JP3913146B2 - Nuclear steam supply cassette and packaged reactor using the same - Google Patents

Nuclear steam supply cassette and packaged reactor using the same Download PDF

Info

Publication number
JP3913146B2
JP3913146B2 JP2002250598A JP2002250598A JP3913146B2 JP 3913146 B2 JP3913146 B2 JP 3913146B2 JP 2002250598 A JP2002250598 A JP 2002250598A JP 2002250598 A JP2002250598 A JP 2002250598A JP 3913146 B2 JP3913146 B2 JP 3913146B2
Authority
JP
Japan
Prior art keywords
nuclear
steam supply
cassette
supply cassette
nuclear steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002250598A
Other languages
Japanese (ja)
Other versions
JP2004093142A (en
Inventor
修二 碓井
健 大山
宏基 日比
洋樹 瀧本
義明 牧原
廣 後藤
公三明 守屋
正義 松浦
和人 小山
雅夫 茶木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Hitachi Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Mitsubishi Heavy Industries Ltd filed Critical Hitachi Ltd
Priority to JP2002250598A priority Critical patent/JP3913146B2/en
Publication of JP2004093142A publication Critical patent/JP2004093142A/en
Application granted granted Critical
Publication of JP3913146B2 publication Critical patent/JP3913146B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、原子炉に用いられる原子力蒸気供給カセットに係り、とくに、複数の電力供給源を有するような電力系統網に、繋がらない非ネットワーク電源として利用され、独立した電力を供給するパッケージ型原子炉及びそれに用いられる原子力蒸気供給カセットに関する。
【0002】
【従来の技術】
離島や奥地といった地域のように、地理的な事情により、他の電力供給源を有する電力系統網に繋げることができず、独立した電力供給源が必要な地域では、その地域に必要な小規模な電力を、コンパクトな設備で供給する電力供給システムが求められている。
また、従来このような地域では、ディーゼル発電やガスタービン発電などが利用されてきたが、発電に必要な燃料の搬送が容易でコストのかからない核燃料を利用する原子力発電が着目されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の原子力発電プラントは、大規模な設備を用いて大出力発電を効率よく行うものが一般的である。例えば従来の原子力発電プラントに用いられる原子炉容器は、直径4m前後におよび、高さも10mを越えるものが一般的である。また、原子力発電の出力も、数十万kW以上のものが一般的である。
このような大規模な原子力発電プラントに用いられる原子炉としては、様々な型式の構造があり、特開平6−43279号特許公報に記載されているように、炉心や制御棒のほかに蒸気発生器を原子炉容器内に内蔵した一体型原子炉が提案されている。図5は、従来の一体型原子炉の構成の一例を模式的に示した図である。
【0004】
この図によれば、原子炉容器1内のダウンカマー部2に蒸気発生器3が設けられている。原子炉容器1の上方には炉心4に挿入された制御棒5を駆動する制御棒駆動装置6が配置されている。ダウンカマー部2、炉心4、ライザー7を通って原子炉容器1内を循環する1次冷却材8は、炉心4において核分裂による熱で温められ、蒸気発生器3において図示しない2次冷却材との間で熱交換し冷却される。1次冷却材8から熱を奪い加熱されて蒸気となった2次冷却材は、図示しないタービンに導かれ、タービンによって駆動される発電機により発電される。
ところが、蒸気発生器3を原子炉容器1に内蔵すると、原子炉容器自体がさらに大きくなってしまう。
【0005】
また、大規模な原子力発電プラントに用いられる別の型式の原子炉の構造として、図6に示されるように、燃料体13を内蔵した圧力管14を用いた圧力管型の原子炉が提案されている。これによれば、減速材11が入った円筒状の減速材タンク12内に複数の圧力管14及び制御棒15が配置されている。制御棒15は外部にある制御棒駆動装置16に接続されている。圧力管14には、主蒸気管17及び主給水管18が設けられ、外部にある図示しない蒸気発生器と接続されている。
このように、燃料体13は圧力管14に内蔵されているが、蒸気発生器は圧力管14の外部に設けられている。そのため、圧力管14と外部の蒸気発生器とを循環する1次冷却材が流れる1次冷却材主蒸気管17及び1次冷却材主給水管18の万一の破断に備えた設備が必要になり、原子力発電プラント自体をコンパクトなものにすることはできない。
【0006】
上述したように、従来の原子力発電プラントの構造では全体設備が大きなものとなり、小規模な電力をコンパクトな設備で発電できるエネルギー供給源として、従来の型式の原子力発電プラントを利用することができないという問題点がある。
【0007】
この発明はこのような課題を解決するためになされたもので、電力系統網に繋がらない非ネットワーク電源としての原子力発電プラントに利用できる、原子力蒸気供給カセット及びそれを用いたパッケージ型原子炉を提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る原子力蒸気供給カセットは、圧力管と、この圧力管の内部に、燃料体からなるカセット内炉心及び蒸気発生器とを備え、圧力管の外部に制御棒を配置しうるものである。
圧力管は、外周に強化繊維層を備えることができる。
原子力蒸気供給カセットは、圧力管の外部に圧力管の内部と連通する減圧弁を備えることもできる。
【0009】
また、この発明に係るパッケージ型原子炉は、上述した原子力蒸気供給カセットを間隔をおいて複数配置して構成するものである。
パッケージ型原子炉は、これらの複数の原子力蒸気供給カセット間に減速材及び制御棒を設けることができる。
パッケージ型原子炉は、原子力蒸気供給カセット内に供給される遮蔽水を貯留する水遮蔽タンクを備えることができる。
パッケージ型原子炉は、圧力管の外部に、圧力管の内部及び水遮蔽タンクの内部に連通する非常用冷却水供給弁を備えることができる。
【0010】
【発明の実施の形態】
以下に、この発明の実施の形態を図面に基づいて説明する。
この発明の実施の形態に係る原子力蒸気供給カセットの断面図を図1に示す。また、この原子力蒸気供給カセットを用いた原子炉の平面図を図2に、縦断面図を図3に示す。
原子力蒸気供給カセット21は、圧力管22と、その内壁の中央から上方にかけて配置された蒸気発生器23と、蒸気発生器23の下方に設けられた燃料体であるカセット内炉心24とを備えている。
【0011】
圧力管22は、上下端を閉じた、例えば直径約50cm程度、長さ数メートルの細長円筒管であって、ステンレス鋼等の金属材料からなる圧力管ライナ25と、その外周面に炭素繊維を巻いて強度を補強した強化繊維層26とを備えている。圧力管22とカセット内炉心24との間には、圧力管22内部に封入された1次冷却材28が下方に向かって流れるダウンカマー部27が形成されている。また、カセット内炉心24の上方には、カセット内炉心24によって加熱された1次冷却材28が上昇するライザー29が形成され、1次冷却材28が圧力管22内を矢印に示されるように循環するように構成されている。
【0012】
次に、このように構成された原子力蒸気供給カセット21を複数組み合わせて構成されるパッケージ型原子炉20の構造を、図2及び3に示す。
図3に端的に示されるように、軽水、重水またはグラファイト等の減速材30が満たされる減速材タンク31内には、原子力蒸気供給カセット21が中心から放射状に7つ配置されている。
中心にある原子力蒸気供給カセット21の周囲には、カセット内炉心24内で生成される中性子を調整し原子炉の出力を制御する制御棒32が円周上6つ配置されている。制御棒32は、隣接する原子力蒸気供給カセット21間に延びる3つの板状部材からなり、図2に示されるように、カセット内炉心24に沿って上下方向に延びて、減速材タンク31の上方にある制御棒駆動装置33に接続されている。
制御棒駆動装置33は、原子力蒸気供給カセット21のカセット内炉心24に沿って、制御棒32を上下に進退させることにより原子炉の出力を制御する。減速材タンク31の外周面には断熱材34が巻かれ、その断熱材34の外側には、水遮蔽タンク35が設けられている。水遮蔽タンク35内には遮蔽水36が満たされ、この遮蔽水36は原子炉20の通常運転時に各カセット内炉心24から放射される中性子及びガンマ線を外部に対して遮蔽する。
【0013】
図2に示されるように、この原子炉20の起動前において、圧力管22内の貯留される1次冷却材28の液面はH1の位置なり、蒸気発生器23は水没した状態にあって圧力管22の上部には気相部28aが形成されている。
また、原子力蒸気供給カセット21の上部21bには、蒸気発生器23の2次冷却材43の供給排出経路として、途中に開閉弁41を備えた2次冷却材管44が配置され、図示しないタービン及びポンプに接続されている。
さらに、原子力蒸気供給カセット21の上部21bには、配管39が貫通して配置され、格納容器42内の減圧弁40に接続されている。
【0014】
一方、原子力蒸気供給カセット21の底部21aには、配管37が貫通して配置され、減速材タンク31の底面をさらに貫通して水遮蔽タンク35内に設けられた非常用冷却水供給弁38に接続されている。
蒸気発生器23での熱交換を行うことができない場合等原子力蒸気供給カセット21の徐熱機能喪失時には、水遮蔽タンク35内の遮蔽水36を非常用冷却水供給弁38から原子力蒸気供給カセット21内に導入して、カセット内炉心24を冷却し、原子力蒸気供給カセット21内に発生した蒸気を減圧弁40により減圧して原子力蒸気供給カセット21の外部に放出するように構成されている。
また、格納容器42の外周には、格納容器42を空気冷却する空気流路45が形成されている。
【0015】
次に、この発明の実施の形態に係る原子力蒸気供給カセットを用いたパッケージ型原子炉の動作を説明する。
パッケージ型原子炉20の通常運転時において、原子力蒸気供給カセット21内の1次冷却材28は単相自然循環し、カセット内炉心24の反応熱により温められ、ライザー29を上昇して、蒸気発生器23において2次冷却材との間で熱交換が行われる。冷却された1次冷却材28はダウンカマー部27を下降し、再びカセット内炉心24において加熱される。
蒸気発生器23において、1次冷却材28から熱を奪い加熱されて蒸気となった2次冷却材43は、2次冷却材管44を介してタービンに導かれ、タービンによって駆動される発電機により発電される。
【0016】
このように、それぞれの原子力蒸気供給カセット21から、2次冷却材44が蒸気となってタービンに供給され発電に供され、原子力蒸気供給カセット21の数に応じて所望の発電量を得ることができる。
ここで、原子力蒸気供給カセット21が配置される数は、原子炉での必要な出力に応じて適宜選択することができる。したがって、原子炉内に収容される原子力蒸気供給カセット21の数に応じて所望の出力を有するパッケージ型原子炉を構成することができる。
また、圧力管22は、金属材料からなる圧力管ライナ25の周囲に炭素繊維による強化繊維層26を形成したので、十分な構造強度を確保すると共に、コンパクトな構造をもった原子力蒸気供給カセット21をさらに軽量化することができる。そのため、パッケージ型原子炉20の設置場所まで、燃料の入った原子力蒸気供給カセット21の搬送がさらに容易になる。
さらに、原子力蒸気供給カセット21内に蒸気発生器23を内蔵しているため、1次冷却材搬送用の配管が不要なため、1次冷却材主蒸気管及び1次冷却材主給水管といった搬送用配管の万一の破断に備えた設備が不要である。
また、カセット内炉心24から放射される中性子及びガンマ線を遮蔽するための遮蔽材として、コンクリート材料等を使用せず遮蔽水36を用いたので、放射能化された遮蔽材に対する、放射能除去処理のための後処理が容易である。
【0017】
一方、蒸気発生器23が徐熱機能を喪失した場合、非常用冷却水供給弁38及び減圧弁40が自動開放し、水遮蔽タンク35から原子力蒸気供給カセット21内に遮蔽水36を注水してカセット内炉心24を徐熱する。
したがって、1次冷却系に支障が生じても、簡易な設備で、原子力蒸気供給カセット21の非常用の冷却を行うことができる。
また、原子炉20の通常運転時に、各カセット内炉心24から放射される中性子及びガンマ線を遮蔽する遮蔽水36を、カセット内炉心24の非常用冷却としても利用できるようにしたので、設備の簡略化をさらに図ることができる。
【0018】
以上に説明してきた本発明は、上記に限定されるものではなく、適宜改変して実施することができる。
図2に示されるように、実施の形態に係る原子力蒸気供給カセット21に満たされる1次冷却材28の液面の高さはH1の位置であったが、1次冷却材28の液面の高さをH2の位置にし、蒸気発生器23の上部が露出するようにしてもよい。この場合、1次冷却材は、液体自然対流と沸騰蒸気とにより2次冷却材との間で熱交換が行なわれる。
また、1次冷却材28の液面の高さをH3の位置にし、蒸気発生器23がすべて露出するようにしてもよい。この場合、沸騰蒸気となった1次冷却材により2次冷却材との間で熱交換が行なわれる。
圧力管22の内張りを構成する圧力管ライナ25は、ステンレス鋼に代えて、ジルカロイを使用してもよい。これにより、圧力管における中性子の吸収がさらに少なくなる。
【0019】
また、上述した実施の形態に係る原子力蒸気供給カセット21に代えて、図4に示すような原子力蒸気供給カセット51を用いることもできる。
原子力蒸気供給カセット51は、原子力蒸気供給カセット21に対して、圧力管22内の底部にポンプ52を追加して配置したものである。これにより、原子力蒸気供給カセット51内の1次冷却材28の循環を効率よく行うことができ、蒸気発生器23の熱交換効率が向上する。
さらに、上述した実施の形態においては、原子力蒸気供給カセット21は、減速材タンク31内に複数配置されていたが、所望の発電量に応じて、減速材タンク31内にひとつの原子力蒸気供給カセット21のみを配置してもよい。
【0020】
【発明の効果】
以上説明したように、この発明によれば、圧力管の内部に、燃料体からなるカセット内炉心及び蒸気発生器とを備え、圧力管の外部に制御棒を配置しうるように構成した原子力蒸気供給カセットにより、電力系統網に繋がらない非ネットワーク電源としての原子力発電プラントに利用できるパッケージ型原子炉を提供することができる。
【図面の簡単な説明】
【図1】 この発明の実施形態に係る原子力蒸気供給カセットの構造を示す立断面図である。
【図2】 実施形態に係る原子力蒸気供給カセットを用いたパッケージ型原子炉の構造を示す立断面図である。
【図3】 実施形態に係る原子力蒸気供給カセットを用いたパッケージ型原子炉の構造を示す平面断面図である。
【図4】 この発明の別の実施形態に係る原子力蒸気供給カセットの構造を示す立断面図である。
【図5】 従来の一体型原子炉の構成を示す図である。
【図6】 従来の圧力管型原子炉の構成を示す図である。
【符号の説明】
20…パッケージ型原子炉、21,51…原子力蒸気供給カセット、22…圧力管、23…蒸気発生器、24…カセット内炉心、26…強化繊維層、30…減速材、32…制御棒、35…遮蔽水、36…水遮蔽タンク、38…非常用冷却水供給弁、40…減圧弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nuclear steam supply cassette used in a nuclear reactor, and more particularly, to a packaged atomic power source that is used as a non-network power source that is not connected to a power system network having a plurality of power supply sources and supplies independent power. The present invention relates to a furnace and a nuclear steam supply cassette used therein.
[0002]
[Prior art]
In regions where remote power sources are necessary, such as remote islands and remote areas that cannot be connected to power grids with other power sources due to geographical circumstances, the small scale required for those regions There is a need for a power supply system that supplies compact power with compact equipment.
Conventionally, diesel power generation, gas turbine power generation, and the like have been used in such areas, but attention has been focused on nuclear power generation that uses nuclear fuel that is easy to transport and costs less fuel for power generation.
[0003]
[Problems to be solved by the invention]
However, conventional nuclear power plants generally perform large power generation efficiently using large-scale equipment. For example, a reactor vessel used in a conventional nuclear power plant generally has a diameter of about 4 m and a height exceeding 10 m. Moreover, the output of nuclear power is generally several hundred thousand kW or more.
As a nuclear reactor used in such a large-scale nuclear power plant, there are various types of structures. As described in Japanese Patent Laid-Open No. 6-43279, steam is generated in addition to the core and the control rod. An integrated reactor in which a reactor is built in a reactor vessel has been proposed. FIG. 5 is a diagram schematically showing an example of the configuration of a conventional integrated nuclear reactor.
[0004]
According to this figure, the steam generator 3 is provided in the downcomer part 2 in the reactor vessel 1. Above the reactor vessel 1, a control rod driving device 6 that drives a control rod 5 inserted into the core 4 is disposed. The primary coolant 8 that circulates in the reactor vessel 1 through the downcomer section 2, the core 4, and the riser 7 is warmed by heat from nuclear fission in the core 4, and the secondary coolant (not shown) in the steam generator 3 Heat exchange between and cooled. The secondary coolant that has been deprived of heat from the primary coolant 8 and turned into steam is guided to a turbine (not shown) and is generated by a generator driven by the turbine.
However, if the steam generator 3 is built in the reactor vessel 1, the reactor vessel itself becomes even larger.
[0005]
As another type of nuclear reactor structure used in a large-scale nuclear power plant, as shown in FIG. 6, a pressure tube nuclear reactor using a pressure tube 14 incorporating a fuel body 13 has been proposed. ing. According to this, a plurality of pressure pipes 14 and control rods 15 are arranged in a cylindrical moderator tank 12 containing the moderator 11. The control rod 15 is connected to an external control rod driving device 16. The pressure pipe 14 is provided with a main steam pipe 17 and a main water supply pipe 18 and is connected to an external steam generator (not shown).
As described above, the fuel body 13 is built in the pressure pipe 14, but the steam generator is provided outside the pressure pipe 14. For this reason, it is necessary to provide a facility for an emergency breakage of the primary coolant main steam pipe 17 and the primary coolant main water supply pipe 18 through which the primary coolant circulating through the pressure pipe 14 and the external steam generator flows. Therefore, the nuclear power plant itself cannot be made compact.
[0006]
As described above, the structure of a conventional nuclear power plant has a large overall facility, and a conventional type nuclear power plant cannot be used as an energy supply source capable of generating small-scale electric power with a compact facility. There is a problem.
[0007]
The present invention has been made to solve such problems, and provides a nuclear steam supply cassette that can be used in a nuclear power plant as a non-network power source that is not connected to a power system network, and a packaged nuclear reactor using the same. The purpose is to do.
[0008]
[Means for Solving the Problems]
A nuclear steam supply cassette according to the present invention includes a pressure pipe, a core in the cassette made of a fuel body and a steam generator inside the pressure pipe, and a control rod can be disposed outside the pressure pipe. .
The pressure tube can have a reinforcing fiber layer on the outer periphery.
The nuclear steam supply cassette may include a pressure reducing valve that communicates with the inside of the pressure pipe outside the pressure pipe.
[0009]
A packaged nuclear reactor according to the present invention is configured by arranging a plurality of the above-described nuclear steam supply cassettes at intervals.
A packaged nuclear reactor can be provided with moderators and control rods between these multiple nuclear steam supply cassettes.
The packaged nuclear reactor may include a water shielding tank that stores shielding water supplied in a nuclear steam supply cassette.
The packaged nuclear reactor may include an emergency cooling water supply valve that communicates with the inside of the pressure pipe and the inside of the water shielding tank outside the pressure pipe.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
A sectional view of a nuclear steam supply cassette according to an embodiment of the present invention is shown in FIG. Moreover, the top view of the nuclear reactor using this nuclear steam supply cassette is shown in FIG. 2, and a longitudinal cross-sectional view is shown in FIG.
The nuclear steam supply cassette 21 includes a pressure tube 22, a steam generator 23 disposed from the center of the inner wall to the upper side thereof, and a cassette core 24 that is a fuel body provided below the steam generator 23. Yes.
[0011]
The pressure tube 22 is an elongated cylindrical tube having a diameter of about 50 cm and a length of several meters, for example, a pressure tube liner 25 made of a metal material such as stainless steel, and carbon fiber on the outer circumferential surface thereof. And a reinforcing fiber layer 26 that is rolled up to reinforce the strength. Between the pressure tube 22 and the core 24 in the cassette, a downcomer portion 27 in which the primary coolant 28 enclosed in the pressure tube 22 flows downward is formed. Further, a riser 29 is formed above the core 24 in the cassette to raise the primary coolant 28 heated by the core 24 in the cassette, so that the primary coolant 28 is indicated by an arrow in the pressure tube 22. It is configured to circulate.
[0012]
Next, FIGS. 2 and 3 show the structure of a packaged reactor 20 configured by combining a plurality of nuclear steam supply cassettes 21 configured as described above.
As directly shown in FIG. 3, seven nuclear steam supply cassettes 21 are arranged radially from the center in a moderator tank 31 filled with moderator 30 such as light water, heavy water, or graphite.
Around the center of the nuclear steam supply cassette 21 at the center, six control rods 32 for adjusting neutrons generated in the cassette core 24 and controlling the output of the reactor are arranged on the circumference. The control rod 32 is composed of three plate-like members extending between adjacent nuclear steam supply cassettes 21 and extends in the vertical direction along the core 24 in the cassette as shown in FIG. Are connected to the control rod drive 33.
The control rod driving device 33 controls the output of the nuclear reactor by moving the control rod 32 up and down along the in-cassette core 24 of the nuclear steam supply cassette 21. A heat insulating material 34 is wound around the outer circumferential surface of the moderator tank 31, and a water shielding tank 35 is provided outside the heat insulating material 34. The water shielding tank 35 is filled with shielding water 36, and this shielding water 36 shields neutrons and gamma rays emitted from each cassette core 24 during normal operation of the reactor 20 from the outside.
[0013]
As shown in FIG. 2, before the reactor 20 is started, the liquid level of the primary coolant 28 stored in the pressure pipe 22 is H1, and the steam generator 23 is submerged. A gas phase portion 28 a is formed on the upper portion of the pressure tube 22.
In addition, a secondary coolant pipe 44 provided with an on-off valve 41 is arranged in the middle of the upper part 21b of the nuclear steam supply cassette 21 as a supply / discharge path for the secondary coolant 43 of the steam generator 23. And connected to the pump.
Further, a pipe 39 is disposed through the upper portion 21 b of the nuclear steam supply cassette 21 and is connected to the pressure reducing valve 40 in the storage container 42.
[0014]
On the other hand, a pipe 37 penetrates the bottom 21 a of the nuclear steam supply cassette 21, and further passes through the bottom surface of the moderator tank 31 to the emergency cooling water supply valve 38 provided in the water shielding tank 35. It is connected.
When the heat generation function of the nuclear steam supply cassette 21 is lost, such as when heat exchange cannot be performed in the steam generator 23, the shield water 36 in the water shield tank 35 is transferred from the emergency cooling water supply valve 38 to the nuclear steam supply cassette 21. The core 24 in the cassette is cooled, and the steam generated in the nuclear steam supply cassette 21 is decompressed by the pressure reducing valve 40 and discharged to the outside of the nuclear steam supply cassette 21.
In addition, an air flow path 45 for air-cooling the storage container 42 is formed on the outer periphery of the storage container 42.
[0015]
Next, the operation of the package reactor using the nuclear steam supply cassette according to the embodiment of the present invention will be described.
During normal operation of the packaged reactor 20, the primary coolant 28 in the nuclear steam supply cassette 21 is naturally circulated in a single phase, warmed by the reaction heat of the core 24 in the cassette, rises the riser 29, and generates steam. In the vessel 23, heat exchange is performed with the secondary coolant. The cooled primary coolant 28 descends the downcomer portion 27 and is heated again in the cassette core 24.
In the steam generator 23, the secondary coolant 43, which has been deprived of heat from the primary coolant 28 and heated to become steam, is led to the turbine via the secondary coolant pipe 44 and is driven by the turbine. To generate electricity.
[0016]
As described above, the secondary coolant 44 is supplied as steam from each nuclear steam supply cassette 21 to the turbine and used for power generation, and a desired power generation amount can be obtained according to the number of the nuclear steam supply cassettes 21. it can.
Here, the number of the nuclear steam supply cassettes 21 can be appropriately selected according to the required output in the nuclear reactor. Therefore, a packaged nuclear reactor having a desired output can be configured according to the number of nuclear steam supply cassettes 21 accommodated in the nuclear reactor.
Further, since the pressure pipe 22 is formed with the reinforcing fiber layer 26 made of carbon fiber around the pressure pipe liner 25 made of a metal material, the nuclear steam supply cassette 21 having a compact structure and ensuring a sufficient structural strength. Can be further reduced in weight. As a result, the transportation of the nuclear steam supply cassette 21 containing the fuel to the installation site of the packaged reactor 20 is further facilitated.
Further, since the steam generator 23 is built in the nuclear steam supply cassette 21, piping for transporting the primary coolant is unnecessary, so that the primary coolant main steam pipe and the primary coolant main water supply pipe are transported. There is no need for equipment in case of a break in the piping.
Further, since the shielding water 36 is used as a shielding material for shielding neutrons and gamma rays radiated from the core 24 in the cassette without using a concrete material or the like, the radiation removal treatment for the radioactive shielding material is performed. For easy post-processing.
[0017]
On the other hand, when the steam generator 23 loses the slow heat function, the emergency cooling water supply valve 38 and the pressure reducing valve 40 are automatically opened, and the shielding water 36 is poured into the nuclear steam supply cassette 21 from the water shielding tank 35. The core 24 in the cassette is gradually heated.
Therefore, even if the primary cooling system is hindered, emergency cooling of the nuclear steam supply cassette 21 can be performed with simple equipment.
In addition, since the shielding water 36 that shields neutrons and gamma rays radiated from each cassette core 24 during normal operation of the reactor 20 can be used for emergency cooling of the cassette core 24, the equipment can be simplified. Can be further improved.
[0018]
The present invention described above is not limited to the above, and can be implemented with appropriate modifications.
As shown in FIG. 2, the height of the liquid level of the primary coolant 28 filled in the nuclear steam supply cassette 21 according to the embodiment is the position of H1, but the level of the liquid level of the primary coolant 28 is The height may be set at H2 so that the upper portion of the steam generator 23 is exposed. In this case, heat exchange is performed between the primary coolant and the secondary coolant by liquid natural convection and boiling steam.
Alternatively, the liquid level of the primary coolant 28 may be set at the position H3 so that the steam generator 23 is entirely exposed. In this case, heat exchange is performed with the secondary coolant by the primary coolant that has become boiling steam.
The pressure pipe liner 25 constituting the lining of the pressure pipe 22 may use Zircaloy instead of stainless steel. This further reduces neutron absorption in the pressure tube.
[0019]
Moreover, it can replace with the nuclear steam supply cassette 21 which concerns on embodiment mentioned above, and can also use the nuclear steam supply cassette 51 as shown in FIG.
The nuclear steam supply cassette 51 is obtained by adding a pump 52 to the bottom of the pressure pipe 22 with respect to the nuclear steam supply cassette 21. Thereby, the primary coolant 28 in the nuclear steam supply cassette 51 can be circulated efficiently, and the heat exchange efficiency of the steam generator 23 is improved.
Further, in the embodiment described above, a plurality of nuclear steam supply cassettes 21 are arranged in the moderator tank 31, but one nuclear steam supply cassette is provided in the moderator tank 31 according to the desired power generation amount. Only 21 may be arranged.
[0020]
【The invention's effect】
As described above, according to the present invention, the nuclear steam which is provided with the core in the cassette made of the fuel body and the steam generator inside the pressure pipe, and is configured so that the control rod can be arranged outside the pressure pipe. With the supply cassette, it is possible to provide a packaged nuclear reactor that can be used in a nuclear power plant as a non-network power source that is not connected to the power grid.
[Brief description of the drawings]
FIG. 1 is an elevational sectional view showing a structure of a nuclear steam supply cassette according to an embodiment of the present invention.
FIG. 2 is an elevational sectional view showing a structure of a packaged nuclear reactor using the nuclear steam supply cassette according to the embodiment.
FIG. 3 is a plan sectional view showing the structure of a packaged nuclear reactor using the nuclear steam supply cassette according to the embodiment.
FIG. 4 is an elevational sectional view showing the structure of a nuclear steam supply cassette according to another embodiment of the present invention.
FIG. 5 is a diagram showing a configuration of a conventional integrated nuclear reactor.
FIG. 6 is a diagram showing a configuration of a conventional pressure tube reactor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 20 ... Package type reactor, 21,51 ... Nuclear steam supply cassette, 22 ... Pressure pipe, 23 ... Steam generator, 24 ... Core in cassette, 26 ... Reinforcement fiber layer, 30 ... Moderator, 32 ... Control rod, 35 ... shielding water, 36 ... water shielding tank, 38 ... emergency cooling water supply valve, 40 ... pressure reducing valve.

Claims (7)

圧力管と、
この圧力管の内部に、燃料体からなるカセット内炉心及び蒸気発生器とを備え、
前記圧力管の外部に制御棒を配置しうる原子力蒸気供給カセット。
A pressure tube;
Inside the pressure tube, a cassette core consisting of a fuel body and a steam generator are provided,
A nuclear steam supply cassette capable of disposing a control rod outside the pressure pipe.
前記圧力管は、外周に強化繊維層を備えた請求項1に記載の原子力蒸気供給カセット。The nuclear steam supply cassette according to claim 1, wherein the pressure pipe includes a reinforcing fiber layer on an outer periphery. 前記圧力管の外部に、前記圧力管の内部と連通する減圧弁を備えた請求項1または2に記載の原子力蒸気供給カセット。The nuclear steam supply cassette according to claim 1 or 2, further comprising a pressure reducing valve that communicates with the inside of the pressure pipe outside the pressure pipe. 請求項1〜3のいずれか一項に記載の原子力蒸気供給カセットが、間隔をおいて複数配置されたパッケージ型原子炉。A packaged nuclear reactor in which a plurality of the nuclear steam supply cassettes according to any one of claims 1 to 3 are arranged at intervals. 前記複数の原子力蒸気供給カセット間には、減速材及び制御棒が設けられた請求項4に記載のパッケージ型原子炉。The packaged nuclear reactor according to claim 4, wherein a moderator and a control rod are provided between the plurality of nuclear steam supply cassettes. 前記原子力蒸気供給カセット内に供給される遮蔽水を貯留する水遮蔽タンクを備えた請求項4または5に記載のパッケージ型原子炉。The packaged nuclear reactor according to claim 4 or 5, further comprising a water shielding tank for storing shielding water supplied in the nuclear steam supply cassette. 前記圧力管の外部に、前記圧力管の内部及び前記水遮蔽タンクの内部に連通する非常用冷却水供給弁を備えた請求項6に記載のパッケージ型原子炉。The packaged nuclear reactor according to claim 6, further comprising an emergency cooling water supply valve that communicates with the inside of the pressure pipe and the inside of the water shielding tank outside the pressure pipe.
JP2002250598A 2002-08-29 2002-08-29 Nuclear steam supply cassette and packaged reactor using the same Expired - Lifetime JP3913146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250598A JP3913146B2 (en) 2002-08-29 2002-08-29 Nuclear steam supply cassette and packaged reactor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250598A JP3913146B2 (en) 2002-08-29 2002-08-29 Nuclear steam supply cassette and packaged reactor using the same

Publications (2)

Publication Number Publication Date
JP2004093142A JP2004093142A (en) 2004-03-25
JP3913146B2 true JP3913146B2 (en) 2007-05-09

Family

ID=32057383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250598A Expired - Lifetime JP3913146B2 (en) 2002-08-29 2002-08-29 Nuclear steam supply cassette and packaged reactor using the same

Country Status (1)

Country Link
JP (1) JP3913146B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072804B1 (en) 2010-06-09 2011-10-14 한국원자력연구원 Steam generator of a integral reactor having heat transfer tube composed with helical tubes and straight tubes

Also Published As

Publication number Publication date
JP2004093142A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US4508677A (en) Modular nuclear reactor for a land-based power plant and method for the fabrication, installation and operation thereof
CN105359221B (en) Manage nuclear reactor spent fuel rod
US9881700B2 (en) Molten salt nuclear reactor
JP2539076B2 (en) Passive cooling system for liquid metal cooled reactors.
US20160329113A1 (en) SLIMM-Scalable Liquid Metal Cooled Small Modular Reactor
US3211621A (en) Heterogeneous breeder or converter type neutronic reactor
US10147506B2 (en) Conformal core cooling and containment structure
US9761332B2 (en) Nuclear reactor neutron shielding
JPH05508926A (en) Reactor with two-level core
JP6704231B2 (en) Nuclear plant dismantling method
JPS6262308B2 (en)
JPH0727050B2 (en) Liquid metal cooled nuclear reactor with passive cooling system
JP3913146B2 (en) Nuclear steam supply cassette and packaged reactor using the same
US4755352A (en) System of generating electricity using a swimming pool type nuclear reactor
JP2006343321A (en) Fuel element for fast reactor, fast reactor and erection method of fast reactor facility
JP2004093143A (en) Nuclear steam supply cassette and method for handling it
JP2008157744A (en) Molten material granulation promotor and nuclear reactor containment vessel
JP4341876B2 (en) Solid cooled reactor
JP4101424B2 (en) Reflector-controlled fast breeder reactor
JPH08146175A (en) Subcritical nuclear reactor
JP3950392B2 (en) Reactor
JP4028088B2 (en) Fuel assembly
Pham et al. The current status of DALAT nuclear research reactor and proposed core conversion studies
Schulenberg Sodium-Cooled Fast Reactors
Ingersoll Passive safety features for small modular reactors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3913146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term