JP3952229B2 - Membrane vaporizer - Google Patents

Membrane vaporizer Download PDF

Info

Publication number
JP3952229B2
JP3952229B2 JP32247997A JP32247997A JP3952229B2 JP 3952229 B2 JP3952229 B2 JP 3952229B2 JP 32247997 A JP32247997 A JP 32247997A JP 32247997 A JP32247997 A JP 32247997A JP 3952229 B2 JP3952229 B2 JP 3952229B2
Authority
JP
Japan
Prior art keywords
intake
outlet
fuel
throttle valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32247997A
Other languages
Japanese (ja)
Other versions
JPH11141402A (en
Inventor
雅夫 鈴木
憲祐 長田
Original Assignee
日本ウォルブロー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ウォルブロー株式会社 filed Critical 日本ウォルブロー株式会社
Priority to JP32247997A priority Critical patent/JP3952229B2/en
Publication of JPH11141402A publication Critical patent/JPH11141402A/en
Application granted granted Critical
Publication of JP3952229B2 publication Critical patent/JP3952229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関のアイドル運転で気化器の吸気路の内部に燃料が溜り、機関の姿勢が変化した時、機関へ供給される燃料量が急増するのを抑えるようにした、特に4行程機関に効果が大なる膜型気化器に関するものである。
【0002】
【従来の技術】
動力鋸、刈払機などの携帯作業機の機関には、小型、軽量、高出力で、全姿勢での運転が可能なものが要求される。このため、一般には膜型気化器を備えた空冷2行程機関が採用されているが、近年は排ガス対策のために4行程機関も採用されるようになた。機関の運転中は周囲温度が非常に高くなるので、気化器内部の燃料の蒸発を抑えるために、気化器と機関の吸気口との間には、金属よりも断熱性に優れた合成樹脂製の断熱管(インシユレータ)が接続される。
【0003】
ところで、従来の膜型気化器では機関の冷間始動時やアイドル運転時、燃料の霧化ないし気化が十分でないため、気化器の吸気路へ吸引された燃料が、液状のまま断熱管の内部に溜てしまうことがある。断熱管の内部に溜た多量の燃料が、携帯作業機の姿勢変化に伴て機関へ急激に供給されると、混合気が急に濃くなり、機関が停止することがある。
【0004】
図6に示すように、従来のロータリ絞り弁式気化器では、機関のアイドル運転時の絞り弁47の開度が小さいので混合気の流れが少ない。また、気化器の吸気路16または断熱管63の吸気路63aでの混合気の流れは速いが、特に吸気路16の出口における絞り弁47の開部分16aと反対側の閉部分16bに、多数の点で示すように混合気のよどみが生じる傾向がある。吸気路16の出口における絞り弁47の閉部分16bに混合気が滞留すると、燃料が液状になて付着することがある。
【0005】
【発明が解決しようとする課題】
本発明の課題は上述の問題に鑑み、機関の気化器の吸気路の内部に燃料が溜るのを防止し、機関のアイドル運転で機関が傾斜した時に機関停止が生じないようにした膜型気化器を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明の構成はロータリ絞り弁のアイドル位置における出口側の開部分に隣接して気化器本体の吸気路に吸気入口を設け、前記ロータリ絞り弁のアイドル位置における出口側の閉部分に隣接して前記気化器本体の吸気路に吸気出口を設け、前記吸気入口と前記吸気出口とを管により連通したことを特徴とする。
【0007】
【発明の実施の形態】
本発明では吸気路の出口におけるロータリ絞り弁の開部分と閉部分とを通路により連通する。ロータリ絞り弁の開部分から通路の内部へ導かれた吸気は、通路を経てロータリ絞り弁の閉部分へ吹き出し、閉部分によどむ混合気を吸気路の下流側へ吹き流し、混合気のよどみが生じるのを防止する。
【0008】
また、本発明では吸気路の出口におけるロータリ絞り弁の閉部分に、先端が閉鎖された可撓性のチユーブを接続する。機関の吸気行程では吸気路の出口の閉部分の吸気圧はチユーブの内部の大気圧よりも低くなり、チユーブが押し潰される。この時、チユーブからの空気により閉部分に停滞する燃料が吸気路の下流側へ押し流される。一方、機関の他の行程では吸気路の出口の閉部分の吸気がチユーブへ吸い込まれ、チユーブが膨むと同時に吸気圧が次第に低くなる。こうして、次の吸気行程までに吸気路の出口の閉部分の吸気圧が開部分の吸気圧に近くなる。
【0009】
【実施例】
図1に示すように、機関の吸気口(図示せず)には、断熱管63とガスケツト62を介して膜型気化器の本体15が接続される。図示の気化器は、公知のロータリ絞り弁式のものであり、吸気路16と直交する円筒部57が本体15に形成され、該円筒部57に絞り孔47bを有する絞り弁47が回動可能かつ昇降可能に嵌挿される。絞り弁47から円筒部57を閉鎖する蓋板53を経て、上方へ突出する弁軸47aに絞り弁レバー51が結合され、絞り弁レバー51の下側のカム面51aと蓋板53のフオロア52とからカム機構が構成される。絞り弁レバー51により絞り弁47をばね54の力に抗して加速方向へ回動すると、絞り孔47bが吸気路16と連通する開度が増加し、また、絞り弁47の軸部47aから絞り孔47bへ突出しかつ燃料ノズル56へ嵌挿されるニードル弁55が、燃料ノズル56の噴孔56aから上昇し、噴孔56aの開度が増加する。不動の燃料ノズル56は本体15の底部の孔58へ嵌合支持され、ジエツト59、逆止弁66を経て燃料定量機構Aの定圧燃料室25へ連通される。
【0010】
気化器本体15の下部に燃料ポンプ11と燃料定量機構Aが構成される。すなわち、燃料ポンプ11は本体15の下端面に膜10を挟んで中間体49を結合し、膜10の上側にばね8aを収容する脈動圧室8を、膜10の下側にポンプ室9をそれぞれ区画される。燃料ポンプ11は4行程機関では断熱管63の吸気路63aの脈動する吸気負圧を、入口61a、通路61を経て脈動圧室8へ導入し、2行程機関ではクランク室の脈動圧を脈動圧室8へ導入することにより、燃料槽37の燃料を通路38、入口13、逆止弁12、通路12aを経てポンプ室9へ吸引し、通路12a、逆止弁7を経て通路7aへ吐き出す。
【0011】
燃料定量機構Aは中間体49の下端面に膜29を挟んでカバー30aを結合し、定圧燃料室25と大気室30を区画する。定圧燃料室25の内部にレバー28が軸27により回動可能に支持される。レバー28の一端部は流入弁2に係合され、流入弁2はばね24の力を受けて通路7aの端部の弁座へ当接するように構成される。レバー28の他端部は膜29へ当接可能とされ、膜29の下面に作用する大気圧の力がばね24の力よりも大きくなると、レバー28が時計方向へ回動して流入弁2が開き、通路7aから燃料が定圧燃料室25へ補給され、こうして、定圧燃料室25は所定量の燃料を所定圧力に保持する。定圧燃料室25の燃料は逆止弁66、ジエツト59、燃料ノズル56の噴孔56a、絞り孔47bを経て吸気路16へ供給される。
【0012】
上述のような膜型気化器は例えば特開昭59-20551号公報により公知であり、機関のいかなる姿勢(例えば横転された状態)でも、燃料ポンプ11により定圧燃料室25へ送られた燃料が、機関の吸気負圧により燃料ノズル56の噴孔56aから吸気路16へ供給される。
【0013】
図1,2に示すように、機関の吸気口と気化器本体15との間に接続される吸気路63aを有する断熱管63よりも内径が小さい、アルミニウムなどの熱伝導性の大なる金属からなるリング部材26が、気化器の吸気路16の出口に配設される。このため、気化器本体15の吸気路16の出口端部に大径円筒部26aを形成し、大径円筒部26aにリング部材26を嵌合し、かつガスケツト62を介して断熱管63に接続する。図示の実施例では、複数の通しボルト(図6の通しボルト60を参照)により、気化器本体15の端部フランジとガスケツト62と断熱管63が機関の壁部へ締結される。断熱管63の内径は気化器本体15の吸気路16の内径と同寸とされる。好ましくは、リング部材26は吸気路16よりも小径の吸気路を設けられる。
【0014】
本発明によれば、機関のアイドル運転で吸気路16の内部に燃料が溜るのを防止するために、吸気路16の出口の開部分16aつまり絞り弁47の絞り孔47bの出口の吸気の一部を、吸気路16の出口の閉部分16bへ導き、閉部分16bでの混合気のよどみを解消する。このため、リング部材26に開部分16aに隣接して径方向の吸気入口31aを、閉部分16bに隣接して径方向の吸気出口33aをそれぞれ設ける。図2に示すように、リング部材26の上側外周面に設けた溝通路32aにより、吸気入口31aと吸気出口33aを連通する。
【0015】
図3,4に示す実施例では、リング部材26の代りに管42を用いて、吸気入口41aと吸気出口43aを連通したものである。気化器本体15の吸気路16の周壁に、開部分16aに隣接して吸気入口41aを、閉部分16bに隣接して吸気出口43aをそれぞれ設け、吸気入口41aと吸気出口43aへ管42の端部41,43をそれぞれ嵌合し、吸気路16の出口の開部分16aの吸気、つまり絞り弁47の絞り孔47bの出口の吸気を管42を経て、吸気路16の出口の閉部分16bへ吹き出すようにしたものである。
【0016】
次に、本発明による膜型気化器の作動について説明する。機関のアイドル運転時、絞り弁47は図3に示す状態にあり、吸気路16へ吸引された吸気は、絞り弁47の絞り孔47bを通過する時、燃料ノズル56の噴孔56aから燃料を吸引し、絞り孔47bから吸気路16の出口の開部分16aへ流れ、さらに断熱管63を経て機関へ流れる。
【0017】
機関のアイドル運転時、混合気の流れが遅いので、いわゆる死空間となる吸気路16の出口の閉部分16bに混合気が滞留し、吸気よりも比重の大なる燃料だけが溜りやすい。しかし、図1,2の実施例では吸気路16の開部分16aつまり絞り孔47bの出口に、溝通路32aを有するリング部材26が配設されるので、絞り孔47bから吸気路16の開部分16aへ流れる吸気の一部がリング部材26の吸気入口31aへ入り、溝通路32aを経て吸気出口33aから吸気路16の閉部分16bへ流れるので、吸気出口33aからの吸気の流れにより、閉部分16bの混合気が吸気路16の下流側へ吹き流され、燃料の溜りが抑えられる。
【0018】
また、図3,4の実施例では吸気路16の出口の開部分16aに設けた吸気入口31aと、閉部分16bに設けた吸気出口33aとが管42により連通されるので、絞り弁47の絞り孔47bから吸気路16の開部分16aへ流れる吸気の一部が、吸気入口31aを経て管42へ入り、吸気出口33aから吸気路16の閉部分16bへ流れるので、吸気出口33aからの吸気の流れにより、閉部分16bの混合気が吸気路16の下流側へ吹き流され、燃料の溜りが抑えられる。したがて、機関のアイドル運転時、従来のように吸気路16の出口の閉部分16bに燃料が溜り、溜た燃料が機関の振動や姿勢変化に伴て濃い混合気になて機関へ一気に流れ、機関が停止するというような不具合が解消される。
【0019】
図5に示す実施例では、吸気路16の出口の閉部分16bに設けた通孔43bに管44を嵌合し、先端部46aが閉鎖された可撓性のチユーブ46の基端部を管44へ外嵌し、かつバンド45により締結したものである。
【0020】
機関の吸気行程では吸気路16の出口の吸気の流れが速いので、閉部分16bの吸気圧はチユーブ46の内部の大気圧よりも低くなり、チユーブ46が押し潰される。この時、チユーブ46からの空気により閉部分16bに停滞する燃料が吸気路16の下流側へ押し流される。一方、機関の他の行程では吸気路16の出口の吸気の流れが遅くなり、閉部分16bがほぼ大気圧に近くなる。この時、吸気路16の出口の閉部分16bの吸気がチユーブ46へ吸い込まれ、チユーブ46が膨む(通常の形状に戻る)。同時に閉部分16bの吸気圧が次第に低くなる。こうして、次の吸気行程までに吸気路16の出口の閉部分16bの吸気圧は開部分16aの吸気圧に近くなる。チユーブ46の長さないし容積は予め実験的に決定される。チユーブ46が短いと機関の吸気負圧の脈動により閉部分16bに停滞する燃料がチユーブ46の内部へ吸い込まれるが、チユーブ46を長くすると機関の吸気負圧の脈動により閉部分16bに停滞する燃料が吸気路16の下流側へ吹き飛ばされ、燃料の溜りが解消される。
【0021】
【発明の効果】
本発明は上述のように、ロータリ絞り弁のアイドル位置における出口側の開部分に隣接して気化器本体の吸気路に吸気入口を設け、ロータリ絞り弁のアイドル位置における出口側の閉部分に隣接して気化器本体の吸気路に吸気出口を設け、前記吸気入口と前記吸気出口とを管により連通したので、機関のアイドル運転で、吸気路の出口におけるロータリ絞り弁の閉部分に燃料が溜りにくくなる。
【0022】
本発明では気化器の吸気路のロータリ絞り弁のアイドル位置における出口側の開部分の吸気出口と、閉部分の吸気出口とを、管により連通するものであるから、ロータリ絞り弁が全開時の混合気の流れにはあまり影響がなく、機関の出力が低下することはない。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る膜型気化器の側面断面図である。
【図2】同膜型気化器に配設されるリング部材の正面断面図である。
【図3】本発明の第2実施例に係る膜型気化器の要部を示す平面断面図である。
【図4】同膜型気化器の正面断面図である。
【図5】本発明の第3実施例に係る膜型気化器の要部を示す平面断面図である。
【図6】従来の膜型気化器の要部を示す平面断面図である。
【符号の説明】
A:燃料定量機構 2:流入弁 7:逆止弁 7a:通路 8:脈動圧室 9:ポンプ室 10:膜 11:燃料ポンプ 12:逆止弁 12a:通路 15:気化器本体 16:吸気路 16a:開部分 16b:開部分 25:定圧燃料室 26:リング部材 26a:大径円筒部 27:軸 28:レバー 29:膜 30:大気室 30a:カバー 31a:吸気入口 32a:溝通路 33a:吸気出口 37:燃料槽 41a:吸気入口 42:管 43a:吸気出口43b:通孔 45:バンド 46:管 47:絞り弁 47b:絞り孔 49:中間体 51:絞り弁レバー 51a:カム面 52:フオロア 53:蓋板 54:ばね 55:ニードル弁 56:燃料ノズル 56a:噴孔 57:円筒部 59:ジエツト 62:ガスケツト 63:断熱管 63a:吸気路 66:逆止弁
[0001]
BACKGROUND OF THE INVENTION
The present invention suppresses a rapid increase in the amount of fuel supplied to the engine when the fuel accumulates inside the intake passage of the carburetor during the idling operation of the internal combustion engine and the attitude of the engine changes. The present invention relates to a membrane type vaporizer that is highly effective.
[0002]
[Prior art]
Engines for portable working machines such as power saws and brush cutters are required to be compact, lightweight, high output and capable of operating in all positions. Therefore, in general is air-cooled two-stroke engine including a film type vaporizer is employed, in recent years has Tsu name as well be employed 4-stroke engine for exhaust gas countermeasures. Since the ambient temperature becomes very high during engine operation, a synthetic resin with better heat insulation than metal is provided between the carburetor and the engine inlet to suppress evaporation of fuel inside the carburetor. Insulator pipes are connected.
[0003]
By the way, in the conventional membrane type carburetor, when the engine is cold started or idling, the fuel is not sufficiently atomized or vaporized. Therefore, the fuel sucked into the intake passage of the carburetor remains in a liquid state inside the heat insulation pipe. it may become Tsu reservoir to. A large amount of fuel Tsu reservoir in the interior of the heat-insulated pipe is, and is rapidly supplied Tsu accompanied to the institutions to change in the attitude of the portable working machine, the air-fuel mixture becomes suddenly rich, engine is to be stopped.
[0004]
As shown in FIG. 6, in the conventional rotary throttle valve type carburetor, since the opening of the throttle valve 47 is small when the engine is idling, the flow of the air-fuel mixture is small. In addition, the flow of the air-fuel mixture in the intake passage 16 of the carburetor or the intake passage 63a of the heat insulating pipe 63 is fast, but a large amount of the air-fuel mixture particularly exists in the closed portion 16b opposite to the open portion 16a of the throttle valve 47 at the outlet of the intake passage 16. As shown by the point, the stagnation of the air-fuel mixture tends to occur. When the air-fuel mixture in the closed part 16b of the throttle valve 47 at the outlet of the intake passage 16 from staying, it is the fuel from adhering to Tsu Na in the liquid.
[0005]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention has a membrane-type vaporization that prevents fuel from accumulating inside the intake passage of an engine carburetor and prevents the engine from being stopped when the engine is tilted during idling of the engine. Is to provide a vessel.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the configuration of the present invention is provided with a suction inlet to the intake passage of the carburetor body adjacent to the open portion of the outlet side of the idle position of the rotary throttle valve, the outlet in the idle position of the rotary throttle valve adjacent the side closed part provided an intake outlet to an intake passage of the carburetor body, characterized in that the said intake outlet and the intake inlet communicating with the tube.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the open portion and the closed portion of the rotary throttle valve at the outlet of the intake passage are communicated by a passage. The intake air introduced into the passage from the open portion of the rotary throttle valve is blown out to the closed portion of the rotary throttle valve through the passage, and the air-fuel mixture stagnating in the closed portion is blown to the downstream side of the intake passage, resulting in stagnation of the air-fuel mixture. To prevent.
[0008]
In the present invention, a flexible tube with a closed end is connected to the closed portion of the rotary throttle valve at the outlet of the intake passage. In the intake stroke of the engine, the intake pressure at the closed portion of the outlet of the intake passage becomes lower than the atmospheric pressure inside the tube, and the tube is crushed. At this time, the fuel stagnating in the closed portion is pushed away to the downstream side of the intake passage by the air from the tube. On the other hand, in the other strokes of the engine, the intake air at the closed portion of the outlet of the intake passage is sucked into the tube, and the intake pressure gradually decreases as the tube expands. Thus, the intake pressure in the closed portion of the outlet of the intake passage is close to the intake pressure in the open portion by the next intake stroke.
[0009]
【Example】
As shown in FIG. 1, the main body 15 of the membrane type carburetor is connected to an intake port (not shown) of the engine via a heat insulating pipe 63 and a gasket 62. The illustrated carburetor is of a known rotary throttle valve type, and a cylindrical portion 57 orthogonal to the intake passage 16 is formed in the main body 15, and a throttle valve 47 having a throttle hole 47 b is rotatable in the cylindrical portion 57. And it is inserted so that raising and lowering is possible. The throttle valve lever 51 is coupled to the valve shaft 47 a that protrudes upward from the throttle valve 47 through the lid plate 53 that closes the cylindrical portion 57, and the lower cam surface 51 a of the throttle valve lever 51 and the follower 52 of the lid plate 53. The cam mechanism is composed of the above. When the throttle valve 47 is rotated in the acceleration direction against the force of the spring 54 by the throttle valve lever 51, the opening degree at which the throttle hole 47b communicates with the intake passage 16 increases, and from the shaft portion 47a of the throttle valve 47. The needle valve 55 protruding into the throttle hole 47b and inserted into the fuel nozzle 56 rises from the injection hole 56a of the fuel nozzle 56, and the opening degree of the injection hole 56a increases. The stationary fuel nozzle 56 is fitted and supported in a hole 58 at the bottom of the main body 15 and communicates with the constant pressure fuel chamber 25 of the fuel metering mechanism A through a jet 59 and a check valve 66.
[0010]
A fuel pump 11 and a fuel metering mechanism A are configured in the lower part of the carburetor body 15. That is, in the fuel pump 11, the intermediate body 49 is coupled to the lower end surface of the main body 15 with the membrane 10 interposed therebetween, the pulsation pressure chamber 8 accommodating the spring 8 a is disposed above the membrane 10, and the pump chamber 9 is disposed below the membrane 10. Each is partitioned. In the four-stroke engine, the fuel pump 11 introduces the pulsating intake negative pressure of the intake passage 63a of the heat insulating pipe 63 into the pulsating pressure chamber 8 through the inlet 61a and the passage 61. In the two-stroke engine, the pulsating pressure of the crank chamber is introduced into the pulsating pressure. By introducing the fuel into the chamber 8, the fuel in the fuel tank 37 is sucked into the pump chamber 9 through the passage 38, the inlet 13, the check valve 12 and the passage 12 a, and discharged to the passage 7 a through the passage 12 a and the check valve 7.
[0011]
The fuel quantification mechanism A joins the cover 30 a with the membrane 29 sandwiched between the lower end surface of the intermediate body 49 and partitions the constant pressure fuel chamber 25 and the atmospheric chamber 30. A lever 28 is rotatably supported by a shaft 27 inside the constant pressure fuel chamber 25. One end of the lever 28 is engaged with the inflow valve 2, and the inflow valve 2 is configured to contact the valve seat at the end of the passage 7 a under the force of the spring 24. The other end of the lever 28 can be brought into contact with the membrane 29, and when the force of atmospheric pressure acting on the lower surface of the membrane 29 becomes larger than the force of the spring 24, the lever 28 rotates clockwise and the inflow valve 2 is rotated. Is opened, and fuel is supplied from the passage 7a to the constant pressure fuel chamber 25. Thus, the constant pressure fuel chamber 25 holds a predetermined amount of fuel at a predetermined pressure. The fuel in the constant pressure fuel chamber 25 is supplied to the intake passage 16 through the check valve 66, the jet 59, the injection hole 56a of the fuel nozzle 56, and the throttle hole 47b.
[0012]
Such a membrane type carburetor is known from, for example, Japanese Patent Application Laid-Open No. 59-20551, and the fuel sent to the constant pressure fuel chamber 25 by the fuel pump 11 can be used in any position of the engine (for example, in a rollover state). The engine is supplied to the intake passage 16 from the nozzle hole 56a of the fuel nozzle 56 by the intake negative pressure of the engine.
[0013]
As shown in FIGS. 1 and 2, from a metal having a large thermal conductivity, such as aluminum, having an inner diameter smaller than that of the heat insulating pipe 63 having an intake passage 63 a connected between the intake port of the engine and the carburetor body 15. A ring member 26 is disposed at the outlet of the intake passage 16 of the carburetor. Therefore, a large-diameter cylindrical portion 26 a is formed at the outlet end of the intake passage 16 of the carburetor body 15, the ring member 26 is fitted into the large-diameter cylindrical portion 26 a, and connected to the heat insulating pipe 63 via the gasket 62. To do. In the illustrated embodiment, the end flange of the carburetor body 15, the gasket 62, and the heat insulating pipe 63 are fastened to the engine wall by a plurality of through bolts (see the through bolt 60 in FIG. 6). The inner diameter of the heat insulating pipe 63 is the same as the inner diameter of the intake passage 16 of the carburetor body 15. Preferably, the ring member 26 is provided with an intake passage having a smaller diameter than the intake passage 16.
[0014]
According to the present invention, in order to prevent fuel from accumulating inside the intake passage 16 during idling of the engine, one of the intake air at the outlet 16a of the outlet of the intake passage 16, that is, the outlet of the throttle hole 47b of the throttle valve 47, is reduced. Is guided to the closed portion 16b at the outlet of the intake passage 16 to eliminate the stagnation of the air-fuel mixture in the closed portion 16b. Therefore, the ring member 26 is provided with a radial intake port 31a adjacent to the open portion 16a, and a radial intake port 33a adjacent to the closed portion 16b. As shown in FIG. 2, the intake inlet 31 a and the intake outlet 33 a are communicated by a groove passage 32 a provided on the upper outer peripheral surface of the ring member 26.
[0015]
In the embodiment shown in FIGS. 3 and 4, the pipe 42 is used in place of the ring member 26, and the intake inlet 41a and the intake outlet 43a are communicated with each other. An intake inlet 41a is provided adjacent to the open portion 16a, and an intake outlet 43a is provided adjacent to the closed portion 16b on the peripheral wall of the intake passage 16 of the carburetor body 15, and the end of the pipe 42 is connected to the intake inlet 41a and the intake outlet 43a. The portions 41 and 43 are respectively fitted, and the intake air at the outlet portion 16a of the intake passage 16, that is, the intake air at the outlet of the throttle hole 47b of the throttle valve 47 is passed through the pipe 42 to the closed portion 16b at the outlet of the intake passage 16. It was made to blow out.
[0016]
Next, the operation of the membrane type vaporizer according to the present invention will be described. When the engine is idling, the throttle valve 47 is in the state shown in FIG. 3, and when the intake air sucked into the intake passage 16 passes through the throttle hole 47 b of the throttle valve 47, fuel is injected from the nozzle hole 56 a of the fuel nozzle 56. The air is sucked, flows from the throttle hole 47b to the open portion 16a at the outlet of the intake passage 16, and further flows to the engine through the heat insulating pipe 63.
[0017]
When the engine is idling, the flow of the air-fuel mixture is slow. Therefore, the air-fuel mixture stays in the closed portion 16b of the outlet of the intake passage 16, which is a so-called dead space, and only fuel having a higher specific gravity than intake air tends to accumulate. However, in the embodiment shown in FIGS. 1 and 2, the ring member 26 having the groove passage 32a is disposed at the open portion 16a of the intake passage 16, that is, the outlet of the throttle hole 47b, so that the open portion of the intake passage 16 from the throttle hole 47b. Part of the intake air flowing into the ring member 26 enters the intake inlet 31a of the ring member 26 and flows through the groove passage 32a from the intake outlet 33a to the closed portion 16b of the intake passage 16, so that the closed portion is caused by the flow of intake air from the intake outlet 33a. The air-fuel mixture of 16b is blown to the downstream side of the intake passage 16, and the accumulation of fuel is suppressed.
[0018]
3 and 4, the intake inlet 31a provided in the open portion 16a of the outlet of the intake passage 16 and the intake outlet 33a provided in the closed portion 16b are communicated by the pipe 42. Part of the intake air flowing from the throttle hole 47b to the open portion 16a of the intake passage 16 enters the pipe 42 through the intake inlet 31a and flows from the intake outlet 33a to the closed portion 16b of the intake passage 16, so that the intake air from the intake outlet 33a As a result of this flow, the air-fuel mixture in the closed portion 16b is blown to the downstream side of the intake passage 16, and fuel accumulation is suppressed. Were it to Tsu, the idle operation of the engine, sump fuel closed part 16b of the conventional outlet of the intake passage 16 as, Tsu names in rich mixture in Tsu accompanied fuel Tsu sump to vibration and posture change of the engine The problem that the engine stops at once and then stops is solved.
[0019]
In the embodiment shown in FIG. 5, the tube 44 is fitted into a through hole 43b provided in the closed portion 16b of the outlet of the intake passage 16, and the proximal end portion of the flexible tube 46 having the distal end portion 46a closed is connected to the tube. 44 and is fastened by a band 45.
[0020]
Since the intake air flow at the outlet of the intake passage 16 is fast in the intake stroke of the engine, the intake pressure in the closed portion 16b is lower than the atmospheric pressure inside the tube 46, and the tube 46 is crushed. At this time, the fuel stagnating in the closed portion 16 b is pushed to the downstream side of the intake passage 16 by the air from the tube 46. On the other hand, in the other strokes of the engine, the flow of the intake air at the outlet of the intake passage 16 becomes slow, and the closed portion 16b is almost close to the atmospheric pressure. At this time, the intake air of the closed portion 16b at the outlet of the intake passage 16 is sucked into the tube 46, and the tube 46 expands (returns to a normal shape). At the same time, the intake pressure of the closed portion 16b gradually decreases. Thus, the intake pressure of the closed portion 16b at the outlet of the intake passage 16 is close to the intake pressure of the open portion 16a by the next intake stroke. The length or volume of the tube 46 is experimentally determined in advance. If the tube 46 is short, the fuel stagnating in the closed portion 16b due to the pulsation of the intake negative pressure of the engine is sucked into the inside of the tube 46. However, if the tube 46 is lengthened, the fuel stagnating in the closed portion 16b due to the pulsation of the intake negative pressure of the engine. Is blown to the downstream side of the intake passage 16 to eliminate fuel accumulation .
[0021]
【The invention's effect】
As described above, the present invention provides an intake inlet in the intake passage of the carburetor body adjacent to the open portion on the outlet side in the idle position of the rotary throttle valve, and is adjacent to the closed portion on the outlet side in the idle position of the rotary throttle valve. As a result, an intake outlet is provided in the intake passage of the carburetor main body, and the intake inlet and the intake outlet are communicated by a pipe, so that fuel accumulates in the closed portion of the rotary throttle valve at the intake passage outlet during idle operation of the engine. It becomes difficult.
[0022]
In the present invention, the open portion intake outlet on the outlet side at the idle position of the rotary throttle valve of the carburetor and the closed portion outlet are communicated by a pipe, so that the rotary throttle valve is fully opened. There is not much influence on the flow of the air-fuel mixture, and the engine output does not decrease.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a membrane type vaporizer according to a first embodiment of the present invention.
FIG. 2 is a front sectional view of a ring member disposed in the same membrane type vaporizer.
FIG. 3 is a plan sectional view showing the main part of a membrane type vaporizer according to a second embodiment of the present invention.
FIG. 4 is a front sectional view of the same membrane type vaporizer.
FIG. 5 is a plan sectional view showing the main part of a membrane type vaporizer according to a third embodiment of the present invention.
FIG. 6 is a plan sectional view showing a main part of a conventional membrane type vaporizer.
[Explanation of symbols]
A: Fuel metering mechanism 2: Inflow valve 7: Check valve 7a: Passage 8: Pulsation pressure chamber 9: Pump chamber 10: Membrane 11: Fuel pump 12: Check valve 12a: Passage 15: Vaporizer body 16: Intake passage 16a: Open portion 16b: Open portion 25: Constant pressure fuel chamber 26: Ring member 26a: Large diameter cylindrical portion 27: Shaft 28: Lever 29: Membrane 30: Atmospheric chamber 30a: Cover 31a: Inlet inlet 32a: Groove passage 33a: Inlet air Outlet 37: Fuel tank 41a: Inlet inlet 42: Pipe 43a: Inlet outlet 43b: Through hole 45: Band 46: Pipe 47: Throttle valve 47b: Throttle hole 49: Intermediate 51: Throttle valve lever 51a: Cam surface 52: Follower 53: Cover plate 54: Spring 55: Needle valve 56: Fuel nozzle 56a: Injection hole 57: Cylindrical part 59: Jet 62: Gasket 63: Heat insulation pipe 63a: Intake passage 66: Check

Claims (2)

ロータリ絞り弁のアイドル位置における出口側の開部分に隣接して気化器本体の吸気路に吸気入口を設け、前記ロータリ絞り弁のアイドル位置における出口側の閉部分に隣接して前記気化器本体の吸気路に吸気出口を設け、前記吸気入口と前記吸気出口とを管により連通したことを特徴とする膜型気化器。The inlet passage to the intake passage on the outlet side of the carburetor body adjacent the open portion provided at the idle position of the rotary throttle valve, the carburetor body adjacent the closed part of the outlet side in the idle position of the rotary throttle valve A membrane type vaporizer characterized in that an intake outlet is provided in an intake passage, and the intake inlet and the intake outlet are communicated with each other by a pipe. 気化器本体の吸気路のロータリ絞り弁よりも下流側部分に、機関の吸気口へ気化器を接続するための断熱管よりも内径が小さいリング部材を嵌合し、前記ロータリ絞り弁のアイドル位置における出口側の開部分に隣接して前記リング部材に吸気入口を設け、前記ロータリ絞り弁のアイドル位置における出口側の閉部分に隣接して前記リング部材に吸気出口を設け、前記吸気入口と前記吸気出口とを前記リング部材の外周面に設けた溝通路により連通したことを特徴とする膜型気化器。A ring member having an inner diameter smaller than that of the heat insulating pipe for connecting the carburetor to the intake port of the engine is fitted to the downstream side of the rotary throttle valve of the intake passage of the carburetor body, and the idle position of the rotary throttle valve The ring member is provided with an intake inlet adjacent to the outlet side open portion of the rotary throttle valve, and the ring member is provided with an intake outlet adjacent to the outlet side closed portion of the rotary throttle valve at the idle position. A membrane type vaporizer characterized in that an intake outlet communicates with a groove passage provided on an outer peripheral surface of the ring member.
JP32247997A 1997-11-07 1997-11-07 Membrane vaporizer Expired - Fee Related JP3952229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32247997A JP3952229B2 (en) 1997-11-07 1997-11-07 Membrane vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32247997A JP3952229B2 (en) 1997-11-07 1997-11-07 Membrane vaporizer

Publications (2)

Publication Number Publication Date
JPH11141402A JPH11141402A (en) 1999-05-25
JP3952229B2 true JP3952229B2 (en) 2007-08-01

Family

ID=18144098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32247997A Expired - Fee Related JP3952229B2 (en) 1997-11-07 1997-11-07 Membrane vaporizer

Country Status (1)

Country Link
JP (1) JP3952229B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073813A (en) * 1999-09-03 2001-03-21 Honda Motor Co Ltd Intake amount control device for engine
JP2001280161A (en) * 2000-03-30 2001-10-10 Honda Motor Co Ltd Rotor type throttle vale of spark ignition type internal combustion engine
FR2814501B1 (en) * 2000-09-25 2002-12-27 Internova Int Innovation AIR INTAKE DEVICE FOR A HEAT ENGINE
CN103306827B (en) * 2013-05-23 2015-11-18 吉林大学 Automatically controlled valve of holding one's breath
JP6345549B2 (en) * 2014-09-08 2018-06-20 株式会社マキタ Engine intake system

Also Published As

Publication number Publication date
JPH11141402A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
JPH021980B2 (en)
JP3934198B2 (en) Two-stroke internal combustion engine carburetor
JP2010174773A (en) Air scavenging type two-cycle engine
US3530842A (en) Vapor injector system
JP2002256977A (en) Carburetor for small two stroke internal combustion engine
JP3952229B2 (en) Membrane vaporizer
JPH0345228B2 (en)
US4029065A (en) Carburetor
JPH10288096A (en) Film type carburetor
JPH10288097A (en) Film type carburetor
JP3952243B2 (en) Membrane vaporizer
JP2001317362A (en) Stratified scavenging double-stroke internal combustion engine
JPH09177614A (en) Diaphragm type carburetor of four stroke engine for portable working vehicle
JPS6388258A (en) Diaphragm type carburetor for internal combustion engine
JPH09158806A (en) Film type carbureter for 4-stroke internal combustion engine
JP3351492B2 (en) Liquefied petroleum fuel supply system for internal combustion engine
JP2552864Y2 (en) Raw fuel pool prevention device for two-stroke internal combustion engine
JP3974957B2 (en) Two-stroke engine carburetor
JP2000027706A (en) Acceleration device for membrane type carburetor
JP2518033Y2 (en) Diaphragm vaporizer
JPS6022061A (en) Horizontal type 2-cycle internal-combustion engine
JP2000027707A (en) Membrane type carburetor
JPH11223156A (en) Carbureter with hot water heater
JPH11324802A (en) Rotary throttle valve type carburetor
JPH11324800A (en) Accelerator of diaphragm carburetor for internal combustion engine

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050406

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees