JP3950392B2 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP3950392B2
JP3950392B2 JP2002250597A JP2002250597A JP3950392B2 JP 3950392 B2 JP3950392 B2 JP 3950392B2 JP 2002250597 A JP2002250597 A JP 2002250597A JP 2002250597 A JP2002250597 A JP 2002250597A JP 3950392 B2 JP3950392 B2 JP 3950392B2
Authority
JP
Japan
Prior art keywords
core
sub
cassette
cores
reactivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002250597A
Other languages
Japanese (ja)
Other versions
JP2004093141A (en
Inventor
修二 碓井
健 大山
宏基 日比
洋樹 瀧本
義明 牧原
廣 後藤
公三明 守屋
正義 松浦
和人 小山
雅夫 茶木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Hitachi Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Mitsubishi Heavy Industries Ltd filed Critical Hitachi Ltd
Priority to JP2002250597A priority Critical patent/JP3950392B2/en
Publication of JP2004093141A publication Critical patent/JP2004093141A/en
Application granted granted Critical
Publication of JP3950392B2 publication Critical patent/JP3950392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、原子炉の構造に関し、とくに、炉心反応度制御のための業務等を不要とする原子炉の構造に関する。
【0002】
【従来の技術】
従来の原子炉では、炉心の過剰反応度を抑制し炉心の実効増倍率を1.0に維持するために、中性子吸収材を含む制御棒の挿入引抜き、あるいは1次冷却材中に中性子吸収材を溶解させて中性子吸収材濃度を変化させること等の反応度制御操作を行っている。
このような炉心の反応度制御のための運転操作は、原子炉を安全に運転する際に最も重要な技術の一つであり、現状ではコンピュータ制御による自動化運転が達成されている。
【0003】
【発明が解決しようとする課題】
しかしながら、このような原子炉の自動化運転を行う一方、原子炉設備の万一の故障等に備え、熟練した技術、知識を有する複数の運転員が24時間体制で常時原子炉の運転状態を監視するとともに,必要な場合には手動により原子炉を運転する必要がある。そのため、手動運転可能に設備対応するとともに、手動運転のための運転員の訓練も必要となっている。
このような反応度制御のための運転員による原子炉監視業務は、原子炉の運転に必要な費用の主要な割合を占めている。
【0004】
一方、通常運転時の反応度変化は微小であり、これを常時検知し微妙な反応度制御操作を行うために、信頼性の高い精緻な構造、機能を有する設備が求められている。また、信頼性の高い原子炉にするために、反応度制御系の異常に伴う反応度投入あるいは反応度喪失が生じることを想定する必要がある。このような事態においても原子炉を安全に停止できるように、反応度を制御する制御棒を独立して複数設ける等、設備を独立多重化させる必要がある。このような精緻な反応度制御、反応度制御系の異常対応のための設備を導入することは、原子炉建設費の主要な割合を占めている。
【0005】
この発明はこのような課題を解決するためになされたもので、反応度制御のための原子炉監視業務が不要であり、精緻な反応度制御、反応度制御系の異常対応のための設備が不要な原子炉を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る原子炉は、炉心が複数に区分されたサブ炉心で構成され、サブ炉心はそれぞれ圧力管と、この圧力管の内部に燃料体を有し、少なくとも、2つの前記サブ炉心に含まれる可燃性毒物装荷量が異なるものである。
また、複数のサブ炉心は、ひとつの中心サブ炉心と、この中心サブ炉心の周囲に放射状に配置された複数の周辺サブ炉心とに区分され、中心サブ炉心に含まれる可燃性毒物装荷量が、周辺サブ炉心に含まれる可燃性毒物装荷量よりも少なくすることができる。
サブ炉心間に制御棒を備え、この制御棒は、通常運転時には引き抜き状態で使用されることができる。
サブ炉心は、圧力管の内部に、蒸気発生器を備えた原子力蒸気供給カセットから構成することができる。
【0007】
【発明の実施の形態】
以下に、この発明の実施の形態を図面に基づいて説明する。
この発明の実施の形態に係る原子炉20の立断面図を図1に、平面断面図を図2に示す。
図2に端的に示されるように、軽水、重水またはグラファイトの減速材30が満たされる減速材タンク31内には、原子力蒸気供給カセット21が中心から放射状に7つ配置されている。
原子力蒸気供給カセット21は、図1に示されるように、それぞれ、圧力管22と、その内壁の中央から上方にかけて円周状に配置された蒸気発生器23とを備え、さらに、蒸気発生器23の下方には、燃料集合体を構成するカセット内炉心24を備えている。
圧力管22は、上下端を閉じた、例えば直径約50cm程度、長さ数メートルの細長円筒管であって、ステンレス鋼等の金属材料からなる圧力管ライナ25と、その外周面に、炭素繊維を巻いて強度を補強した強化繊維層26とを備えている。圧力管22とカセット内炉心24との間には、圧力管22内部に封入された1次冷却材28が下方に向かって流れるダウンカマー部27が形成されている。また、カセット内炉心24の上方には、カセット内炉心24によって加熱された1次冷却材28が上昇するライザー29が形成され、1次冷却材28が圧力管22内を矢印に示されるように循環するように構成されている。
【0008】
図2に示されるように、放射状に配置された原子力蒸気供給カセット21のカセット内炉心24のうち、中心にあるカセット内炉心24は、中心カセット内炉心24cを構成し、その周囲に円周上にあるカセット内炉心24は、周辺カセット内炉心24dを構成し、原子炉20全体としては、複数のカセット内炉心24を組み合わせたパッケージ内炉心が構成されている。
すなわち、この原子炉20は、原子炉全体の炉心が複数の原子力蒸気供給カセット21内に分割して配置され、中心カセット内炉心24cを中心サブ炉心とし、周辺カセット内炉心24dを周辺サブ炉心としたマルチサブ炉心構造を有する。
【0009】
ここで、中心カセット内炉心24cは、装荷量c1のウラン、プルトニウム等の核分裂性燃料、装荷量c2のホウ素等の可燃性毒物を含む。また、周辺カセット内炉心24dは、装荷量d1の核分裂性燃料、装荷量d2の可燃性毒物を含む。中心カセット内炉心24cと周辺カセット内炉心24dとの間の可燃性毒物装荷量の割合は、c2<d2の関係にあり、周辺カセット内炉心24dの可燃性毒物装荷量d2の方が、中心カセット内炉心24cの可燃性毒物装荷量c2よりも多くなるように構成されている。
【0010】
また、図2に示されるように、中心にある原子力蒸気供給カセット21の周囲には、制御棒32が中心カセット内炉心24cを覆うように円周上に6つ配置されている。制御棒32は、隣接する原子力蒸気供給カセット21間に延びる3つの板状部材からなり、図1に示されるように、カセット内炉心24に沿って上下方向に延びて、減速材タンク31の上方にある制御棒駆動装置33に接続されている。制御棒駆動装置33は制御棒32を上下に進退させる。
ここで、この原子炉20における制御棒32は、原子炉の緊急停止系設備として使用される。原子炉20の通常運転中は、上方に引き抜かれた全引き抜き状態にある。原子炉20の異常発生時である原子炉スクラム時、原子炉停止時には、制御棒32が下方まで挿入されることにより常にパッケージ内炉心が未臨界を確保できるように構成されている。
【0011】
減速材タンク31の外周面には断熱材34が巻かれ、その断熱材34の外側には水遮蔽タンク35が設けられている。水遮蔽タンク35内には遮蔽水36が満たされ、この遮蔽水36はそれぞれのカセット内炉心24から放射される中性子及びガンマ線を外部に対して遮蔽する。
【0012】
原子炉20の起動前において、圧力管22内に貯留される1次冷却材28の液面はH1の位置で、蒸気発生器23は水没した状態にあり、原子力蒸気供給カセット21の上部21bには気相部28aが形成されている。また、蒸気発生器23の2次冷却材43の供給排出経路として、途中に開閉弁41を備えた2次冷却材管44が配置され、図示しないタービン及びポンプに接続されている。さらに、原子力蒸気供給カセット21の上部21bには、配管39が貫通して配置され格納容器42内の減圧弁40に接続されている。
【0013】
一方、原子力蒸気供給カセット21の底部21aには、配管37が貫通して配置され、減速材タンク31の底面を貫通して水遮蔽タンク35内に設けられた非常用冷却水供給弁38に接続されている。
蒸気発生器23での熱交換を行うことができない場合等原子力蒸気供給カセット21の徐熱機能喪失時には、水遮蔽タンク35内の遮蔽水36を非常用冷却水供給弁38から原子力蒸気供給カセット21内に導入して、カセット内炉心24を冷却し、原子力蒸気供給カセット21内に発生した蒸気を減圧弁40により減圧して原子力蒸気供給カセット21の外部に放出するように構成されている。
また、格納容器42の外周には、格納容器42を空気冷却する空気流路45が形成されている。
【0014】
次に、この発明の実施の形態に係る原子炉の動作を説明する。
図1に示されるように、原子炉20の起動前において、制御棒32は制御棒駆動装置33により中心カセット内炉心24cを周囲から覆うように減速材タンク31の下方まで挿入され、パッケージ内炉心は未臨界状態になっている。その後、原子炉20の運転が開始され、制御棒32が上方へ引き抜かれ、全引き抜き状態になると燃焼が開始される。
燃焼が開始された後の、中心カセット内炉心24c、周辺カセット内炉心24dおよびこれらを合わせたパッケージ内炉心の燃焼に伴う反応度の経時変化のグラフを図3に示す。
燃焼開始当初は、中心カセット内炉心24cのみで核分裂連鎖反応を維持し、中心カセット内炉心24の反応度は正となっている。しかしながら、中心カセット内炉心24cの可燃性毒物装荷量c2は少なく中性子が少ないので、中心カセット内炉心24cで発生した中性子は周辺カセット内炉心24dに供給される。
【0015】
周辺カセット内炉心24dは、可燃性毒物装荷量c2が多いので、周辺カセット内炉心24dの反応度は負であるが、その後中性子が供給されるにつれて可燃性毒物が中性子と反応して消滅していく。可燃性毒物装荷量c2が少なくなるにつれて、周辺カセット内炉心24dの反応度が増加して、周辺カセット内炉心24d単独でも核分裂連鎖反応を維持できるようになる。さらに、燃焼が進行すると、中心カセット内炉心24c単独での反応度は低下するが、周辺カセット内炉心24dでの核分裂連鎖反応は維持される。
【0016】
次に、パッケージ内炉心全体の反応度の経時変化を見ると、パッケージ内炉心全体の発熱量を一定とした場合でも、0%近傍に維持され、自己制御性のみで反応度を制御しうる許容範囲内にある。
ここで、自己制御性とは、反応度が上昇しパッケージ炉内炉心の温度が上昇すると負の反応度変化を生じるドップラー効果や、反応度が上昇し減速材30の温度が上昇すると、減速材30の密度が変化して負の反応度変化を生じる減速材密度係数効果により、反応度が許容範囲を越えないで反応度0%近傍を維持できることであり、反応度フィードバック効果とも呼ぶ。
このように、カセット内炉心24の核分裂連鎖反応の時期をずらして、反応度が許容範囲を越えない範囲に維持すると、パッケージ内炉心全体の発熱量が大きく変化することなく、炉心固有の自己制御性のみで反応度制御が可能であり、制御棒の挿入引き出しによる反応度制御や、1次冷却材中の中性子吸収材濃度の変化による反応度制御は不要となる。
【0017】
図4は、パッケージ内炉心全体の発熱量を一定とした場合で、この実施の形態に係る原子炉の燃焼に伴う余剰反応度経時変化の評価例を示す。
この評価に使用された複数の原子力蒸気供給カセット21において、中心カセット内炉心24cには、装荷量c1として燃料棒約860本分に相当する10wt%の濃縮ウランが含まれ、可燃性毒物の装荷量c2は0であって、可燃性毒物は装荷されていない。周辺カセット内炉心24dには、装荷量d1として燃料棒約770本分(装荷量c1の約90%)に相当する10wt%の濃縮ウランが含まれている。さらに、周辺カセット内炉心24dには、約90本の可燃性毒物棒に相当する天然ホウ素が、装荷量d2の可燃性毒物として含まれている。
【0018】
このように構成された原子炉20の全体の燃焼は、取出平均燃焼度が70GWd/tの高燃焼度を達成する場合でも、図4に実線で示されるように、パッケージ内炉心の最大余剰反応度は約5%、余剰反応度変化率は0.1%/(GWd/t)である。したがって、これらの値は、破線で示される通常の原子炉の炉心の約1/5以下であり、非常に小さいものとなっている。
このように、中心カセット内炉心24cと周辺カセット内炉心24dとの可燃性毒物装荷量を異なるものにすることにより、各カセット内炉心24が単独で核分裂連鎖反応を維持できる時期をずらして、炉心固有の自己制御性のみでパッケージ内炉心の余剰反応度をほぼ0%に維持できる。
【0019】
以上のように、例えば、各カセット内炉心24の可燃性毒物装荷量を調整して、原子炉20の稼働開始から数年間は、中心カセット内炉心24cについて単独で核分裂連鎖反応を維持させ、その後の数年間は、複数の周辺カセット内炉心24dについて単独で核分裂連鎖反応を維持させるようにして、燃料交換をすることなく長期に亘って原子炉20を運転することができる。
また、分割されたサブ炉心は、原子力蒸気供給カセット21内に設けることができるので、サブ炉心ごとに装荷される可燃性毒物の量を異なるものにすることが容易である。さらに、原子力蒸気供給カセット21の数に応じて所望の発電量を得ることができる。
【0020】
以上に説明してきた本発明は、上記に限定されるものではなく、適宜改変して実施することができる。
例えば、上述した実施形態では、原子炉全体を複数の炉心に分割するために、複数の原子力蒸気供給カセット21を用いたが、これに限定されるものではなく、原子炉容器内に炉心がひとつのみしか存在しない従来からの原子炉において、炉心を複数に分割すると共に、分割された炉心に含まれる可燃性毒物の装荷量を異なるものにしてもよい。すなわち、このようなマルチサブ炉心構造は従来の原子炉においても適用可能である。
また、図1に示されるように、原子力蒸気供給カセット21に満たされる1次冷却材28の液面の高さはH1の位置であったが、液面の高さをH3の位置にし、蒸気発生器23がすべて露出するようにしてもよい。この場合、沸騰蒸気となった1次冷却材28により2次冷却材43との間で熱交換が行なわれる。すなわち、従来の沸騰水型軽水炉のように、原子力蒸気供給カセット21内での冷却材沸騰を利用することにより、炉心固有の自己制御性のみでの反応度制御がさらに容易になる。
【0021】
【発明の効果】
以上説明したように、この発明によれば、原子炉全体の炉心が、複数に区分されたサブ炉心で構成され、サブ炉心はそれぞれ圧力管と、この圧力管の内部に燃料体を有し、少なくとも、2つのサブ炉心に含まれる可燃性毒物装荷量が異なるので、サブ炉心単独での核分裂連鎖反応を維持できる時期をずらして、原子炉全体の反応度を自己制御性のみで制御できる許容範囲に維持できる。したがって、反応度制御のための原子炉監視業務、精緻な反応度制御、反応度制御系の異常対応のための設備を不要にすることができる。
【図面の簡単な説明】
【図1】 この発明の実施形態に係る原子炉の構造を示す立断面図である。
【図2】 図1の原子炉の平面断面図である。
【図3】 実施形態に係る原子炉の燃焼に伴う炉心の反応度の変化の概念を示すグラフである。
【図4】 実施形態に係る原子炉の燃焼に伴う炉心の余剰反応度の変化の評価例を示すグラフである。
【符号の説明】
20…パッケージ型原子炉、21…原子力蒸気供給カセット、22…圧力管、23…蒸気発生器、24…カセット内炉心、24c…中心カセット内炉心、24d…周辺カセット内炉心、32…制御棒。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a nuclear reactor, and more particularly to a structure of a nuclear reactor that does not require operations for controlling the reactivity of a core.
[0002]
[Prior art]
In a conventional nuclear reactor, in order to suppress the excessive reactivity of the core and maintain the effective multiplication factor of the core at 1.0, the control rod including the neutron absorber is inserted and pulled, or the neutron absorber is included in the primary coolant. Reactivity control operations such as changing the neutron absorber concentration by dissolving the neutrons are performed.
Such an operation for controlling the reactivity of the core is one of the most important technologies for safely operating the nuclear reactor, and at present, automatic operation by computer control is achieved.
[0003]
[Problems to be solved by the invention]
However, while carrying out automated operation of such a reactor, in the event of a failure of the reactor equipment, multiple operators with skilled technology and knowledge constantly monitor the operating state of the reactor 24 hours a day In addition, if necessary, the reactor must be operated manually. For this reason, it is necessary to respond to the facility so that manual operation is possible, and to train operators for manual operation.
Reactor monitoring work by operators for reactivity control accounts for a major part of the cost required for reactor operation.
[0004]
On the other hand, the change in reactivity during normal operation is very small, and in order to detect this constantly and perform delicate reactivity control operations, there is a demand for equipment with highly reliable and precise structure and function. In addition, in order to make a highly reliable nuclear reactor, it is necessary to assume that the reactivity input or the loss of reactivity occurs due to the abnormality of the reactivity control system. In such a situation, it is necessary to multiplex the facilities independently, for example, by providing a plurality of control rods for controlling the reactivity independently so that the reactor can be safely shut down. The introduction of such precise reactivity control and equipment for dealing with abnormalities in the reactivity control system accounts for a major part of the reactor construction cost.
[0005]
The present invention has been made to solve such problems, and does not require a reactor monitoring operation for reactivity control, and is equipped with equipment for precise reactivity control and reactivity control system abnormality handling. The purpose is to provide an unnecessary nuclear reactor.
[0006]
[Means for Solving the Problems]
The nuclear reactor according to the present invention is composed of a sub-core in which the core is divided into a plurality of cores , each of the sub-cores has a pressure tube and a fuel body inside the pressure tube, and is included in at least two of the sub-cores. The amount of flammable poisons to be loaded is different.
Further, the plurality of sub-cores are divided into one central sub-core and a plurality of peripheral sub-cores arranged radially around the central sub-core, and the amount of combustible poison contained in the central sub-core is The amount of combustible poison contained in the peripheral sub-core can be reduced.
A control rod is provided between the sub-cores, and this control rod can be used in a drawn state during normal operation.
Sub core is in the interior of the pressure tube may consist of nuclear steam supply cassette having a steam generator.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an elevational sectional view of a nuclear reactor 20 according to an embodiment of the present invention, and FIG.
As shown in FIG. 2, seven nuclear steam supply cassettes 21 are arranged radially from the center in a moderator tank 31 filled with a moderator 30 of light water, heavy water, or graphite.
As shown in FIG. 1, the nuclear steam supply cassette 21 includes a pressure pipe 22 and a steam generator 23 arranged circumferentially from the center to the top of the inner wall thereof. Is provided with an in-cassette core 24 constituting a fuel assembly.
The pressure tube 22 is an elongated cylindrical tube having a diameter of about 50 cm and a length of several meters, for example, a pressure tube liner 25 made of a metal material such as stainless steel, and a carbon fiber on the outer peripheral surface thereof. And a reinforcing fiber layer 26 reinforced with strength. Between the pressure tube 22 and the core 24 in the cassette, a downcomer portion 27 in which the primary coolant 28 enclosed in the pressure tube 22 flows downward is formed. Further, a riser 29 is formed above the core 24 in the cassette to raise the primary coolant 28 heated by the core 24 in the cassette, so that the primary coolant 28 is indicated by an arrow in the pressure tube 22. It is configured to circulate.
[0008]
As shown in FIG. 2, among the in-cassette cores 24 of the nuclear steam supply cassettes 21 arranged radially, the in-cassette core 24 at the center constitutes the central in-cassette core 24 c and has a circumference around it. The in-cassette core 24 constitutes a peripheral cassette in-core 24d, and the reactor 20 as a whole constitutes an in-package core in which a plurality of in-cassette cores 24 are combined.
That is, in this nuclear reactor 20, the core of the entire nuclear reactor is divided and arranged in a plurality of nuclear steam supply cassettes 21, the central cassette core 24c is the central sub-core, and the peripheral cassette core 24d is the peripheral sub-core. Multi-sub core structure.
[0009]
Here, the core 24c in the central cassette includes a flammable fuel such as uranium and plutonium having a loading amount c1, and a flammable poison such as boron having a loading amount c2. Further, the core 24d in the peripheral cassette includes a fissile fuel having a loading amount d1 and a combustible poison having a loading amount d2. The ratio of the flammable poison loading amount between the core 24c in the central cassette and the core 24d in the peripheral cassette has a relationship of c2 <d2, and the flammable poison loading amount d2 in the core 24d in the peripheral cassette is the center cassette. The combustible poison loading amount c2 of the inner core 24c is increased.
[0010]
Further, as shown in FIG. 2, around the nuclear steam supply cassette 21 in the center, six control rods 32 are arranged on the circumference so as to cover the core 24 in the center cassette. The control rod 32 is composed of three plate-like members extending between adjacent nuclear steam supply cassettes 21 and extends in the vertical direction along the core 24 in the cassette as shown in FIG. Are connected to the control rod drive 33. The control rod driving device 33 moves the control rod 32 up and down.
Here, the control rod 32 in the nuclear reactor 20 is used as an emergency stop system facility for the nuclear reactor. During the normal operation of the nuclear reactor 20, the reactor 20 is fully pulled out. At the time of reactor scram, which is when an abnormality occurs in the reactor 20, or when the reactor is shut down, the control rod 32 is inserted downward so that the core in the package can always be subcritical.
[0011]
A heat insulating material 34 is wound around the outer peripheral surface of the moderator material tank 31, and a water shielding tank 35 is provided outside the heat insulating material 34. The water shielding tank 35 is filled with shielding water 36, and the shielding water 36 shields neutrons and gamma rays emitted from the respective cores 24 in the cassette from the outside.
[0012]
Before the reactor 20 is started up, the liquid level of the primary coolant 28 stored in the pressure pipe 22 is at the position H1, and the steam generator 23 is submerged, and is placed in the upper part 21b of the nuclear steam supply cassette 21. Is formed with a gas phase portion 28a. Further, as a supply / discharge path for the secondary coolant 43 of the steam generator 23, a secondary coolant pipe 44 provided with an on-off valve 41 is disposed on the way, and is connected to a turbine and a pump (not shown). Further, a pipe 39 is disposed through the upper portion 21 b of the nuclear steam supply cassette 21 and connected to the pressure reducing valve 40 in the storage container 42.
[0013]
On the other hand, a piping 37 is disposed through the bottom 21a of the nuclear steam supply cassette 21 and passes through the bottom surface of the moderator tank 31 and is connected to an emergency cooling water supply valve 38 provided in the water shielding tank 35. Has been.
When the heat generation function of the nuclear steam supply cassette 21 is lost, such as when heat exchange cannot be performed in the steam generator 23, the shield water 36 in the water shield tank 35 is transferred from the emergency cooling water supply valve 38 to the nuclear steam supply cassette 21. The core 24 in the cassette is cooled, and the steam generated in the nuclear steam supply cassette 21 is decompressed by the pressure reducing valve 40 and discharged to the outside of the nuclear steam supply cassette 21.
In addition, an air flow path 45 for air-cooling the storage container 42 is formed on the outer periphery of the storage container 42.
[0014]
Next, the operation of the nuclear reactor according to the embodiment of the present invention will be described.
As shown in FIG. 1, before starting the nuclear reactor 20, the control rod 32 is inserted by the control rod driving device 33 to the lower part of the moderator tank 31 so as to cover the core 24 c in the central cassette from the surroundings. Is in a subcritical state. Thereafter, the operation of the nuclear reactor 20 is started, the control rod 32 is pulled upward, and combustion is started when the fully pulled state is reached.
FIG. 3 shows a graph of the change over time of the reactivity associated with the combustion of the core in the central cassette 24c, the core in the peripheral cassette 24d, and the core in the package combining these after the start of combustion.
At the beginning of combustion, the fission chain reaction is maintained only in the core 24c in the central cassette, and the reactivity of the core 24 in the central cassette is positive. However, since the amount c2 of combustible poisons in the central cassette core 24c is small and neutrons are small, neutrons generated in the central cassette core 24c are supplied to the peripheral cassette core 24d.
[0015]
Since the peripheral cassette core 24d has a large amount of combustible poison loading c2, the reactivity of the peripheral cassette core 24d is negative. However, as the neutron is supplied, the combustible poison reacts with the neutron and disappears. Go. As the flammable poison loading c2 decreases, the reactivity of the core 24d in the peripheral cassette increases, and the peripheral cassette core 24d alone can maintain the fission chain reaction. Further, as the combustion proceeds, the reactivity of the core 24c in the central cassette alone decreases, but the fission chain reaction in the core 24d in the peripheral cassette is maintained.
[0016]
Next, looking at changes in the reactivity of the entire core in the package over time, even if the heat generation amount of the entire core in the package is constant, it is maintained near 0%, and the reactivity can be controlled only by self-controllability. Is in range.
Here, self-controllability refers to the Doppler effect that causes a negative reactivity change when the reactivity increases and the temperature of the core in the package reactor rises, and when the reactivity increases and the temperature of the moderator 30 increases, the moderator By the moderator density coefficient effect that changes the density of 30 and causes a negative reactivity change, the reactivity can be maintained in the vicinity of 0% without exceeding the allowable range, which is also called the reactivity feedback effect.
In this way, by shifting the timing of the fission chain reaction of the core 24 in the cassette and maintaining the reactivity within a range not exceeding the allowable range, the calorific value of the entire core in the package does not change greatly, and the self-control inherent to the core The reactivity can be controlled only by the property, and the reactivity control by inserting and pulling out the control rod and the reactivity control by changing the concentration of the neutron absorber in the primary coolant become unnecessary.
[0017]
FIG. 4 shows an evaluation example of a change in surplus reactivity over time associated with combustion of the nuclear reactor according to this embodiment when the heat generation amount of the entire core in the package is constant.
In the plurality of nuclear steam supply cassettes 21 used for this evaluation, the core 24c in the central cassette contains 10 wt% enriched uranium corresponding to about 860 fuel rods as the loading amount c1, and the loading of the flammable poison The quantity c2 is 0 and no flammable poison is loaded. The peripheral cassette core 24d contains 10 wt% enriched uranium corresponding to about 770 fuel rods (about 90% of the loaded quantity c1) as the loaded quantity d1. Furthermore, the peripheral cassette core 24d contains natural boron corresponding to about 90 combustible poison rods as a combustible poison with a loading amount d2.
[0018]
As shown in the solid line in FIG. 4, the maximum surplus reaction of the core in the package is achieved when the entire combustion of the nuclear reactor 20 configured as described above achieves a high burnup with an extraction average burnup of 70 GWd / t. The degree is about 5%, and the surplus reactivity change rate is 0.1% / (GWd / t). Therefore, these values are about 1/5 or less of the core of a normal nuclear reactor indicated by a broken line, and are very small.
Thus, by making the flammable poison loadings of the central cassette core 24c and the peripheral cassette core 24d different, the time when each of the cassette cores 24 can maintain the fission chain reaction independently is shifted. The surplus reactivity of the core in the package can be maintained at almost 0% only by the inherent self-controllability.
[0019]
As described above, for example, the amount of combustible poisons loaded in each cassette core 24 is adjusted, and for several years from the start of operation of the reactor 20, the fission chain reaction is maintained independently for the core cassette core 24c. For several years, the nuclear reactor 20 can be operated for a long time without refueling by maintaining the fission chain reaction independently for the plurality of peripheral cassette cores 24d.
Further, since the divided sub-cores can be provided in the nuclear steam supply cassette 21, it is easy to make the amount of combustible poisons loaded for each sub-core different. Furthermore, a desired power generation amount can be obtained according to the number of nuclear steam supply cassettes 21.
[0020]
The present invention described above is not limited to the above, and can be implemented with appropriate modifications.
For example, in the above-described embodiment, a plurality of nuclear steam supply cassettes 21 are used to divide the entire reactor into a plurality of cores. However, the present invention is not limited to this, and there is one core in the reactor vessel. In a conventional nuclear reactor that only exists, the core may be divided into a plurality of parts, and the amount of combustible poison contained in the divided core may be different. That is, such a multi-sub core structure can be applied to a conventional nuclear reactor.
Further, as shown in FIG. 1, the liquid level of the primary coolant 28 filled in the nuclear steam supply cassette 21 was at the position H1, but the liquid level was set at the position H3, All of the generator 23 may be exposed. In this case, heat exchange with the secondary coolant 43 is performed by the primary coolant 28 that has become boiling steam. That is, by using the coolant boiling in the nuclear steam supply cassette 21 as in the conventional boiling water light water reactor, the reactivity control only by the self-controllability inherent in the core is further facilitated.
[0021]
【The invention's effect】
As described above, according to the present invention, the core of the entire nuclear reactor is composed of a plurality of sub-cores , each sub-core having a pressure tube and a fuel body inside the pressure tube, At least because the amount of combustible poisons contained in the two sub-cores is different, the allowable range in which the reactivity of the entire nuclear reactor can be controlled only by self-control by shifting the time when the fission chain reaction can be maintained in the sub-core alone Can be maintained. Therefore, reactor monitoring work for reactivity control, precise reactivity control, and equipment for dealing with abnormalities in the reactivity control system can be eliminated.
[Brief description of the drawings]
FIG. 1 is an elevational sectional view showing a structure of a nuclear reactor according to an embodiment of the present invention.
FIG. 2 is a cross-sectional plan view of the nuclear reactor shown in FIG.
FIG. 3 is a graph showing a concept of a change in reactivity of a core accompanying combustion of a nuclear reactor according to an embodiment.
FIG. 4 is a graph showing an evaluation example of a change in the excess reactivity of the core accompanying combustion of the nuclear reactor according to the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 20 ... Package type nuclear reactor, 21 ... Nuclear steam supply cassette, 22 ... Pressure pipe, 23 ... Steam generator, 24 ... Core in cassette, 24c ... Core in core, 24d ... Core in peripheral cassette, 32 ... Control rod.

Claims (4)

炉心が複数に区分されたサブ炉心で構成され、
前記サブ炉心はそれぞれ、圧力管と、この圧力管の内部に燃料体を有し、
少なくとも、2つの前記サブ炉心に含まれる可燃性毒物装荷量が異なる原子炉。
The core is composed of sub-cores that are divided into multiple parts.
Each of the sub-cores has a pressure tube and a fuel body inside the pressure tube,
At least nuclear reactors having different flammable poison loadings contained in the two sub-cores.
前記複数のサブ炉心は、ひとつの中心サブ炉心と、この中心サブ炉心の周囲に放射状に配置された複数の周辺サブ炉心とに区分され、
前記中心サブ炉心に含まれる可燃性毒物装荷量が、前記周辺サブ炉心に含まれる可燃性毒物装荷量よりも少ない請求項1に記載の原子炉。
The plurality of sub-cores are divided into one central sub-core and a plurality of peripheral sub-cores arranged radially around the central sub-core,
The nuclear reactor according to claim 1, wherein a combustible poison loading amount contained in the central sub-core is smaller than a combustible poison loading amount contained in the peripheral sub-core.
前記サブ炉心間に制御棒を備え、
この制御棒は、通常運転時には引き抜き状態で使用される請求項1または2に記載の原子炉。
A control rod is provided between the sub-cores,
The nuclear reactor according to claim 1, wherein the control rod is used in a pulled-out state during normal operation.
前記サブ炉心は、前記圧力管の内部に、蒸気発生器を備えた原子力蒸気供給カセットからなる請求項1〜3のいずれか一項に記載の原子炉。The sub-core is in the interior of the pressure tube reactor according to claim 1 consisting of a nuclear steam supply cassettes having a steam generator.
JP2002250597A 2002-08-29 2002-08-29 Reactor Expired - Lifetime JP3950392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250597A JP3950392B2 (en) 2002-08-29 2002-08-29 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250597A JP3950392B2 (en) 2002-08-29 2002-08-29 Reactor

Publications (2)

Publication Number Publication Date
JP2004093141A JP2004093141A (en) 2004-03-25
JP3950392B2 true JP3950392B2 (en) 2007-08-01

Family

ID=32057382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250597A Expired - Lifetime JP3950392B2 (en) 2002-08-29 2002-08-29 Reactor

Country Status (1)

Country Link
JP (1) JP3950392B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838511B2 (en) * 2014-03-25 2016-01-06 株式会社 シー・アール・ワイ Reactor
RU2594889C1 (en) * 2015-05-29 2016-08-20 Общество с ограниченной ответственностью "Научно-технический центр инноваций" Nuclear reactor
WO2017104708A1 (en) * 2015-12-15 2017-06-22 株式会社クリア Nuclear reactor system for extinguishing radioactivity
JP7390212B2 (en) * 2020-02-28 2023-12-01 三菱重工業株式会社 Nuclear reactors and reactor control methods

Also Published As

Publication number Publication date
JP2004093141A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US2992174A (en) Breeder-converter reactor
US7139352B2 (en) Reactivity control rod for core
CA2869561C (en) Molten salt nuclear reactor
US6512805B1 (en) Light water reactor core and fuel assembly
CN109509562A (en) Core structure, the fuel management of fused salt pebble bed reactor and fused salt pebble bed reactor and core loading method
CN209496626U (en) Core structure and fused salt pebble bed reactor
US9761332B2 (en) Nuclear reactor neutron shielding
EP2421005B1 (en) Nuclear reactor
US20050069074A1 (en) Nuclear plant spent fuel low temperature reactor
JP3950392B2 (en) Reactor
US3211623A (en) Neutronic reactor and fuel element therefor
US8559585B2 (en) Cold shutdown assembly for sodium cooled reactor
CN212256935U (en) Shielding device of offshore floating double reactors
JP4101424B2 (en) Reflector-controlled fast breeder reactor
WO2021221051A1 (en) Reactor core
JP2009085650A (en) Core component or fast reactor, core fuel assembly, core, and reactor structure
GB1029712A (en) Improvements in or relating to nuclear reactors
WO2017149864A1 (en) Fuel assembly and reactor core loaded with same
JP7495871B2 (en) Fast reactor and method for operating control rods in fast reactor
JP5361964B2 (en) Initial loading core of nuclear reactor
JPH0151797B2 (en)
JP3913146B2 (en) Nuclear steam supply cassette and packaged reactor using the same
Lee et al. Conceptual design of PFBR core
Schulenberg Sodium-Cooled Fast Reactors
Peehs et al. Behaviour of spent LWR fuel assemblies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3950392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070607

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070925

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20071002

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term