JP3950626B2 - Quantitative analysis method in sample analyzer - Google Patents

Quantitative analysis method in sample analyzer Download PDF

Info

Publication number
JP3950626B2
JP3950626B2 JP2000384593A JP2000384593A JP3950626B2 JP 3950626 B2 JP3950626 B2 JP 3950626B2 JP 2000384593 A JP2000384593 A JP 2000384593A JP 2000384593 A JP2000384593 A JP 2000384593A JP 3950626 B2 JP3950626 B2 JP 3950626B2
Authority
JP
Japan
Prior art keywords
analysis
electron beam
sample
qualitative analysis
qualitative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000384593A
Other languages
Japanese (ja)
Other versions
JP2002181745A (en
Inventor
秀之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2000384593A priority Critical patent/JP3950626B2/en
Publication of JP2002181745A publication Critical patent/JP2002181745A/en
Application granted granted Critical
Publication of JP3950626B2 publication Critical patent/JP3950626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、試料分析装置における定性分析に基づく簡易な定量分析方法に関し、特に分析計測時間により定量分析値が変動する定量分析の精度を向上させるようにした試料分析装置の定量分析方法に関する。
【0002】
【従来の技術】
一般に、波長分散形分光器及びエネルギー分散形分光器を用いたX線マイクロアナライザにおいては、ガラス試料や鉄鋼試料などの各種試料の定性分析と共に、その定性分析に基づき得られるスペクトルのX線強度により簡易的な定量分析が行われている。
【0003】
そして、近年は分析の効率化を図るため、波長分散形分光器を用いる場合には、分光素子を一定ステップで回折角度を変化させてスペクトルを収集し、検出されたピーク位置を予め格納されている文献上のエネルギー位置と照合することにより、元素の同定を行っており、また、このとき主ピークの正味のX線強度が算出され、予め格納されている標準試料のX線強度との比較により、補正計算されて簡易的な定量結果を得るようにしている。
【0004】
【発明が解決しようとする課題】
ところで、上記のように定性分析の結果得られるスペクトルのX線強度に基づいて簡易的に定量分析を行う場合、定性分析においてスペクトルを形成させるまでの間に、試料の経時変化の影響を受けてしまい、分析計測時間が定性分析で得られるスペクトルに基づく定量分析結果の精度を悪化させる要因となる場合がある。具体的には、例えばガラス試料では、Na ,Kが電子ビームの照射によりイオンが移動する。これは、加速電圧、照射電子ビーム径、時間によって変化する。また、鉄鋼中のカーボン分析でも真空度にもよるがコンタミネーションの発生によりカーボンが経時的に増加する。このような理由により、定性分析で得られるスペクトルに基づく定量分析結果の精度を悪化させている。
【0005】
本発明は、従来の定性分析で得られるスペクトルに基づく簡易的な定量分析における上記問題点を解消するためになされたもので、Na ,K等の電子線の照射ダメージに敏感な元素が存在している試料の分析においても、定性分析で得られるスペクトルに基づく簡易的な定量分析の精度を向上させることの可能な試料分析装置における定量分析方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記問題点を解決するため、請求項1に係る発明は、試料に電子線を照射する電子線源と、電子線の照射された試料から放出される特性X線を検出するX線分光器と、各部の動作を制御する制御部とを有し、試料に電子線を照射し、該試料表面より放出される特性X線を検出して試料の定量分析を行う試料分析装置における定量分析方法において、第1の定性分析により試料表面の元素の判定を行うステップと、前記第1の定性分析の結果、Na ,K等の電子線の照射ダメージに敏感な元素が存在しないと判明した場合は、前記第1の定性分析の結果得られるエネルギースペクトル強度に基づいて定量分析を実行するステップと、前記第1の定性分析の結果、Na ,K等の電子線の照射ダメージに敏感な元素が存在すると判明した場合は、試料に対する電子線照射分析位置を電子線のビーム径の数倍以上離れた位置にずらして、第1のシーケンスでNa ,K等の電子線の照射ダメージに敏感な元素の定性分析を自動的に行い、次いで第2のシーケンス以降でその他の元素の定性分析を自動的に行う第2の定性分析ステップと、前記第2の定性分析の結果得られるエネルギースペクトル強度に基づいて定量分析を行うステップとを備えていることを特徴とするものである。
【0007】
このように構成した定量分析方法においては、第1の定性分析でNa ,K等の電子線の照射ダメージに敏感な元素が存在していることが判明した場合には、X線強度の減衰を回避するため、第1の定性分析位置から電子ビーム径の数倍以上離れた位置にずらして、まず電子線の照射ダメージに敏感な元素に対して第2の定性分析を行い、次いで、その他の元素に対して第2の定性分析を制御部の制御により自動的に行うようにしているので、Na ,K等の電子線の照射ダメージに敏感な元素に対しては短時間の分析測定による定性分析結果に基づいて定量分析が行われ、それによりNa ,K等の電子線の照射ダメージに敏感な元素のイオンの移動が少ない段階での定性分析結果に基づいて定量分析が行われ、高精度の簡易的な定量分析結果が得られる。
【0008】
また、請求項2に係る発明は、試料に電子線を照射する電子線源と、電子線の照射された試料から放出される特性X線を検出するX線分光器と、各部の動作を制御する制御部とを有し、試料に電子線を照射し、該試料表面より放出される特性X線を検出して試料の定量分析を行う試料分析装置における定量分析方法において、試料にNa ,K等の電子線の照射ダメージに敏感な元素が存在していることが予め判明している場合、第1のシーケンスでNa ,K等の電子線の照射ダメージに敏感な元素の定性分析を自動的に行い、次いで第2のシーケンス以降で上記以外の元素の定性分析を自動的に行うステップと、上記定性分析の結果得られるエネルギースペクトル強度に基づいて各元素の定量分析を行うステップとを備えていることを特徴とするものである。
【0009】
このように構成した定量分析方法においては、Na ,K等の電子線の照射ダメージに敏感な元素が存在していることが予め判明している場合に、第1のシーケンスでNa ,K等の電子線の照射ダメージに敏感な元素の定性分析を行い、次いで、第2のシーケンス以降で上記以外の元素の定性分析を制御部の制御により自動的に行うようにしているので、Na ,K等の電子線の照射ダメージに敏感な元素に対しては短時間の分析測定による定性分析結果に基づいて定量分析が行われ、それによりNa ,K等の電子線の照射ダメージに敏感な元素のイオンの移動が少ない段階での定性分析結果に基づいて定量分析が行われ、簡単な工程で高精度の簡易的な定量分析結果が得られる。
【0010】
また、請求項3に係る発明は、試料に電子線を照射する電子線源と、電子線の照射された試料から放出される特性X線を検出するX線分光器と、各部の動作を制御する制御部とを有し、試料に電子線を照射し、該試料表面より放出される特性X線を検出して試料の定量分析を行う試料分析装置における定量分析方法において、第1の定性分析により試料表面の元素の判定を行うステップと、前記第1の定性分析の結果、Na ,K等の電子線の照射ダメージに敏感な元素が存在しないと判明した場合、前記第1の定性分析の結果得られるエネルギースペクトル強度に基づいて定量分析を実行するステップと、前記第1の定性分析の結果、Na ,K等の電子線の照射ダメージに敏感な元素が存在すると判明した場合、Na ,K等の電子線の照射ダメージに敏感な元素に関して定性分析時における電子線照射分析計測時間の検出X線強度に対する影響を測定し、分析計測時間影響曲線を作成し登録するステップと、第2の定性分析時にNa ,K等の電子線の照射ダメージに敏感な各元素に要した分析計測時間に応じて、予め登録されている前記分析計測時間影響曲線に基づいて、第2の定性分析結果得られたエネルギースペクトル強度による定量分析結果に対して定量補正を行うステップとを備えていることを特徴とするものである。
【0011】
このように構成した定量分析方法においては、予めNa ,K等の電子線の照射ダメージに敏感な元素に関して電子線照射経過時間の検出X線強度に対する影響を測定し、測定時間影響曲線を作成し登録しておいて、定性分析の結果、Na ,K等の電子線の照射ダメージに敏感な元素が存在すると判明した場合、定性分析時にNa ,K等の電子線の照射ダメージに敏感な各元素に要した分析計測時間に応じて、予め登録させておいた前記分析計測時間影響曲線に基づいて、定性分析結果得られるエネルギースペクトル強度による定量分析結果に対して定量補正を行うようにしているので、高精度の簡易的な定量分析結果が得られる。
【0012】
【発明の実施の形態】
次に、実施の形態について説明する。図1は、本発明に係る試料分析装置における定量分析方法の実施に用いるX線マイクロアナライザを示す概略構成図である。図1において、1は電子銃、2はウェネルト、3は偏向コイル、4はX線分光器駆動用モータ、5はX線分光素子、6はX線検出器で、X線分光器駆動用モータ4とX線分光素子5とX線検出器6とでWDS(波長分散形X線分光器)を構成している。7は反射電子検出器、8は2次電子検出器、9はEDS(エネルギー分散形X線分光器)、10は分析試料、11は試料ステージ、12はステージ駆動用モータ、13は偏向コイル制御装置、14はX線分光器駆動用モータ制御装置、15はステージ駆動用モータ制御装置、16は2次電子/反射電子信号データ取込み装置、17はWDSX線信号データ取込み装置、18はEDSX線信号データ取込み装置、19は制御部(CPU)、20は大容量記憶装置である。
【0013】
そして、このような構成要素からなるX線マイクロナアライザは、通常のX線マイクロナアライザ機能の他に、CPUを用いた自動制御により、次に述べるような機能を備えている。すなわち、電子ビーム走査、走査倍率、電子ビーム径等のデジタル制御が可能になっており、複数基のWDSの駆動計測制御及び一基のEDS計測制御が可能になっている。また2次電子/反射電子等の電子信号強度の計測制御が可能であり、そして試料ステージの各方向(X,Y,Z軸方向)への駆動制御が可能であって、試料ステージ走査及び電子ビーム走査によるX線信号及び電子信号の面分析データの収集が可能になっている。
【0014】
次に、このように構成されているX線マイクロアナライザを用いて行う本発明に係る定量分析方法の第1の実施の形態を、図2に示すフローチャートを参照しながら説明する。この実施の形態は、構成元素がわからない試料に対して簡易的な定量分析を行うもので、まず、図1に示したX線マイクロアナライザのWDSを用いて通常の方法で第1の定性分析を行う(ステップS1)。この第1の定性分析によって試料の構成元素の判定を行い(ステップS2)、Na ,K等の電子線の照射ダメージに敏感な元素(以下経時変化の大きな元素という)が存在しないことが判明した場合は、上記第1の定性分析結果得られたスペクトルのX線強度に基づいて、制御部内に格納されている標準試料データ強度との比較により簡易的な定量分析を行う(ステップS3)。
【0015】
一方、第1の定性分析による試料構成元素の判定によって、Na ,K等の経時変化の大きな元素が存在していると判明した場合には、電子ビーム照射による分析位置をビーム径の数倍から10倍(数10〜 100μm)ずらし(ステップS4)、そして第2の定性分析を行う。その際、ガラスの定量分析を例にして説明すると、第1のシーケンスでは経時変化の最も大きい、すなわち定量的に変動しやすいNa ,K,Si を分析するための分光素子(TAP,PET,LiF)及びピーク分析スキャン範囲を設定して定性分析を行い、第2のシーケンスでは例えば次に変動の大きいAl ,Mg ,O,Ca 等の分析用分光素子及びピーク分析スキャン範囲を設定して定性分析を行い、次いで第3のシーケンスで最も変動の少ないP,Cr 等の分析用分光素子及びピーク分析スキャン範囲を設定して定性分析を行って、ガラスの構成元素の検出を行う(ステップS5)。
【0016】
表1に、上記ガラス用分析シーケンスの分光素子及びピーク分析スキャン範囲(波長、単位Å)を示す。表1において、第1シーケンスにおいてTAPはNa 用分光素子、PETはSi 用分光素子、LiFはその他の元素用分光素子、第2シーケンスにおいてTAPはAl ,Mg 用分光素子、PETはCr ,Ca 等の元素用分光素子、第2シーケンスにおいてTAPはP,O用分光素子である。
【0017】
【表1】

Figure 0003950626
【0018】
以上のようにして第2の定性分析を行い、その結果得られたスペクトルのX線強度に基づいて、制御部に接続されている記憶装置内に格納されている標準試料データ強度との比較により簡易的な定量分析を行う(ステップS6)。なお、以上の各ステップの各部の動作は、全て制御部(CPU)により人手を介さずに自動的に行われるように構成されている。
【0019】
このように、第1の定性分析において試料にNa ,K等の経時変化の大きな元素が存在していることが判明した場合、試料に対する電子ビーム照射位置をずらして第2の定性分析を行い、その際、経時変化の大きな元素から、すなわち定量的に変動の大きな元素順に定性分析を行っているので、変動の大きい元素に対しては短時間で定性分析が行われ、したがって精度のよい簡易的な定量分析結果が得られる。
【0020】
上記表1によって得られた定性スペクトルと簡易定量結果を、比較のため従来例による定性スペクトルと共に図3に示す。図3において、点線は本実施の形態により得られた定性スペクトルで、TAP分光素子を用いピーク分析スキャン範囲を11.733−12.099Åとして行った定性分析によるものであり、実線は従来例で得られた定性スペクトルで、TAP分光素子を用いスキャン範囲を 6.439−21.192Åとして行った定性分析によるものである。この図から明らかなように、従来例による場合は、Na の分析時間経過による減衰が著しく、簡易定量結果にかなりの誤差が生じていることがわかる。
【0021】
次に、第2の実施の形態を図4に示すフローチャートに基づいて説明する。この実施の形態は、試料に経時変化の大きいNa ,K等が含まれていることが予め判明している場合に適用されるものである。したがって、この実施の形態に係る定量分析方法は、図2に示した第1の実施の形態における各工程のうち、経時的変化が大きい元素の有無を判定するための第1の定性分析を省いた工程からなるものである。
【0022】
すなわち、経時変化が大きいNa ,Kが含まれていることが判明している試料、例えばガラス試料の場合、第1シーケンスとして定量の変動しやすいNa ,K,Si 及びその他の主要元素の分析用分光素子及びピーク分析スキャン範囲を設定して定性分析を行い、次いで、以降の各シーケンスで順次経時的変化が小さくなる元素順に分析用分光素子及びピーク分析スキャン範囲を設定して順次定性分析を行う(ステップS11)。次いで、これらの定性分析の結果得られたスペクトルのX線強度に基づいて、標準試料データ強度との比較により簡易的な定量分析を行う(ステップS12)。なお、この実施の形態においても、各ステップにおける各部の動作は全て制御部(CPU)により自動的に行われるようになっている。
【0023】
このように、試料に経時変化の大きい元素の存在が判明している場合、経時変化の大きな元素から、すなわち定量的に変動の大きな元素順に定性分析を行うようにしているので、変動の大きい元素に対しては短時間で定性分析が行われ、第1の実施の形態と同様に、精度のよい簡易的な定量分析結果が得られる。
【0024】
次に、第3の実施の形態を図5に示すフローチャートに基づいて説明する。図1に示したX線マイクロアナライザにおいて配置されるWDSの数が少ない場合、同時に複数の元素を分析できないこともある。すなわち、例えばKをPETで分析測定中に同じPET分光素子を用いるSi を同時に測定することはできない。したがって、このような場合には、上記第1及び第2の実施の形態による定量分析方法では対応できないケースが生じる。第3の実施の形態は、このようなケースにも対応できるようにしたものである。
【0025】
すなわち、この実施の形態においては、最初に通常の方法による第1の定性分析を行って、試料の構成元素中における経時変化の大なる元素の有無の判定を行い(ステップS21,S22)、経時変化の大きな元素が存在しないことが判明した場合は、上記第1の定性分析で得られたスペクトルのX線強度に基づいて、それらの簡易的な定量分析を行う(ステップS23)までは、第1の実施の形態と同様である。
【0026】
次に、第1の定性分析による試料構成元素の判定により、Na ,K等の経時変化の大きな元素が存在していると判明した場合は、それらの経時変化の大きい元素のスペクトルのピークX線強度の経時的変化量をプロットし、時間変化の割合を求める(ステップS24)。この時間変化の割合は高次曲線で近似させて求めておき、分析計測時間によるX線強度の影響曲線とする。この影響曲線は、Na ,Kでは減衰曲線となり、他の元素例えばSi では増加曲線となる。例えば、ガラスのNa の経時的減衰曲線及びSi の増加曲線を図6に例示する。
【0027】
次いで、このようにして求めたNa ,K等の変動の大きい元素のスペクトルピークの分析計測時間によるX線強度の影響曲線を、制御部に接続された記憶装置へ登録する(ステップS25)。
【0028】
次に、通常の設定による第2の定性分析を行い各元素の同定を行い、各元素の主ピークが検出されるまでの分析計測時間を測定する(ステップS26)。この分析計測時間は、分光素子(分光結晶)の駆動ステップ数と測定単位時間とで算出される。そして、上記定性分析で得られる各元素の主スペクトル強度は、先に予め測定され登録されている分析計測時間によるX線強度の影響曲線に基づいて、それぞれ正味のX線強度に換算補正される。そして、この換算補正されたX線強度に基づいて、簡易定量分析を行う(ステップS27)。
【0029】
このように、この実施の形態では、定性分析において各元素のスペクトルピークが検出されるまでの分析計測時間を測定し、予め求めておいた分析計測時間によるX線強度の影響曲線に基づいて、定性分析で得られた各元素のスペクトルピーク強度を換算補正するようにしているので、高精度の簡易的な定量分析結果を得ることができる。
【0030】
この第3の実施の形態の手法は、鉄鋼中のカーボン分析にも適用することができる。すなわち、鉄鋼中のカーボンの分析測定中には、真空度にもよるがコンタミネーションによるカーボンの増加により、実際のカーボンより大きい定量結果になるが、分析計測時間に対するコンタミネーションによるカーボンの増加量を予め測定して分析計測時間によるX線強度の影響曲線を求めて登録しておく。そして、実際の鉄鋼の定性分析においてカーボンのスペクトルピークが検出されるまでの分析測定時間を測定し、予め求めておいた分析計測時間によるX線強度の影響曲線に基づいて、定性分析で得られたカーボンのスペクトルピーク強度を換算補正することにより、鉄鋼中のカーボンの高精度で簡易的な定量分析結果を得ることができる。
【0031】
【発明の効果】
以上実施の形態に基づいて説明したように、請求項1に係る発明によれば、第1の定性分析で経時変化の大きな元素が存在していることが判明した場合、第1の定性分析位置をずらして、経時変化の大きな元素順に第2の定性分析を自動的に行い、その定性分析結果に基づいて定量分析を行うようにしているので、経時変化の大きな元素に対しても高精度で簡易的な定量分析を得ることができる。また請求項2に係る発明によれば、試料に経時変化の大きな元素が存在していることが予め判明している場合、第1の定性分析を省き、経時変化の大きな元素順に定性分析を自動的に行い、その定性分析結果に基づいて定量分析を行うようにしているので、経時変化の大きな元素に対しても、簡単な工程で高精度の簡易的な定量分析結果を得ることができる。また請求項3に係る発明によれば、予め経時変化の大きな元素に関して電子線照射経過時間の検出X線強度に対する影響を測定し分析計測時間影響曲線を作成し登録しておいて、定性分析の結果、経時変化の大きな元素が存在すると判明した場合、定性分析時に経時変化の大きな各元素に要した分析計測時間に応じて、予め登録させておいた分析計測時間影響曲線に基づいて、定性分析の結果得られるエネルギースペクトル強度による定量分析結果に対して定量補正を行うようにしているので、経時変化の大きな元素に対しても高精度の簡易的な定量分析結果が得られる。
【図面の簡単な説明】
【図1】 本発明に係る試料分析装置における定量分析方法を実施するために用いるX線マイクロアナライザを示す概略構成図である。
【図2】 本発明に係る試料分析装置における定量分析方法の第1の実施の形態を説明するためのフローチャートである。
【図3】 第1の実施の形態による定量分析結果を従来例による定量分析結果と対比して示す図である。
【図4】 本発明の第2の実施の形態を説明するためのフローチャートである。
【図5】 本発明の第3の実施の形態を説明するためのフローチャートである。
【図6】 定性分析時におけるNa とSi のX線強度の経時変化を示す曲線図である。
【符号の説明】
1 電子銃
2 ウェネルト
3 偏向コイル
4 X線分光器駆動用モータ
5 X線分光素子
6 X線検出器
7 反射電子検出器
8 2次電子検出器
9 EDS
10 分析試料
11 試料ステージ
12 ステージ駆動用モータ
13 偏向コイル制御装置
14 X線分光器駆動用モータ制御装置
15 ステージ駆動用モータ制御装置
16 2次電子/反射電子信号データ取込み装置
17 WDSX線信号データ取込み装置
18 EDSX線信号データ取込み装置
19 制御部(CPU)
20 大容量記憶装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a simple quantitative analysis method based on qualitative analysis in a sample analyzer, and more particularly to a quantitative analysis method of a sample analyzer that improves the accuracy of quantitative analysis in which the quantitative analysis value varies depending on the analysis measurement time.
[0002]
[Prior art]
In general, in an X-ray microanalyzer using a wavelength dispersion spectrometer and an energy dispersion spectrometer, not only the qualitative analysis of various samples such as glass samples and steel samples, but also the X-ray intensity of the spectrum obtained based on the qualitative analysis. Simple quantitative analysis is being performed.
[0003]
In recent years, in order to increase the efficiency of analysis, when using a wavelength dispersive spectroscope, the spectrum is collected by changing the diffraction angle of the spectroscopic element in a fixed step, and the detected peak position is stored in advance. The element is identified by collating with the energy position in the document, and the net X-ray intensity of the main peak is calculated at this time and compared with the X-ray intensity of the standard sample stored in advance. Thus, correction calculation is performed to obtain a simple quantitative result.
[0004]
[Problems to be solved by the invention]
By the way, when quantitative analysis is simply performed based on the X-ray intensity of the spectrum obtained as a result of the qualitative analysis as described above, it is influenced by the temporal change of the sample until the spectrum is formed in the qualitative analysis. Therefore, the analysis measurement time may become a factor that deteriorates the accuracy of the quantitative analysis result based on the spectrum obtained by the qualitative analysis. Specifically, for example, in a glass sample, ions of Na and K move when irradiated with an electron beam. This varies depending on the acceleration voltage, irradiation electron beam diameter, and time. Moreover, although carbon in steel is also analyzed depending on the degree of vacuum, carbon increases with time due to the occurrence of contamination. For these reasons, the accuracy of quantitative analysis results based on spectra obtained by qualitative analysis is deteriorated.
[0005]
The present invention has been made to solve the above-mentioned problems in simple quantitative analysis based on spectra obtained by conventional qualitative analysis, and there are elements sensitive to electron beam irradiation damage such as Na and K. also in the analysis of samples has for its object to provide a method for quantitative analysis in a sample analysis apparatus capable of improving the accuracy of the simple quantitative analysis based on spectra obtained by qualitative analysis.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, an invention according to claim 1 includes an electron beam source that irradiates a sample with an electron beam, an X-ray spectrometer that detects characteristic X-rays emitted from the sample irradiated with the electron beam, and A quantitative analysis method in a sample analyzer that includes a control unit that controls the operation of each unit, irradiates a sample with an electron beam, detects characteristic X-rays emitted from the sample surface, and performs quantitative analysis of the sample If the step of determining the element on the sample surface by the first qualitative analysis and the result of the first qualitative analysis reveals that there is no element sensitive to electron beam irradiation damage such as Na, K, A step of performing a quantitative analysis based on an energy spectrum intensity obtained as a result of the first qualitative analysis; and, as a result of the first qualitative analysis, an element sensitive to electron beam irradiation damage such as Na and K exists. If found, sample The position of the electron beam irradiation analysis is shifted to a position several times larger than the beam diameter of the electron beam, and qualitative analysis of elements sensitive to electron beam irradiation damage such as Na and K is automatically performed in the first sequence. Then, a second qualitative analysis step of automatically performing qualitative analysis of other elements after the second sequence, and a step of performing quantitative analysis based on the energy spectrum intensity obtained as a result of the second qualitative analysis. It is characterized by having.
[0007]
In the quantitative analysis method configured as described above, when it is found by the first qualitative analysis that an element sensitive to electron beam irradiation damage such as Na and K exists, the attenuation of the X-ray intensity is reduced. In order to avoid this, the first qualitative analysis position is shifted to a position that is several times larger than the electron beam diameter. First, a second qualitative analysis is performed on an element sensitive to electron beam irradiation damage. Since the second qualitative analysis is automatically performed on the element by the control of the control unit, the qualitative analysis based on the short time analysis measurement is performed on the element sensitive to the electron beam irradiation damage such as Na and K. Quantitative analysis is performed based on the analysis results, and quantitative analysis is performed based on the qualitative analysis results at a stage where there is little movement of ions of elements sensitive to irradiation damage of electron beams such as Na, K, etc. Simple quantitative analysis results It is.
[0008]
According to a second aspect of the present invention, an electron beam source for irradiating the sample with an electron beam, an X-ray spectrometer for detecting characteristic X-rays emitted from the sample irradiated with the electron beam, and the operation of each part are controlled. In a quantitative analysis method in a sample analyzer for quantifying a sample by irradiating the sample with an electron beam, detecting characteristic X-rays emitted from the sample surface, and applying Na, K to the sample Qualitative analysis of elements sensitive to electron beam irradiation damage, such as Na and K, is automatically performed in the first sequence. And then automatically performing a qualitative analysis of elements other than those described above in the second sequence and thereafter, and performing a quantitative analysis of each element based on the energy spectrum intensity obtained as a result of the qualitative analysis. It is characterized by being Is.
[0009]
In the quantitative analysis method configured in this way, when it is previously known that elements sensitive to electron beam irradiation damage such as Na and K exist, Na, K and the like are detected in the first sequence. Qualitative analysis of elements sensitive to electron beam irradiation damage is performed, and then qualitative analysis of elements other than those described above is automatically performed under the control of the control unit after the second sequence, so that Na, K, etc. For elements sensitive to electron beam irradiation damage, quantitative analysis is performed based on the results of qualitative analysis based on short-term analysis and measurement, so that ions of elements sensitive to electron beam irradiation damage such as Na and K are obtained. Quantitative analysis is performed based on the qualitative analysis results at a stage where there is little movement, and a simple quantitative analysis result with high accuracy can be obtained with a simple process.
[0010]
According to a third aspect of the invention, an electron beam source for irradiating the sample with an electron beam, an X-ray spectrometer for detecting characteristic X-rays emitted from the sample irradiated with the electron beam, and the operation of each part are controlled. A first qualitative analysis in a quantitative analysis method in a sample analyzer that performs quantitative analysis of a sample by irradiating the sample with an electron beam and detecting characteristic X-rays emitted from the sample surface The step of determining the elements on the surface of the sample and the first qualitative analysis, if it is determined that there is no element sensitive to electron beam irradiation damage such as Na and K, the first qualitative analysis If quantitative analysis is performed based on the energy spectrum intensity obtained as a result of the first qualitative analysis, it is found that elements sensitive to electron beam irradiation damage such as Na and K exist. Irradiation of electron beams such as Measuring the influence of the electron beam irradiation analysis measurement time on the detected X-ray intensity at the time of qualitative analysis for elements sensitive to di, creating and registering an analysis measurement time influence curve, and Na, K, etc. during the second qualitative analysis Quantification based on the energy spectrum intensity obtained as a result of the second qualitative analysis based on the analysis measurement time influence curve registered in advance according to the analysis measurement time required for each element sensitive to electron beam irradiation damage And a step of quantitatively correcting the analysis result.
[0011]
In the quantitative analysis method constructed in this way, the influence of the electron beam irradiation elapsed time on the detected X-ray intensity is measured in advance for elements sensitive to electron beam irradiation damage, such as Na and K, and a measurement time effect curve is prepared. If it is registered and it is found from the qualitative analysis that elements sensitive to electron beam irradiation damage such as Na and K exist, each element sensitive to electron beam irradiation damage such as Na and K during qualitative analysis Because, based on the analysis measurement time influence curve registered in advance, the quantitative correction is made to the quantitative analysis result by the energy spectrum intensity obtained from the qualitative analysis result according to the analysis measurement time required for Highly accurate and simple quantitative analysis results can be obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments will be described. FIG. 1 is a schematic configuration diagram showing an X-ray microanalyzer used for carrying out a quantitative analysis method in a sample analyzer according to the present invention. In FIG. 1, 1 is an electron gun, 2 is Wenert, 3 is a deflection coil, 4 is an X-ray spectrometer driving motor, 5 is an X-ray spectrometer, 6 is an X-ray detector, and an X-ray spectrometer driving motor. 4, the X-ray spectroscopic element 5, and the X-ray detector 6 constitute a WDS (wavelength dispersive X-ray spectroscope). 7 is a backscattered electron detector, 8 is a secondary electron detector, 9 is an EDS (energy dispersive X-ray spectrometer), 10 is an analysis sample, 11 is a sample stage, 12 is a stage drive motor, 13 is a deflection coil control Device, 14 X-ray spectrometer drive motor controller, 15 stage motor controller, 16 secondary / reflected electron signal data acquisition device, 17 WDSX line signal data acquisition device, 18 EDSX line signal A data capturing device, 19 is a control unit (CPU), and 20 is a mass storage device.
[0013]
And the X-ray micro analyzer which consists of such a component is provided with the following functions by the automatic control using CPU besides the normal X-ray micro analyzer function. That is, digital control of electron beam scanning, scanning magnification, electron beam diameter, and the like is possible, and multiple WDS drive measurement control and one EDS measurement control are possible. In addition, measurement control of electron signal intensity of secondary electrons / reflected electrons, etc. is possible, and drive control in each direction (X, Y, Z axis direction) of the sample stage is possible, and sample stage scanning and electron It is possible to collect surface analysis data of X-ray signals and electronic signals by beam scanning.
[0014]
Next, a first embodiment of a quantitative analysis method according to the present invention performed using the X-ray microanalyzer configured as described above will be described with reference to the flowchart shown in FIG. In this embodiment, a simple quantitative analysis is performed on a sample whose constituent elements are not known. First, the first qualitative analysis is performed by a normal method using the WDS of the X-ray microanalyzer shown in FIG. Perform (step S1). By this first qualitative analysis, the constituent elements of the sample are determined (step S2), and it has been found that there are no elements sensitive to electron beam irradiation damage such as Na and K (hereinafter referred to as elements with large temporal changes). In this case, based on the X-ray intensity of the spectrum obtained as a result of the first qualitative analysis, a simple quantitative analysis is performed by comparison with the standard sample data intensity stored in the control unit (step S3).
[0015]
On the other hand, if it is determined by the determination of the constituent elements of the sample by the first qualitative analysis that elements having a large change with time such as Na and K are present, the analysis position by electron beam irradiation is changed from several times the beam diameter. Shift 10 times (several tens to 100 μm) (step S4) and perform the second qualitative analysis. In this case, a quantitative analysis of glass will be described as an example. In the first sequence, a spectroscopic element (TAP, PET, LiF) for analyzing Na, K, Si that has the largest change with time, that is, quantitatively fluctuates. ) And the peak analysis scan range are set and qualitative analysis is performed. In the second sequence, for example, the analytical elements such as Al, Mg, O, and Ca having the next largest fluctuation and the peak analysis scan range are set and qualitative analysis is performed. Then, a spectroscopic element for analysis such as P and Cr and the peak analysis scan range with the least fluctuation in the third sequence are set and qualitative analysis is performed to detect constituent elements of the glass (step S5).
[0016]
Table 1 shows the spectroscopic elements and the peak analysis scan range (wavelength, unit Å) of the glass analysis sequence. In Table 1, in the first sequence, TAP is a spectroscopic element for Na, PET is a spectroscopic element for Si, LiF is a spectroscopic element for other elements, and in the second sequence, TAP is a spectroscopic element for Al, Mg, PET is Cr, Ca, etc. In the second sequence, TAP is a P and O spectroscopic element.
[0017]
[Table 1]
Figure 0003950626
[0018]
Based on the X-ray intensity of the spectrum obtained as a result of the second qualitative analysis as described above, by comparison with the standard sample data intensity stored in the storage device connected to the control unit Simple quantitative analysis is performed (step S6). Note that the operations of the respective units in the above steps are all automatically performed by the control unit (CPU) without human intervention.
[0019]
As described above, when it is found in the first qualitative analysis that an element having a large change over time such as Na or K exists in the sample, the second qualitative analysis is performed by shifting the electron beam irradiation position on the sample. At that time, since the qualitative analysis is performed from the element having a large change over time, that is, in the order of the element having a large variation quantitatively, the qualitative analysis is performed for the element having a large variation in a short time. Results in quantitative analysis.
[0020]
FIG. 3 shows the qualitative spectrum obtained by Table 1 and the simple quantitative results together with the qualitative spectrum of the conventional example for comparison. In FIG. 3, the dotted line is a qualitative spectrum obtained by the present embodiment, and is a qualitative analysis performed using a TAP spectroscopic element and a peak analysis scan range of 11.733-12.99 mm, and a solid line is obtained in the conventional example. This is a qualitative analysis based on a qualitative analysis using a TAP spectroscopic element and a scan range of 6.439-21.192 mm. As can be seen from the figure, in the case of the conventional example, the decay of Na with the elapse of the analysis time is significant, and a considerable error occurs in the simple quantitative result.
[0021]
Next, a second embodiment will be described based on the flowchart shown in FIG. This embodiment is applied to a case where it is previously known that the sample contains Na, K, etc., which change with time. Therefore, the quantitative analysis method according to this embodiment omits the first qualitative analysis for determining the presence or absence of an element having a large temporal change among the steps in the first embodiment shown in FIG. It consists of the process which was.
[0022]
That is, in the case of a sample that has been found to contain Na and K having a large change over time, such as a glass sample, the first sequence is used for analysis of Na, K, Si, and other major elements that are susceptible to quantitative fluctuations. A spectroscopic element and a peak analysis scan range are set and qualitative analysis is performed, and then an analytical spectroscopic element and a peak analysis scan range are set in order of elements with which temporal changes are sequentially reduced in each subsequent sequence, and then qualitative analysis is performed (Step S11). Next, based on the X-ray intensity of the spectrum obtained as a result of these qualitative analyses, simple quantitative analysis is performed by comparison with the standard sample data intensity (step S12). In this embodiment as well, the operation of each unit in each step is automatically performed by the control unit (CPU).
[0023]
In this way, when the presence of an element with a large change over time is known in the sample, the qualitative analysis is performed from the element with a large change over time, that is, in the order of elements with a large change in quantity. Qualitative analysis is performed in a short time, and a simple quantitative analysis result with high accuracy can be obtained as in the first embodiment.
[0024]
Next, a third embodiment will be described based on the flowchart shown in FIG. When the number of WDS arranged in the X-ray microanalyzer shown in FIG. 1 is small, a plurality of elements may not be analyzed simultaneously. That is, for example, Si using the same PET spectroscopic element cannot be measured simultaneously while analyzing and measuring K with PET. Therefore, in such a case, a case may arise in which the quantitative analysis methods according to the first and second embodiments cannot cope. The third embodiment can cope with such a case.
[0025]
That is, in this embodiment, first, a first qualitative analysis is performed by a normal method to determine the presence or absence of an element having a large change with time in the constituent elements of the sample (steps S21 and S22). If it is found that an element having a large change does not exist, based on the X-ray intensity of the spectrum obtained in the first qualitative analysis, the simple quantitative analysis is performed (step S23). This is the same as the first embodiment.
[0026]
Next, when it is determined by the determination of the sample constituent elements by the first qualitative analysis that elements having a large change over time such as Na and K are present, the peak X-rays of the spectrum of the elements with a large change over time are present. The amount of change over time in intensity is plotted to determine the rate of change over time (step S24). The ratio of this time change is obtained by approximating it with a high-order curve, and used as an influence curve of the X-ray intensity depending on the analysis measurement time. This influence curve is an attenuation curve for Na and K, and an increase curve for other elements such as Si. For example, a glass Na decay curve and Si increase curve are illustrated in FIG.
[0027]
Next, the influence curve of the X-ray intensity according to the analytical measurement time of the spectrum peak of the element having a large variation such as Na and K obtained in this way is registered in the storage device connected to the control unit (step S25).
[0028]
Next, a second qualitative analysis is performed with normal settings to identify each element, and an analysis measurement time until the main peak of each element is detected is measured (step S26). This analysis measurement time is calculated by the number of drive steps of the spectroscopic element (spectral crystal) and the measurement unit time. Then, the main spectrum intensity of each element obtained by the qualitative analysis is converted and corrected to the net X-ray intensity based on the influence curve of the X-ray intensity based on the analysis measurement time previously measured and registered. . Then, simple quantitative analysis is performed on the basis of the X-ray intensity corrected for conversion (step S27).
[0029]
Thus, in this embodiment, the analysis measurement time until the spectral peak of each element is detected in the qualitative analysis is measured, and based on the influence curve of the X-ray intensity by the analysis measurement time obtained in advance, Since the spectral peak intensity of each element obtained by qualitative analysis is corrected and corrected, a simple quantitative analysis result with high accuracy can be obtained.
[0030]
The technique of the third embodiment can also be applied to carbon analysis in steel. In other words, during the analytical measurement of carbon in steel, although it depends on the degree of vacuum, the increase in carbon due to contamination results in a quantitative result that is larger than actual carbon, but the amount of increase in carbon due to contamination relative to the analytical measurement time is reduced. An X-ray intensity influence curve based on analysis measurement time is obtained in advance and registered. Then, in the qualitative analysis of the actual steel, the analysis measurement time until the carbon spectrum peak is detected is measured, and is obtained by the qualitative analysis based on the X-ray intensity influence curve based on the analysis measurement time obtained in advance. By converting and correcting the spectral peak intensity of carbon, it is possible to obtain a simple and accurate quantitative analysis result of carbon in steel.
[0031]
【The invention's effect】
As described above based on the embodiment, according to the first aspect of the present invention, when it is found by the first qualitative analysis that an element having a large change with time exists, the first qualitative analysis position The second qualitative analysis is automatically performed in the order of elements that change over time, and quantitative analysis is performed based on the results of the qualitative analysis. Simple quantitative analysis can be obtained. According to the invention of claim 2, when it is previously known that an element having a large change with time exists in the sample, the first qualitative analysis is omitted, and the qualitative analysis is automatically performed in the order of the element having the large change with time. Therefore, quantitative analysis is performed based on the qualitative analysis result, and therefore, a highly accurate and simple quantitative analysis result can be obtained with a simple process even for an element having a large change with time. In addition, according to the invention of claim 3, the influence of the electron beam irradiation elapsed time on the detected X-ray intensity is measured and the analysis measurement time influence curve is created and registered in advance for an element having a large change with time. As a result, if it is found that an element with a large change over time exists, a qualitative analysis is performed based on an analysis measurement time influence curve registered in advance according to the analysis measurement time required for each element with a large change over time during qualitative analysis. Since quantitative correction is performed on the quantitative analysis result based on the energy spectrum intensity obtained as a result of the above, a highly accurate and simple quantitative analysis result can be obtained even for an element having a large change over time .
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an X-ray microanalyzer used for carrying out a quantitative analysis method in a sample analyzer according to the present invention.
FIG. 2 is a flowchart for explaining a first embodiment of a quantitative analysis method in a sample analyzer according to the present invention.
FIG. 3 is a diagram showing a quantitative analysis result according to the first embodiment in comparison with a quantitative analysis result according to a conventional example.
FIG. 4 is a flowchart for explaining a second embodiment of the present invention;
FIG. 5 is a flowchart for explaining a third embodiment of the present invention;
FIG. 6 is a curve diagram showing temporal changes in the X-ray intensities of Na and Si during qualitative analysis.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electron gun 2 Wehnelt 3 Deflection coil 4 X-ray spectrometer drive motor 5 X-ray spectrometer 6 X-ray detector 7 Reflected electron detector 8 Secondary electron detector 9 EDS
10 Analytical sample
11 Sample stage
12 Stage drive motor
13 Deflection coil controller
14 Motor controller for X-ray spectrometer drive
15 Stage drive motor controller
16 Secondary electron / reflection electron signal data acquisition device
17 WDSX line signal data acquisition device
18 EDSX line signal data acquisition device
19 Control unit (CPU)
20 Mass storage device

Claims (3)

試料に電子線を照射する電子線源と、電子線の照射された試料から放出される特性X線を検出するX線分光器と、各部の動作を制御する制御部とを有し、試料に電子線を照射し、該試料表面より放出される特性X線を検出して試料の定量分析を行う試料分析装置における定量分析方法において、第1の定性分析により試料表面の元素の判定を行うステップと、前記第1の定性分析の結果、Na ,K等の電子線の照射ダメージに敏感な元素が存在しないと判明した場合は、前記第1の定性分析の結果得られるエネルギースペクトル強度に基づいて定量分析を実行するステップと、前記第1の定性分析の結果、Na ,K等の電子線の照射ダメージに敏感な元素が存在すると判明した場合は、試料に対する電子線照射分析位置を電子線のビーム径の数倍以上離れた位置にずらして、第1のシーケンスでNa ,K等の電子線の照射ダメージに敏感な元素の定性分析を自動的に行い、次いで第2のシーケンス以降でその他の元素の定性分析を自動的に行う第2の定性分析ステップと、前記第2の定性分析の結果得られるエネルギースペクトル強度に基づいて定量分析を行うステップとを備えていることを特徴とする試料分析装置における定量分析方法。  An electron beam source that irradiates the sample with an electron beam, an X-ray spectrometer that detects characteristic X-rays emitted from the sample irradiated with the electron beam, and a control unit that controls the operation of each unit; In a quantitative analysis method in a sample analyzer that irradiates an electron beam and detects characteristic X-rays emitted from the sample surface to perform quantitative analysis of the sample, a step of determining an element on the sample surface by a first qualitative analysis As a result of the first qualitative analysis, if it is found that an element sensitive to electron beam irradiation damage such as Na and K does not exist, based on the energy spectrum intensity obtained as a result of the first qualitative analysis. If the step of executing quantitative analysis and the first qualitative analysis show that an element sensitive to electron beam irradiation damage such as Na and K exists, the electron beam irradiation analysis position on the sample is Number of beam diameters Qualitative analysis of elements sensitive to irradiation damage of electron beams such as Na and K is automatically performed in the first sequence, and then qualitative analysis of other elements is performed in the second and subsequent sequences. Quantitative analysis in a sample analyzer comprising: a second qualitative analysis step for automatically performing a quantitative analysis based on an energy spectrum intensity obtained as a result of the second qualitative analysis Method. 試料に電子線を照射する電子線源と、電子線の照射された試料から放出される特性X線を検出するX線分光器と、各部の動作を制御する制御部とを有し、試料に電子線を照射し、該試料表面より放出される特性X線を検出して試料の定量分析を行う試料分析装置における定量分析方法において、試料にNa ,K等の電子線の照射ダメージに敏感な元素が存在していることが予め判明している場合、第1のシーケンスでNa ,K等の電子線の照射ダメージに敏感な元素の定性分析を自動的に行い、次いで第2のシーケンス以降で上記以外の元素の定性分析を自動的に行うステップと、上記定性分析の結果得られるエネルギースペクトル強度に基づいて各元素の定量分析を行うステップとを備えていることを特徴とする試料分析装置における定量分析方法。  An electron beam source that irradiates the sample with an electron beam, an X-ray spectrometer that detects characteristic X-rays emitted from the sample irradiated with the electron beam, and a control unit that controls the operation of each unit; In a quantitative analysis method in a sample analyzer that irradiates an electron beam and detects characteristic X-rays emitted from the sample surface to perform quantitative analysis of the sample, the sample is sensitive to irradiation damage of electron beams such as Na and K When it is known in advance that an element is present, a qualitative analysis of elements sensitive to irradiation damage of electron beams such as Na and K is automatically performed in the first sequence, and then in the second and subsequent sequences. In a sample analyzer comprising: a step of automatically performing a qualitative analysis of elements other than the above; and a step of performing a quantitative analysis of each element based on the energy spectrum intensity obtained as a result of the qualitative analysis Quantitative Analysis method. 試料に電子線を照射する電子線源と、電子線の照射された試料から放出される特性X線を検出するX線分光器と、各部の動作を制御する制御部とを有し、試料に電子線を照射し、該試料表面より放出される特性X線を検出して試料の定量分析を行う試料分析装置における定量分析方法において、第1の定性分析により試料表面の元素の判定を行うステップと、前記第1の定性分析の結果、Na ,K等の電子線の照射ダメージに敏感な元素が存在しないと判明した場合、前記第1の定性分析の結果得られるエネルギースペクトル強度に基づいて定量分析を実行するステップと、前記第1の定性分析の結果、Na ,K等の電子線の照射ダメージに敏感な元素が存在すると判明した場合、Na ,K等の電子線の照射ダメージに敏感な元素に関して定性分析時における電子線照射分析計測時間の検出X線強度に対する影響を測定し、分析計測時間影響曲線を作成し登録するステップと、第2の定性分析時にNa ,K等の電子線の照射ダメージに敏感な各元素に要した分析計測時間に応じて、予め登録されている前記分析計測時間影響曲線に基づいて、第2の定性分析結果得られたエネルギースペクトル強度による定量分析結果に対して定量補正を行うステップとを備えていることを特徴とする試料分析装置における定量分析方法。  An electron beam source that irradiates the sample with an electron beam, an X-ray spectrometer that detects characteristic X-rays emitted from the sample irradiated with the electron beam, and a control unit that controls the operation of each unit; In a quantitative analysis method in a sample analyzer that irradiates an electron beam and detects characteristic X-rays emitted from the sample surface to perform quantitative analysis of the sample, a step of determining an element on the sample surface by a first qualitative analysis As a result of the first qualitative analysis, if it is found that there is no element sensitive to electron beam irradiation damage such as Na, K, etc., quantitative determination is made based on the energy spectrum intensity obtained as a result of the first qualitative analysis. If an element sensitive to electron beam irradiation damage such as Na and K exists as a result of the step of executing the analysis and the first qualitative analysis, the element is sensitive to electron beam irradiation damage such as Na and K. Qualitative for elements Measuring the influence of the electron beam irradiation analysis measurement time on the detected X-ray intensity at the time of analysis, creating and registering the analysis measurement time influence curve, and the irradiation damage of electron beams such as Na and K during the second qualitative analysis Quantitative correction for the quantitative analysis result based on the energy spectrum intensity obtained from the second qualitative analysis result based on the analysis measurement time influence curve registered in advance according to the analysis measurement time required for each sensitive element A quantitative analysis method in a sample analyzer characterized by comprising:
JP2000384593A 2000-12-19 2000-12-19 Quantitative analysis method in sample analyzer Expired - Fee Related JP3950626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000384593A JP3950626B2 (en) 2000-12-19 2000-12-19 Quantitative analysis method in sample analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000384593A JP3950626B2 (en) 2000-12-19 2000-12-19 Quantitative analysis method in sample analyzer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007053988A Division JP4499125B2 (en) 2007-03-05 2007-03-05 Quantitative analysis method in sample analyzer

Publications (2)

Publication Number Publication Date
JP2002181745A JP2002181745A (en) 2002-06-26
JP3950626B2 true JP3950626B2 (en) 2007-08-01

Family

ID=18852005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000384593A Expired - Fee Related JP3950626B2 (en) 2000-12-19 2000-12-19 Quantitative analysis method in sample analyzer

Country Status (1)

Country Link
JP (1) JP3950626B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498751B2 (en) * 2004-01-13 2010-07-07 日本電子株式会社 Sample evaluation method and sample evaluation apparatus
JP5069078B2 (en) * 2007-10-16 2012-11-07 日本電子株式会社 Analysis method using X-ray spectrum
ES2600053T5 (en) * 2011-05-17 2023-04-28 Zetacube S R L Polymorph detection procedure using synchrotron radiation
JP2021032584A (en) * 2019-08-19 2021-03-01 株式会社島津製作所 Electron probe micro analyzer

Also Published As

Publication number Publication date
JP2002181745A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP4874697B2 (en) Electron probe X-ray analyzer and operation method thereof
CN110873725B (en) X-ray analysis apparatus
JP4499125B2 (en) Quantitative analysis method in sample analyzer
US7579591B2 (en) Method and apparatus for analyzing sample
US20090052620A1 (en) Apparatus and Method for X-Ray Analysis of Chemical State
JP7150638B2 (en) Semiconductor defect inspection device and semiconductor defect inspection method
JP3950626B2 (en) Quantitative analysis method in sample analyzer
EP0452825B1 (en) Method and apparatus for background correction in analysis of a specimen surface
US7742565B2 (en) Method and apparatus for analysis using X-ray spectra
JPH06123717A (en) Fluorescent x-ray qualitative analytical method under plurality of conditions
JP2010223898A (en) Sample analysis method and sample analyzer
JPH0688792A (en) Method for analyzing contamination element
CN114641687B (en) Fluorescent X-ray analyzer
JP2000283933A (en) Fluorescent x-ray analyzer
JPH0247542A (en) Quantitative analysis using x-ray spectroscope
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JP4656009B2 (en) X-ray analyzer
JP2522224B2 (en) X-ray fluorescence analysis method
JP2005233670A (en) X-ray analyzer
JP4458985B2 (en) X-ray analyzer and X-ray analysis method
KR101169502B1 (en) Wave dispersive x-ray spectrometer
JP4560503B2 (en) Measuring time setting method and fluorescent X-ray analyzer in multi-condition fluorescent X-ray analysis
JP2001167726A (en) Apparatus of producing work function image
JP3123860B2 (en) Elemental analyzer using wavelength dispersive spectrometer and energy dispersive spectrometer
JP2008026251A (en) X-ray analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3950626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees