, the three-dimensional model is created by simplifying a factory building and a structure into a shape in which cubes each having a side of 1 m are stacked, and including a space portion.
Next, the airflow and temperature distribution in the factory building are obtained in S5. First, the mesh of the position of the heat source is designated by the interactive method in the created three-dimensional model of the factory building, and the heat dissipation amount Q is input. Next, the mesh at the position of the opening is specified, the wind speed (inflow and outflow amount divided by the opening area) obtained by the ventilation calculation means is input, and the fluid is obtained by performing the thermal fluid analysis by the thermal fluid analysis means.
[0013]
The thermal fluid analysis means used in the present invention is software for analyzing the airflow, temperature, and dust concentration inside the factory, operates on a high-speed computer such as a workstation, and has a three-dimensional model creation function, calculation function, and calculation result. Has graphic processing functions.
The following well-known basic equations are registered in the thermal fluid analysis means for performing the thermal fluid analysis.
1) Continuous equation 2) Navier-Stokes equation 3) Energy equation 4) Diffusion material transport equation The above four equations are discretized using the finite volume method, and solutions satisfying all equations (airflow, temperature, pressure, Obtain the dust concentration.
When calculating the air flow and temperature distribution using the thermal fluid analysis means, the boundary conditions include the temperature of the outside air and the amount of heat released from the heat source, which is the calculated value, the wind speed at the opening of the window, the wind speed of the exhaust fan, etc. Input with the designation of the position by the method, and perform the steady calculation. The calculation result is displayed as a vector or contour (isosurface) by graphic processing.
[0014]
As in the present invention, when obtaining a temporal change in the dust concentration distribution, the position of the dust generation source and the amount of dust generation per unit time are input as a boundary function as a boundary condition in the result obtained by the steady calculation. Then, the diffusion calculation is performed to determine the temporal change (unsteady) of the dust concentration distribution. The calculation result is displayed as a contour (isosurface) by graphic processing.
[0015]
Subsequently, in S6, the temporal change of the dust concentration distribution is obtained by the thermal fluid analyzing means. This method will be described in detail below.
In the three-dimensional model in which the air flow and temperature distribution in the building are obtained, the position of each dust generation source and the data of temporal changes in the amount of dust generation from each dust generation source are input for the divided mesh. For example, as shown in FIG. 11, the time axis is divided into three sections of 0 to 10 [seconds], 10 to 40 [seconds], and 40 to 50 [seconds], and the start and end times of the sections correspond to each other. Enter the dust generation amount and the time increment for each section to be obtained by calculation (0-10 seconds section is 1 second interval). By changing the dust generation amount in each section linearly in the thermal fluid analyzing means, it is possible to predict the temporal change state of the dust concentration distribution in the building. Through these series of operations, the airflow, temperature distribution, and dust concentration distribution in the factory building under a predetermined condition can be reproduced by a three-dimensional model every time (after 1 second, after 2 seconds ...). .
[0016]
Based on the above, the factory dust environment will be improved. In S7, based on the prediction of the dust concentration distribution in the current factory building obtained by the above procedure, a three-dimensional model of each improvement plan is created, and the dust concentration distribution is similarly predicted and compared. consider.
Based on this analysis result, the effect of each improvement plan is compared in S8 to adopt the optimum improvement plan.
[0017]
A study example of this improvement plan will be described with respect to dust generated from the pouring device 7 and the cooling line 8 shown in FIG. FIG. 5 (a) shows the current dust concentration distribution at the time point 40 seconds after FIG. 11, and FIG. 5 (b) shows the calculation result of the improved dust concentration distribution at the same time as FIG. 5 (a). The dust concentration distribution is indicated by colors A (0.4 mg / m 3 or more), B (0.4 to 0.3 mg / m 3 ), C (0.3 to 0.2 mg / m 3 ), and D (0 to 0.2 mg / m 3 ). Each dust concentration distribution is a value obtained by synthesizing dust generation amounts from the pouring device 7 and the cooling line. Details of the improvement are a dripping wall 12 for preventing dust diffusion from the pouring device 7, an exhaust fan 13 for discharging dust, and an outside air introduction tower 14 for preventing negative pressure in the factory. As shown in FIG. 5 (b), by installing the hanging wall 12 and the exhaust fan 13, the dust concentration at the worker height is lowered to 0.2 [mg / m 3 ] or less, and the improvement effect is great. It is predicted.
[0018]
【The invention's effect】
As described above, the present invention has the following effects.
1) By determining the temporal change in the dust concentration distribution, it is possible to predict how the dust will diffuse or how the dust will be collected by the dust collector. Can be evaluated in advance.
2) By combining the ventilation calculation means, thermal fluid analysis means and dust amount measurement means, it is possible to analyze the dust concentration distribution in the factory building where dust from a plurality of dust generation sources is synthesized. Therefore, the actual dust environment in the factory can be reproduced by the airflow simulation method, and an optimum improvement plan can be made.
3) Because it can analyze (predict) the absolute dust concentration distribution, it can be used not only for improving the dust environment of existing factories but also for designing dust environment measures for new factories, and supporting the construction of factories with good dust environments. Can do.
4) Since the analysis (prediction) of the absolute dust concentration distribution can be performed, the dust concentration distribution obtained by the air flow simulation method can be compared with the actually measured dust concentration distribution, and the accuracy can be confirmed. This improves the analysis accuracy.
Since the wind speed of the opening can be obtained by calculation without measuring the wind speed or the like of all the openings in the factory, the number of on-site investigation man-hours can be reduced.
[Brief description of the drawings]
FIG. 1 is a flow diagram showing an outline of a procedure for carrying out the present invention. FIG. 2 is a model diagram showing an opening of a building for calculating ventilation. FIG. 3 is a schematic diagram of a three-dimensional factory building. Fig. 4 Ventilation characteristics diagram showing the relationship between the pressure difference applied to the monitor and the wind speed Fig. 5 Output example of analyzing the dust concentration distribution before and after environmental improvement according to the present invention Fig. 6 Current environmental measures in the melting process FIG. 7 is a diagram showing an outline of a dust generation source on a casting line. FIG. 8 is a diagram showing an example of a dust amount measuring device. FIG. 9 is a laser transmission output value and a dust amount in the dust amount measuring device. Fig. 10 is a diagram showing the outline of the calibration device used in the dust amount measuring device. Fig. 11 is a diagram showing temporal changes in the amount of dust generated from the melting furnace.
DESCRIPTION OF SYMBOLS 1 Melting furnace 2 Dust collection hood 4 Monitor 5 Exhaust fan 6 Opening part 7 Pouring device 15 Laser projector 16 Light receiver 17 Laser parallel light 19 Air containing dust 20 High-speed video camera 21 Computing device

Claims (3)

コンピュータによる気流シミュレーションにより工場建屋内の粉塵濃度分布を予測する方法において
換気計算手段により工場建屋の開口部を通過する空気の流入及び流出速度を工場建屋外部の気象条件に基づいて求め、
3次元モデル作成手段により作成した前記工場建屋の3次元モデルに、開口部の位置と前記換気計算手段で求めた前記開口部を通過する空気の流入及び流出速度と、発熱源の位置とその放熱量Qとを入力した後、熱流体解析手段により前記3次元モデル内の気流と温度分布を求め、
続いて、前記気流と温度分布を求めた3次元モデルに、前記建屋内の複数箇所にある粉塵発生源の位置とその粉塵発生量を入力し、前記熱流体解析手段により前記複数箇所にある粉塵発生源から発生する粉塵発生量を合成した粉塵濃度分布を予測することを特徴とする工場建屋内の気流シミュレーション方法。
In the method of predicting the dust concentration distribution in the factory building by airflow simulation by computer, the ventilation inflow means calculates the inflow and outflow speed of air passing through the opening of the factory building based on the weather conditions of the factory building outside ,
In the three-dimensional model of the factory building created by the three-dimensional model creating means, the position of the opening, the inflow and outflow speeds of air passing through the opening determined by the ventilation calculation means, the position of the heat source, and its release. After inputting the heat quantity Q, the air flow and temperature distribution in the three-dimensional model are obtained by the thermal fluid analyzing means,
Subsequently, the positions of dust generation sources at a plurality of locations in the building and the amount of generated dust are input to the three-dimensional model for obtaining the air flow and the temperature distribution, and the dust at the plurality of locations is input by the thermal fluid analysis means. A method for simulating an air flow in a factory building, wherein a dust concentration distribution obtained by synthesizing a dust generation amount generated from a generation source is predicted.
前記気流と温度分布を求めた3次元モデルに、前記建屋内の複数箇所にある粉塵発生源の位置とその粉塵発生量の時間的変化のデータを入力し、前記熱流体解析手段により前記複数箇所にある粉塵発生源から発生する粉塵発生量を合成した粉塵濃度分布の時系列変化を予測することを特徴とする請求項1に記載の工場建屋内の気流シミュレーション方法。The position of the dust generation source at a plurality of locations in the building and the temporal change data of the dust generation amount are input to the three-dimensional model for obtaining the air flow and the temperature distribution, and the plurality of locations are input by the thermal fluid analyzing means. 2. A method for simulating an air flow in a factory building according to claim 1, wherein a time series change of a dust concentration distribution obtained by synthesizing a dust generation amount generated from a dust generation source in the factory is predicted. 粉塵濃度分布は、絶対的粉塵濃度であることを特徴とする請求項1に記載の工場建屋内の気流シミュレーション方法。The method for simulating an air flow in a factory building according to claim 1, wherein the dust concentration distribution is an absolute dust concentration.
JP23153497A 1997-08-27 1997-08-27 Airflow simulation method in a factory building Expired - Fee Related JP3952329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23153497A JP3952329B2 (en) 1997-08-27 1997-08-27 Airflow simulation method in a factory building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23153497A JP3952329B2 (en) 1997-08-27 1997-08-27 Airflow simulation method in a factory building

Publications (2)

Publication Number Publication Date
JPH1163622A JPH1163622A (en) 1999-03-05
JP3952329B2 true JP3952329B2 (en) 2007-08-01

Family

ID=16925008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23153497A Expired - Fee Related JP3952329B2 (en) 1997-08-27 1997-08-27 Airflow simulation method in a factory building

Country Status (1)

Country Link
JP (1) JP3952329B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051631A (en) * 2006-08-24 2008-03-06 Jfe Steel Kk Method for measuring dust
JP4500340B2 (en) * 2007-10-30 2010-07-14 日本電信電話株式会社 Dust generation simulation system and dust generation simulation program
JP4612079B2 (en) * 2008-05-21 2011-01-12 新菱冷熱工業株式会社 Blowing air flow distribution simulation method and blowing air flow distribution simulation program
JP5324363B2 (en) * 2009-08-31 2013-10-23 高砂熱学工業株式会社 Airflow state calculation method, program and apparatus
JP4968388B2 (en) * 2010-02-05 2012-07-04 Jfeスチール株式会社 Fluid system temperature estimation method, Fluid system temperature concentration estimation method, Fluid system temperature distribution estimation method, Fluid system temperature monitoring method, Molten metal equipment molten metal temperature control method, Molten metal equipment concentration and Temperature estimation method, hot dip galvanized steel sheet and fluid temperature estimation device
JP5517793B2 (en) * 2010-07-05 2014-06-11 三菱電機株式会社 Circulators and circulator systems
JP4984000B1 (en) * 2010-09-30 2012-07-25 Jfeスチール株式会社 Fluid system temperature estimation method, fluid system temperature distribution estimation method, fluid system temperature distribution monitoring method, temperature estimation device, hot dip galvanized steel temperature control method in hot dip galvanizing pot, hot dip galvanized steel sheet, and molten steel in tundish Temperature control method
JP5921452B2 (en) * 2013-01-30 2016-05-24 株式会社東芝 Diffusion estimation method and diffusion estimation apparatus
CN104677794B (en) * 2015-01-30 2017-03-15 常州大学 The device and method of flooring PM10 transient state settling flux rates under measurement human body walking
US11366438B2 (en) 2017-03-28 2022-06-21 Panasonic Intellectual Property Management Co., Ltd. Environment control system and environment control method
JP7074400B2 (en) * 2018-07-09 2022-05-24 株式会社ミツトヨ Optical measuring device
JP7152236B2 (en) * 2018-10-03 2022-10-12 アズビル株式会社 Air conditioning control device and method
JPWO2022224460A1 (en) * 2021-04-23 2022-10-27
CN113266937A (en) * 2021-05-28 2021-08-17 新疆美顺达实验室设备有限公司 Laboratory fresh air exhaust variable air volume intelligent control system
CN115077956B (en) * 2022-05-13 2023-04-07 中国矿业大学 Simulation test method for ventilation and dust removal in dangerous chemical transport tank car
CN115026631B (en) * 2022-06-28 2023-08-18 南通纳侬精密机械有限公司 Control method of large-scale numerical control gantry milling and boring machine based on PLC control

Also Published As

Publication number Publication date
JPH1163622A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JP3952329B2 (en) Airflow simulation method in a factory building
Chen Computational fluid dynamics for HVAC: successes and failures
Cockroft et al. Ventilation of an enclosure through a single opening
Bouilly et al. Effect of ventilation strategies on particle decay rates indoors: An experimental and modelling study
Bangalee et al. Wind driven natural ventilation through multiple windows of a building: A computational approach
Bangalee et al. Flow visualization, PIV measurement and CFD calculation for fluid-driven natural cross-ventilation in a scale model
JP2014048120A (en) Wind velocity measuring device and wind velocity measuring method
Tanny et al. Airflow and heat flux through the vertical opening of buoyancy-induced naturally ventilated enclosures
Yang CFD and field testing of a naturally ventilated full-scale building
Lee et al. PIV verification of greenhouse ventilation air flows to evaluate CFD accuracy
Hassan et al. Investigation of effects of window combinations on ventilation characteristics for thermal comfort in buildings
US6853924B2 (en) Diffusion status prediction method and diffusion status prediction system for diffused substance
Lee et al. A wind tunnel study of natural ventilation for multi–span greenhouse scale models using two–dimensional particle image velocimetry (PIV)
Mateus et al. Natural ventilation of large air masses: Experimental and numerical techniques review
Wang et al. Numerical evaluation of the performances of the ventilation system in a blast furnace casthouse
JP3881926B2 (en) Diffusion status prediction method
JPH10103723A (en) Method for predicting dust behavior in factory housing
CN115344919A (en) Building internal environment analysis method, device, equipment and medium
Wasiolek et al. Room airflow studies using sonic anemometry
Potter Effect of fluctuating wind pressures on natural ventilation rates
Russell et al. Measurements and computational analysis of heat transfer and flow in a simulated turbine blade internal cooling passage
Vershenya et al. Modern design of potroom ventilation
Feigley et al. Deriving realistic source boundary conditions for a CFD simulation of concentrations in workroom air
Pastore et al. Monitoring air fluxes in caves using digital flow metres
CN117610261B (en) Demolition engineering pollution prediction and optimization system based on BIM

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees