JP3950390B2 - Method for producing anhydrous magnesium chloride and apparatus for extracting molten magnesium chloride - Google Patents

Method for producing anhydrous magnesium chloride and apparatus for extracting molten magnesium chloride Download PDF

Info

Publication number
JP3950390B2
JP3950390B2 JP2002243223A JP2002243223A JP3950390B2 JP 3950390 B2 JP3950390 B2 JP 3950390B2 JP 2002243223 A JP2002243223 A JP 2002243223A JP 2002243223 A JP2002243223 A JP 2002243223A JP 3950390 B2 JP3950390 B2 JP 3950390B2
Authority
JP
Japan
Prior art keywords
magnesium chloride
container
molten
anhydrous magnesium
reduction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002243223A
Other languages
Japanese (ja)
Other versions
JP2004083298A (en
Inventor
武志 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2002243223A priority Critical patent/JP3950390B2/en
Publication of JP2004083298A publication Critical patent/JP2004083298A/en
Application granted granted Critical
Publication of JP3950390B2 publication Critical patent/JP3950390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、無水塩化マグネシウムの製造方法に係わり、特にオレフィン類重合触媒用担体などに適した高純度の無水塩化マグネシウムの製造方法及びこの製造に用いる溶融塩化マグネシウムの抜出し装置に関するものである。
【0002】
【従来の技術】
従来、塩化マグネシウムは電解法による金属マグネシウム製造の原料や、触媒、医薬品および化学品の原料として広く用いられている。特に触媒の担体原料に用いる塩化マグネシウムは、結晶水がなくまた不純物の極めて少ない高純度の無水塩化マグネシウムが要求される。
【0003】
無水塩化マグネシウムは古くから種々の方法により製造されており、特開昭55−20296号公報では一酸化炭素ガスの存在下に1200℃以上の温度で固体炭酸マグネシウムを塩素と反応させ、溶融状態で無水塩化マグネシウムを取り出し無水塩化マグネシウムを製造する方法が開示されている。また特開昭55−126534号公報ではカーナライト鉱物を少量の水に溶解し、これにエチレングリコールを添加し、脱水した後、無水アンモニアを加えて塩化マグネシウムのアンモニウム錯体して沈殿させこれを加熱して無水塩化マグネシウムを製造する方法が開示されている。
【0004】
一方、クロール法による金属チタンの製造では、四塩化チタンを金属マグネシウムで還元して金属チタンが生成される過程で、副生物として塩化マグネシウムが生成する。この塩化マグネシウムは溶融状態で生成されるため、無水の塩化マグネシウムとなる。具体的には、溶融金属マグネシウムを充填した還元炉内に液状の四塩化チタンを滴下することにより、四塩化チタンを還元してスポンジチタンを生成させるが、この際副生物として塩化マグネシウムが生成する。この塩化マグネシウムは、前記還元反応の途中および還元反応終了後に溶融状態のまま溶融塩化マグネシウム専用コンテナに抜出される。この塩化マグネシウムの大半は金属チタン製造のために電解法により金属マグネシウムと塩素に分解され再使用される。また、一部は専用コンテナから電解層に移送する際に別途、ドラム缶などの容器に抜出され、その後固化し、触媒や医薬品などの用途として用いられる。
【0005】
このクロール法による金属チタン製造工程で得られる無水塩化マグネシウムは副生物であるため、上述した炭酸マグネシウムやカーナライトを原料とした製法よりも生産コストが低く、何よりも水分が極めて少なくかつアンモニア成分や他の金属成分が少ないため、特にチタン系の高活性型オレフィン重合触媒の担体原料として用いられている。チタン系の高活性型オレフィン重合触媒としては、エチレンやプロピレン重合用触媒があり、マグネシウム化合物を担体物質とした担持型触媒が主流である。このオレフィン重合触媒は近年その性能の向上が目覚しく、特にその触媒活性は非常に高く、1gの触媒当たり数10kgのポリマーが得られる。高活性型オレフィン重合触媒担体用のマグネシウム化合物として主に塩化マグネシウムが用いられており、塩化マグネシウムの品質が触媒特性、特に触媒活性に大いに影響する。
【0006】
【発明が解決しようとする課題】
しかしながら、従来のクロール法による金属チタン製造工程で副生成物として得られる溶融塩化マグネシウムは、還元反応途中に抜出された塩化マグネシウムも含まれるため、還元炉内の未反応の溶融金属マグネシウムも多少混在している。このような高温の溶融塩化マグネシウムを還元炉からコンテナ、さらにドラム缶などの容器に抜出される際、空気中の水分と接触し水和物になり、無水物としての純度が低下してしまう。さらに溶融金属マグネシウムが混在していると、これが空気中の窒素ガスと反応して窒化マグネシウムとなり、これが空気中の水分と反応して水酸化マグネシウムとアンモニアとなり最終的に溶融塩化マグネシウム内に不純物として混入する。
【0007】
近年のオレフィン重合体のコスト低減要求、プロセス改善、また共重合体のような高機能を有する重合体を効率よく製造するために、さらに触媒の高活性化が強く望まれており、そのために担体である塩化マグネシウムの品質の向上が望まれている。しかし、前述の如く、従来の専用コンテナから、更にドラム缶などの容器に移された溶融塩化マグネシウムは、微量のアンモニアを不純物として含み、これがオレフィン類重合触媒用の担体物質として使用した際、性能低下、特に触媒活性の低下原因となるため、近年の触媒の更なる高活性化の要求を必ずしも満足するものではなく、より一層の改良が望まれていた。
【0008】
従って、本発明の目的は、高純度、特にアンモニアの混入量が極めて少ない無水塩化マグネシウムの製造方法に係わり、特にオレフィン類重合触媒担体に適した無水塩化マグネシムの製造方法及びこの製造に用いる溶融塩化マグネシウムの抜出し装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明者等は、上記従来技術に残された課題を解決すべく鋭意検討を重ねた結果、クロール法による金属チタン製造の工程において生成した溶融塩化マグネシウムを還元炉から容器内に直接抜出すことにより、アンモニアの混入量が極めて少ない高純度の無水塩化マグネシウムが得られることを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明は、還元炉内で四塩化チタンと金属マグネシウムを還元反応させ金属チタン及び塩化マグネシウムを生成させて該還元反応終了後、該還元炉から溶融状態の該塩化マグネシウムを容器内に直接抜出し、該容器内で固化させることを特徴とする無水塩化マグネシウムの製造方法を提供するものである。
【0011】
また、本発明は、四塩化チタンと金属マグネシウムを還元反応させる還元炉と、該還元炉で生成した溶融状態の塩化マグネシウムを抜出し、前記溶融状態の塩化マグネシウムを収容して固化させる複数の容器と、一端が該還元炉に接続され他端が最上流にある第1の容器の上方開口部に配する抜出し配管とを備える装置であって、前記複数の容器は、下流側の容器が直近の上流側の容器より低い位置にくるように設置され、互いがオーバーフロー配管によって連通されることを特徴と溶融塩化マグネシウムの抜出し装置を提供するものである。
【0012】
【発明の実施の形態】
本発明の無水塩化マグネシウムの製造方法では、四塩化チタンを金属マグネシウムで還元する所謂クロール法による金属チタンの製造工程において、先ず還元炉内に溶融金属マグネシウムを充填し、これに液状の四塩化チタンを滴下して、800〜1000℃の範囲で還元反応を行う。この還元反応において、四塩化チタンは還元され、粉末状の金属チタンが一旦生成し、その後焼結して還元炉内でスポンジ状の金属チタンとなる。同時に金属マグネシウムは塩化され溶融状態の塩化マグネシウムとなる。
【0013】
本発明において、還元炉から抜出される溶融塩化マグネシウムは、還元反応途中で抜出される溶融塩化マグネシウムではなく、還元反応終了後の溶融金属マグネシウムの残留量が少ない状態の溶融塩化マグネシウムである。通常金属チタンの製造工程においては、塩化マグネシウムは副生物であり、還元反応中、生成量が多くなると金属チタン生成反応が阻害されるため、反応途中に随時抜出される。そして四塩化チタンの滴下が終了し還元反応が終了した後、残りの溶融塩化マグネシウムを抜出す。しかし、還元反応途中に抜出された溶融塩化マグネシウムは、還元炉内の未反応の溶融金属マグネシウムを多少含んでいる。このような高温の溶融塩化マグネシウムは還元炉から容器に抜出す際、空気中の水分と接触し水和物になり、無水物としての純度が低下してしまう。さらに溶融金属マグネシウムが混在していると、空気中の窒素ガスと反応して窒化マグネシウムとなり、これが空気中の水分と反応してアンモニアを生成する。これに対して、本発明の方法では、還元反応途中で抜出された溶融塩化マグネシウムではなく、還元反応終了後の溶融金属マグネシウムの残留量が少ない状態の溶融塩化マグネシウムを抜出すため、アンモニウムの混入量を極力低減することができる。本発明の還元反応終了後、抜出される溶融塩化マグネシウム中の溶融金属マグネシウムの量は、0.1重量%以下であることが、最終的に得られる無水塩化マグネシウム中のアンモニア量をオレフィン重合用の触媒の活性に悪影響しない0.01%未満とすることができる点で好ましい。
【0014】
本発明において、溶融塩化マグネシウムを容器内に直接抜出しとは、還元炉内の溶融塩化マグネシウムを別途の例えばコンテナなどを経由することなく、抜出し配管を通して容器に移送する意味である。抜出し配管の先端は容器の蓋又は天板に形成される挿入口に配する形態、すなわち、遊嵌状態で挿入されている形態が容器内の空気を追出し、大気との接触を極力抑制しつつ円滑な移送を行なうことができる点で好ましい。このように溶融塩化マグネシウムを容器内に直接抜出す方法を採れば、大気との接触は最低限に抑えられ、金属マグネシウムのアンモニア化合物の生成を抑制することができる。
【0015】
本発明において、溶融塩化マグネシウムが抜出される容器としては、特に制限されないが、例えばJISの200リットルのドラム缶が挙げられる。また、容器は2以上の相互に連通された容器であることが好ましく、特に、下流側の容器が直近の上流側の容器より低い位置にくるように設置され、最上流にある第1の容器に抜出された溶融状態の塩化マグネシウムをオーバーフロー配管により連通された第2以降の容器に順次抜出す容器とすることが好ましい。すなわち、抜出す容器が2以上の場合、容器ごとに抜出し配管を配し抜出す方法では、その都度溶融塩化マグネシウムが大気と接触してしまい品質が悪化するとともに、一つの容器に抜出した後、抜出し配管に残留する溶融塩化マグネシウムが固化し詰りが生じてしまうため、非常に効率が悪くなる。一方、本発明の好適な容器の形態では複数の容器に連続的に抜出すため、より大気との接触を防ぐことができ高純度の無水塩化マグネシウムを得ることができる。
【0016】
本発明の無水塩化マグネシウムの製造方法においては、還元炉から溶融状態の該塩化マグネシウムを容器内に直接抜出す際、不活性ガス雰囲気下で行うことが、より大気との接触を防ぐことができ高純度の無水塩化マグネシウムを得ることができる点で好ましい。不活性ガスは、アルゴンガスを用いることが好ましい。具体的には不活性ガス雰囲気下にある容器に抜き出すことが好ましいが、この際、当該容器自身も前記のドラム缶のような蓋付き容器を用いることが好ましい。蓋付きの容器を用いることで大気との接触を極力避けることができ、より高純度の固形塩化マグネシウムを製造することができる。
【0017】
アルゴンガスとしては、脱ガスされたアルゴンガスを使用することが好ましい。市販のアルゴンガスにはごく僅かな水分やその他の不純物ガスが含まれているため、予めこれらのガスを除去したものを使用することが好ましい。このような脱ガスされたアルゴンガスは、例えば市販のアルゴンガスを400〜500℃程度に加熱されたチタン材等のゲッター材と接触通過させることで得ることができる。不活性雰囲気下に容器を置く方法としては、上記の複数の容器全体を、密閉可能な外部容器内に収容される方法が挙げられる。すなわち、外部容器はその内部をアルゴンガスなどの不活性ガスで置換すると共に大気より若干高めに加圧できる構造とする。そして、溶融塩化マグネシウムを還元炉から抜出す前には、外部容器内に複数の容器を収容し、外部容器内および容器内をアルゴンガス、あるいは乾燥空気などで置換し、できる限り水分を除去しておくのがよい。
【0018】
次いで抜出した溶融塩化マグネシウムを容器内で固化させ、固形状の無水塩化マグネシウムを得るが、溶融塩化マグネシウム中に溶融金属マグネシウムが混在している場合、還元炉から溶融状態の塩化マグネシウムを直接容器内に抜出した後、溶融塩化マグネシウムが固化する前に、混在する溶融金属マグネシウムを上部に浮遊させ、固化後に該金属マグネシウムを除去することが、確実で且つ容易に除去できる点で望ましい。固化する前に溶融金属マグネシウムを浮遊させる方法としては、強制的な冷却手段を使用することなく、暫くそのまま放置する方法が挙げられる。
【0019】
上記のように還元炉から容器に抜出した溶融塩化マグネシウムは、できる限り速やかに冷却して固化させることが、溶融状態の塩化マグネシウムと大気との接触時間を短縮できる点で好ましい。これは、溶融塩化マグネシウムを抜出す容器を比較的小型の、例えば200リッターのドラム缶などを使用することで達成できる。また、アルゴンガスを溶融塩化マグネシウムの容器全体に噴射させるような態様、あるいは、アルゴンガスを容器の周囲から均等に吹き付けるようないわゆる強制対流による冷却装置構成とすることも好ましい。
【0020】
固化した塩化マグネシウムは、解砕して、次いで粉砕する。特にオレフィン類重合触媒担体用として用いる場合、平均粒径100μm以下になるまで粉砕することが望ましい。解砕とは、塊状の無水塩化マグネシウムをハンマーミルやクラッシャーなどを用い機械的に1mm〜10cmの顆粒状あるいはフレーク状にすることを意味し、粉砕とは、前記顆粒状あるいはフレーク状のものをボールミルあるいは振動ミルにより粉末状にすることを意味する。また粉砕の際、塩化マグネシウムの粒径を微細化するとともに、塩化マグネシウムの結晶構造を崩し、非晶質にすることにより、オレフィン類重合触媒担体用に用いた際、触媒特性、特に触媒活性を向上させることができる。粉砕後は、篩別して金属マグネシウムを除去したり、また磁選して解砕および粉砕の際に混入した鉄粉を除去することによって、さらに不純物の少ない無水塩化マグネシウムを得ることができる。
【0021】
以上のように製造された本発明の無水塩化マグネシウムは、アンモニアなどの不純物が極めて少なく、オレフィン類重合触媒担体用や医薬品の中間原料に適しており、特にオレフィン類重合触媒担体用に用いた場合、触媒活性などの触媒性能の極めて高い触媒を得ることができる。得られた無水塩化マグネシウム中のアンモニア含有量としては、0.01重量%以下、好ましくは0.001重量%
以下である。
【0022】
次に、本発明の第1の実施の形態における溶融塩化マグネシウムの抜出し装置を図1〜図3を参照して説明する。図1は本例の溶融塩化マグネシウムの抜出し装置の概略図、図2は第1の容器にある溶融塩化マグネシウムを冷却する方法を説明する図、図3は固化後、解砕前の容器内密封状態にある無水塩化マグネシウムを示す図である。図1中、溶融塩化マグネシウムの抜出し装置1Aは、四塩化チタンと金属マグネシウムを還元反応させる還元炉2と、還元炉2で生成した溶融状態の塩化マグネシウムを抜出し、収容する複数の容器3と、抜出し配管4とを備えるものである。
【0023】
抜出し配管4は、一端41が還元炉2の下方に接続され上方に延出する略鉛直部分4aと、略鉛直部分4aの還元炉の上方位置から屈曲し斜め下方へ延出する他端42が最上流にある第1の容器3aの上方開口部31に配される分岐部分4bとからなる逆V字形の円管である。還元炉2内を加圧しその圧力を調節することより還元炉2から第1の容器3aに抜き出される溶融塩化マグネシウムの排出量を調節することができる。
【0024】
複数の容器3は、下流側の容器が直近の上流側の容器より低い位置にくるように設置され、互いがオーバーフロー管によって連通される。本例では、複数の容器3は最上流にある第1の容器3aと、中間にある第2の容器3bと、最下流にある第3の容器3cの3つの容器からなり、各容器は大きさ形状とも同じの200リットルのドラム缶であり、天板の中央には抜出し配管又はオーバーフロー管が配される開口部31a(31b、31c)が形成されている。そして、還元炉2からの抜出し配管4の先端を配した第1の容器3aは最も高い位置に配置し、次いでそれより低い位置に中間の第2の容器3bを、更に第2の容器3bより低い位置に第3の容器3cを段差を設けて配置する。第1の容器3aの開口部31aの径は、抜出し配管4の分岐部分4bの外径より若干大きく、抜出し配管を開口部31aに配した際、空気が流通する隅間が形成されるようになっている。また、第1の容器3aの側胴部上部には、第1の容器3aから第2の容器3bに溶融塩化マグネシウムを排出するための開口部32aが設けられており、また、当該開口部32aには、一端が第2の容器3bの上方開口部31bに連通された下方傾斜のオーバーフロー配管6aの他端が接続されている。このように配置することで第1の容器3aに排出された溶融塩化マグネシウムは、溶融状態のまま第2の容器3bに排出される。また、同様の構造を第2の容器3bに施工することで第2の容器3bから第3の容器3cにチタン還元炉から配置された溶融塩化マグネシウムを連続的に排出することができる。
【0025】
第3の容器3c、即ち、最下流に配置される容器は、第2の容器から排出される溶融塩化マグネシウムを受け入れるための開口部31cを設けてはいるが、第3の容器3cから溶融塩化マグネシウムを排出するための配管は設けていない。ただし、最下流に配置される容器は、ロードセル等を内蔵した台座15に載せておくことが、オーバーフロー等の問題を回避することができる点で好ましい。また、第1の容器3aに設けた第2の容器への開口部31aの鉛直レベルと開口の断面積は、第1の容器3aに排出された溶融塩化マグネシウムの浴レベルが常に第1の容器3aに満たされた一定の状態にあるように設定することが、第1の容器に抜き出される溶融塩化マグネシウムと外気との接触を極力抑制することができ、さらに品質を向上することができる点で好ましい。
【0026】
なお、各容器における溶融塩化マグネシウムの受入れ又は排出のための開口部の位置及び容器構造としては、特に制限されないが、溶融塩化マグネシウムを容器に受けている間は、当該容器内にできる限り空間の生じないように排出できる配置や構造とすることが、大気と溶融塩化マグネシウムとの接触の機会を抑えることができ、塩化マグネシウムの汚染を防止することができる点で好ましい。
【0027】
次に、本実施の形態例の溶融塩化マグネシウムの抜出し装置1Aを用いて、無水塩化マグネシウムを製造する方法を説明する。還元炉2内で四塩化チタンと金属マグネシウムを還元反応させ金属チタン及び塩化マグネシウムを生成させた後、すなわち還元反応終了後の還元炉2から副生成物である溶融状態の該塩化マグネシウムを抜出し配管4を通して第1の容器3a内に抜出す。抜き出された溶融塩化マグネシウムは一旦第1の容器3aに排出されてその液面レベルが上昇し、第2の容器3bに連通する開口部32aまで達すると今度は、第2の容器3bに溶融塩化マグネシウムが自動的に排出される。次いで、同様に、第2の容器3bの液面レベルが上昇し、第3の容器3cに連通する開口部32bまで達すると今度は、第3の容器3cに溶融塩化マグネシウムが自動的に排出される。
【0028】
第3の容器3cの台座15に内設されたロードセルにより、該容器3cに排出される溶融塩化マグネシウムの量を監視し、所定値に達した時点で抜出し量調節バルブ7を操作し抜出しを停止する。次いで、溶融塩化マグネシウムを固化する工程に入る。その際、溶融塩化マグネシウムに金属マグネシウムが混在している場合には、暫く放置し固化する前に混在する溶融金属マグネシウムを浮遊させておくことが、固化後に容易に金属マグネシウムを除去することができ、高純度の無水塩化マグネシウムを得ることができる点で好ましい。
【0029】
溶融塩化マグネシウムの固化方法としては、特に制限されないが、図2に示すように、容器3a(3b、3c)の周囲に冷却用ガスの噴出ノズル10a〜10cを設け、そこからアルゴンガス等を容器3aの側面に噴出させて溶融塩化マグネシウムを冷却する方法が、溶融塩化マグネシウムを短時間で凝固させることができる点で好ましい。溶融状態から固化までの時間が長引くとその間に大気あるいは雰囲気ガス中の酸素や水分が溶融塩化マグネシウムと反応して不純物の生成を助長するため好ましくない。なお、容器に抜き出された溶融塩化マグネシウムの表層部が一旦固化した後は、雰囲気ガスとの反応は緩慢になるので、高価なアルゴンガスに代えて窒素あるいは空気等の安価なガスを使用することもできる。ただし、水分は、固形の塩化マグネシウムであっても吸湿させるので、できれば脱水されたガスを使用することが好ましい。
【0030】
固化された塩化マグネシウムは、容器毎密封し、個別に取り出すことが、その後の解砕工程や粉砕工程における作業性が向上する点で好ましい。容器毎の密封方法としては、例えば各容器の開口部に接続されているオーバーフロー配管6a、6bを開口部近傍で切断し、その後、別途の蓋部材51、62で開口部を溶接接合する方法やねじ式の栓等によって密封する方法(図3参照)が挙げられる。このうち、溶接接合する方法が容器内への大気の侵入を確実に防止することができる点で好ましい。固化された塩化マグネシウムを密封することは、長期にわたる保存中に大気が内部に侵入して塩化マグネシウムの酸化や吸湿により塩化マグネシウムが劣化することを防止できる点で効果的である。容器の密封時には、真空引きとアルゴンガス置換を併用することが好ましい。容器毎に密封された固化状態の塩化マグネシウムは、その後、解砕して、次いで粉砕され、好ましくは平均粒径100μm以下に粉砕される。この際、さらに篩別して金属マグネシウムを除去する。
【0031】
次に、本発明の第2の実施の形態における溶融塩化マグネシウムの抜出し装置を図4を参照して説明する。図4において、図1と同一構成要素には同一符号を付してその説明を省略し、異なる点について主に説明する。すなわち、図4において、図2と異なる点は、溶融塩化マグネシウムを抜き出すための3つの容器全体を外部容器8で覆う構造とした点、及び第2の容器3bの開口部31bにオーバーフロー配管6aを配し、第3の容器3cの開口部31cにオーバーフロー配管6bを配した点にある。外部容器8には、還元炉2から抜き出された溶融塩化マグネシウムを導く抜出し配管4の分岐部分4bが挿入されるための開口部14と、外部から外部容器8内に不活性ガスを供給するための不活性ガス流入口13を有している。なお、開口部14は不活性ガスが排出される排出口としても機能する。また、外部容器8は、各容器毎に収納できる分割式の構造とすることが、外部容器内に溶融塩化マグネシウムの抜出しのための容器の配設または撤去が容易となる点で好ましい。溶融塩化マグネシウムの抜出し装置1Bにおいて、外部容器8の設置は、抜出し雰囲気を不活性ガスや乾燥空気など水分を極力少なくした雰囲気とすることができる点で有効である。
【0032】
本発明の溶融塩化マグネシウムの抜出し装置は、前記実施の形態例に限定されず、例えば複数の容器の配置としては、図5に示すような円形配置構造を採ることができる。すなわち、図5の容器配置構造において、図1の容器配置構造と異なる点は、図1が3つ容器の直線配列であるのに対して、図5は、5つ容器3a〜3eの円形配列とした点である。すなわち、還元炉から抜き出された溶融塩化マグネシウムは、円形に配置された容器に第1の容器3aから第5の容器3eまでオーバーフロー配管6a〜6dを通って順次排出され、所定量の溶融塩化マグネシウムが抜き出された時点で抜出し量調節バルブ7を操作して溶融塩化マグネシウムの抜出しを完了する。なお、各容器は同一水平面上に配置しても良いが図1又は図4に示すように鉛直方向に段差を持たせて配置することにより、円滑な溶融塩化マグネシウムの抜出しを行うことができる。また、図5に示すように配置することで、図1や図4に比べて省スペースにて抜出し作業を進めることができる。
【0033】
また、本発明の溶融塩化マグネシウムの抜出し装置は、複数容器の接続形態が前記実施の形態例に示すような直列接続の他、図6に示すような並列接続であってもよい。すなわち、図6の並列接続は、抜出し配管4の先端に5つの容器に同時に抜出せる5つの分岐配管61a〜61eを有するマニュフォールド61を設けた構造のものである。このように配置することで比較的短時間に溶融塩化マグネシウムを抜き出すことができる。
【0034】
また、本発明の溶融塩化マグネシウムの抜出し装置は、複数の全ての容器の底部に、ロードセル等の秤量装置を配設しておくことも好ましい。また、容器の材質は、固形の塩化マグネシウムによる腐食等に耐えるものが好ましく、例えばステンレス鋼を用いることが好ましい。ただし、より高い品質を維持が要求される場合にはチタン材をもちいることも軽量あるいは耐食性の点でより好ましい。
【0035】
【実施例】
以下、実施例を挙げて本発明をさらに具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
実施例1
チタン還元炉内で四塩化チタンと溶融マグネシウムとの反応により副生した約900℃にある溶融塩化マグネシウムを容器に抜出して、冷却固化させた。容器はドラム缶状であって、これらを5本直列に並べて、更に、ぞれぞれの容器を、オーバーフロー配管を介して相互に連通させた後、全体を外部容器に収納した。すなわち、容器3本を5本とした以外は図4に示す構造の装置とした。外部容器にアルゴンガスを供給しつつ、合計1500kgの塩化マグネシウムを5本の容器に抜出した。抜出し後も、外部容器内にアルゴンガスを流通させつつ溶融塩化マグネシウム固化させ、室温まで冷却した。その後容器の開口部を溶接接合により密封した。密封する前に容器から抜出した無水塩化マグネシウムをサンプリングして不純物成分を分析した。その結果を表1に示す。
【0036】
比較例1
実施例1と同じチタン還元炉から排出された塩化マグネシウムを一旦、塩化マグネシウムのコンテナに抜出した後、次いで、実施例1に用いた容器と同じ容器5本に1本ずつ抜出した。容器1本当たりの抜出し重量は、約300kgであった。コンテナへの抜出し作業及びコンテナから容器への抜出し作業は大気中で行った。実施例1と同様に無水塩化マグネシウムをサンプリングし分析を行った。その結果を表1に示す
【0037】
【表1】

Figure 0003950390
【0038】
本発明の方法で製造した実施例1の無水塩化マグネシウムは、比較例1に比べて、純度が高く、特にアンモニア成分が極めて少ないことが分かる。
【0039】
実施例2
実施例1で得られた無水塩化マグネシウムを用いてオレフィン類重合用触媒を以下のように調製し、プロピレンの重合評価を行った。
(固体触媒成分の調製)
実施例1で得られた塊状の無水塩化マグネシウムを解砕し、その後振動ミルにて2時間粉砕した。このようにして得られた無水塩化マグネシウム30g、四塩化チタン2.3ml、およびフタル酸ジ−n−ブチル3.0mlを窒素ガスで十分置換した振動ミルに充填して17時間共粉砕し、固体触媒成分を調製した。
(重合触媒の形成および重合)
窒素ガスで完全に置換された内容積2.0リットルの撹拌機付オートクレーブに、トリエチルアルミニウム1.32mmol、シクロヘキシルメチルジメトキシシラン0.13mmol、および前記固体触媒成分をチタン原子として0.0026mmol装入し、重合用触媒を形成した。その後、水素ガス2.0リットル、液化プロピレン1.4リットルを装入し、20℃で5分間予備重合を行った後に昇温し、70℃で1時間重合反応を行った。このときの固体触媒成分1g当たりの重合活性、生成重合体中の沸騰n−ヘプタン不溶分の割合(HI)とメルトインデックスの値(MFR)を表2に示した。
【0040】
なお、ここで使用した固体触媒成分当たりの重合活性は下式により算出した。
重合活性=生成重合体(g)/固体触媒成分(g)
また、生成重合体中の沸騰n−ヘプタン不溶分の割合(HI)は、この生成重合体を沸騰n−ヘプタンで6時間抽出したときのn−ヘプタンに不溶解の重合体の割合(重量%)とした。さらに、生成重合体のメルトインデックスの値(MFR)は、ASTM D1238、又はJIS K7210に準じ、嵩比重(BD)はJIS K6721に準じて測定した。
【0041】
比較例2
比較例1で製造した無水塩化マグネシウムを用いた以外は実施例2と同様に実験を行った。得られた結果を表2に示した。
【0042】
【表2】
Figure 0003950390
【0043】
【発明の効果】
本発明の製造方法によれば、高純度、特にアンモニアの混入量が極めて少ない無水塩化マグネシウムを得ることができ、特にオレフィン類重合触媒担体に適した無水塩化マグネシムを得ることができる。また、本発明の溶融塩化マグネシウムの抜出し装置によれば、簡易な構造で設置場所も採らず、本発明の製造方法を確実に実施できる。
【図面の簡単な説明】
【図1】第1の実施の形態の溶融塩化マグネシウムの抜出し装置の概略図である。
【図2】第1の容器にある溶融塩化マグネシウムを冷却する方法を説明する図である。
【図3】固化後、解砕前の容器内密封状態を説明する図である。
【図4】第2の実施の形態の溶融塩化マグネシウムの抜出し装置の概略図である。
【図5】複数の容器の他の配列形態を示す図である。
【図6】複数の容器の他の配列形態を示す図である。
【符号の説明】
1A、1B 溶融塩化マグネシウムの抜出し装置
2 還元炉
3 複数の容器
3a〜3e 容器
4 抜出し配管
6a〜6e オーバーフロー配管
8 外部容器
10a〜10c 冷却用ガスの噴出ノズル
11 溶融塩化マグネシウム
12 金属チタンと塩化マグネシウム
15 ロードセル内設の台座
16 固化無水塩化マグネシウム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing anhydrous magnesium chloride, and more particularly, to a method for producing high-purity anhydrous magnesium chloride suitable for a carrier for olefin polymerization catalysts and an apparatus for extracting molten magnesium chloride used in the production.
[0002]
[Prior art]
Conventionally, magnesium chloride has been widely used as a raw material for the production of magnesium metal by electrolysis and as a raw material for catalysts, pharmaceuticals and chemicals. In particular, magnesium chloride used as a catalyst support material is required to be high-purity anhydrous magnesium chloride that contains no water of crystallization and has very few impurities.
[0003]
Anhydrous magnesium chloride has been produced by various methods for a long time. In Japanese Patent Application Laid-Open No. 55-20296, solid magnesium carbonate is reacted with chlorine at a temperature of 1200 ° C. or higher in the presence of carbon monoxide gas. A method for producing anhydrous magnesium chloride by removing anhydrous magnesium chloride is disclosed. In Japanese Patent Laid-Open No. 55-126534, a carnalite mineral is dissolved in a small amount of water, ethylene glycol is added to this, dehydrated, anhydrous ammonia is added to precipitate ammonium complex of magnesium chloride, and this is heated. Thus, a method for producing anhydrous magnesium chloride is disclosed.
[0004]
On the other hand, in the production of titanium metal by the crawl method, magnesium chloride is produced as a by-product in the process of producing titanium metal by reducing titanium tetrachloride with magnesium metal. Since this magnesium chloride is produced in a molten state, it becomes anhydrous magnesium chloride. Specifically, liquid titanium tetrachloride is dropped into a reduction furnace filled with molten metal magnesium to reduce titanium tetrachloride to produce sponge titanium. At this time, magnesium chloride is produced as a by-product. . This magnesium chloride is withdrawn into a molten magnesium chloride dedicated container in the molten state during the reduction reaction and after the reduction reaction. Most of this magnesium chloride is decomposed into metallic magnesium and chlorine by the electrolytic method for the production of metallic titanium and reused. In addition, when a part is transferred from the dedicated container to the electrolytic layer, it is separately extracted into a container such as a drum can, and then solidified and used for applications such as a catalyst and a pharmaceutical.
[0005]
Since anhydrous magnesium chloride obtained in the metal titanium production process by the crawl method is a by-product, the production cost is lower than the above-described production method using magnesium carbonate or carnalite as the raw material. Since there are few other metal components, it is used especially as a support | carrier raw material of a titanium type highly active olefin polymerization catalyst. Titanium-based highly active olefin polymerization catalysts include ethylene and propylene polymerization catalysts, and supported catalysts using a magnesium compound as a carrier material are the mainstream. In recent years, the performance of this olefin polymerization catalyst has been remarkably improved. In particular, its catalytic activity is very high, and several tens of kg of polymer per 1 g of catalyst can be obtained. Magnesium chloride is mainly used as a magnesium compound for a highly active olefin polymerization catalyst carrier, and the quality of magnesium chloride greatly affects the catalyst characteristics, particularly the catalyst activity.
[0006]
[Problems to be solved by the invention]
However, the molten magnesium chloride obtained as a by-product in the conventional titanium metal production process by the crawl method includes magnesium chloride extracted during the reduction reaction, so some unreacted molten metal magnesium in the reduction furnace is also somewhat It is mixed. When such high-temperature molten magnesium chloride is withdrawn from a reduction furnace into a container, such as a container such as a drum can, it comes into contact with moisture in the air and becomes a hydrate, which lowers the purity as an anhydride. Furthermore, when molten metal magnesium is mixed, it reacts with nitrogen gas in the air to become magnesium nitride, which reacts with moisture in the air to become magnesium hydroxide and ammonia, finally as impurities in the molten magnesium chloride. Mixed.
[0007]
In recent years, there has been a strong demand for higher activation of the catalyst in order to efficiently produce a polymer having high functionality such as a cost reduction requirement, a process improvement, and a copolymer in recent years. Improvement of the quality of magnesium chloride is desired. However, as described above, molten magnesium chloride transferred from a conventional dedicated container to a container such as a drum can contains a small amount of ammonia as an impurity, and when this is used as a carrier material for an olefin polymerization catalyst, the performance deteriorates. In particular, since it causes a decrease in catalyst activity, it does not necessarily satisfy the recent demand for further activation of the catalyst, and further improvement has been desired.
[0008]
Accordingly, an object of the present invention relates to a method for producing anhydrous magnesium chloride having a high purity and particularly an extremely small amount of ammonia, and particularly a method for producing anhydrous magnesium chloride suitable for an olefin polymerization catalyst carrier and a molten chloride used for the production. The object is to provide an apparatus for extracting magnesium.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the problems remaining in the prior art, the present inventors directly extract molten magnesium chloride generated in the titanium metal production process by the crawl method from the reduction furnace into the container. As a result, it was found that highly pure anhydrous magnesium chloride with a very small amount of ammonia mixed in was obtained, and the present invention was completed.
[0010]
That is, the present invention provides a reduction reaction between titanium tetrachloride and metallic magnesium in a reduction furnace. , Form metal titanium and magnesium chloride The reduction reaction is completed After that, the magnesium chloride in a molten state is directly extracted from the reduction furnace into a container and solidified in the container. Thus, a method for producing anhydrous magnesium chloride is provided.
[0011]
In addition, the present invention is a reduction furnace for reducing titanium tetrachloride and magnesium metal, and extracting magnesium magnesium in a molten state generated in the reduction furnace, The molten magnesium chloride Containment Then solidify A plurality of containers, and an extraction pipe disposed at the upper opening of the first container, one end of which is connected to the reduction furnace and the other end is in the uppermost stream. The container is placed at a position lower than the nearest upstream container, and is connected to each other by an overflow pipe, and a molten magnesium chloride extraction device is provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing anhydrous magnesium chloride according to the present invention, in the production process of titanium metal by the so-called crawl method in which titanium tetrachloride is reduced with metal magnesium, first, molten metal magnesium is filled in a reduction furnace, and this is liquid titanium tetrachloride. Is dropped and a reduction reaction is performed in the range of 800 to 1000 ° C. In this reduction reaction, titanium tetrachloride is reduced, and powdered metal titanium is once generated, and then sintered to form sponge-like metal titanium in the reduction furnace. At the same time, the magnesium metal is salified to form molten magnesium chloride.
[0013]
In the present invention, the molten magnesium chloride withdrawn from the reducing furnace is not molten magnesium chloride withdrawn during the reduction reaction, but is molten magnesium chloride with a small amount of molten metal magnesium remaining after the completion of the reduction reaction. Usually, in the production process of titanium metal, magnesium chloride is a by-product, and when the production amount is increased during the reduction reaction, the titanium metal formation reaction is inhibited, so that it is withdrawn as needed during the reaction. And after dripping of titanium tetrachloride is complete | finished and a reductive reaction is complete | finished, the remaining molten magnesium chloride is extracted. However, the molten magnesium chloride extracted during the reduction reaction contains some unreacted molten metal magnesium in the reduction furnace. When such high-temperature molten magnesium chloride is extracted from the reduction furnace into a container, it comes into contact with moisture in the air to form a hydrate, and the purity as an anhydride is reduced. Further, when molten metal magnesium is mixed, it reacts with nitrogen gas in the air to become magnesium nitride, which reacts with moisture in the air to produce ammonia. On the other hand, in the method of the present invention, not the molten magnesium chloride extracted during the reduction reaction, but the molten magnesium chloride with a small residual amount of molten metal magnesium after completion of the reduction reaction is extracted. The amount of contamination can be reduced as much as possible. After completion of the reduction reaction of the present invention, the amount of molten metal magnesium in the molten magnesium chloride withdrawn is 0.1% by weight or less, and the amount of ammonia in the anhydrous magnesium chloride finally obtained is used for olefin polymerization. It is preferable in that it can be made less than 0.01% without adversely affecting the activity of the catalyst.
[0014]
In the present invention, the extraction of molten magnesium chloride directly into the container means that the molten magnesium chloride in the reduction furnace is transferred to the container through an extraction pipe without going through a separate container, for example. The tip of the extraction pipe is arranged in the insertion port formed in the lid or top plate of the container, that is, the form inserted in a loose fit state expels air in the container and suppresses contact with the atmosphere as much as possible. This is preferable in that smooth transfer can be performed. Thus, if the method of extracting molten magnesium chloride directly in a container is taken, the contact with air | atmosphere will be suppressed to the minimum and the production | generation of the ammonia compound of metallic magnesium can be suppressed.
[0015]
In the present invention, the container from which the molten magnesium chloride is withdrawn is not particularly limited, and examples thereof include a JIS 200 liter drum. Further, the container is preferably two or more interconnected containers, and in particular, the first container which is installed in such a way that the downstream container is positioned lower than the nearest upstream container, and is the most upstream container. It is preferable that the molten magnesium chloride withdrawn into the container is sequentially drawn out into the second and subsequent containers communicated by the overflow pipe. That is, when the number of containers to be extracted is two or more, in the method of arranging the extraction piping for each container and extracting it, the molten magnesium chloride comes into contact with the air each time and the quality deteriorates. Since the molten magnesium chloride remaining in the extraction pipe is solidified and clogged, the efficiency becomes very low. On the other hand, in the preferred container form of the present invention, since it is continuously extracted into a plurality of containers, contact with the atmosphere can be further prevented and high-purity anhydrous magnesium chloride can be obtained.
[0016]
In the method for producing anhydrous magnesium chloride according to the present invention, when the molten magnesium chloride is directly extracted from the reduction furnace into the vessel, it can be prevented from coming into contact with the atmosphere by performing it in an inert gas atmosphere. This is preferable in that high-purity anhydrous magnesium chloride can be obtained. Argon gas is preferably used as the inert gas. Specifically, it is preferable to draw out into a container under an inert gas atmosphere. At this time, it is preferable to use a container with a lid such as the drum can. By using a container with a lid, contact with the atmosphere can be avoided as much as possible, and higher purity solid magnesium chloride can be produced.
[0017]
As the argon gas, it is preferable to use degassed argon gas. Since commercially available argon gas contains very little moisture and other impurity gases, it is preferable to use a gas from which these gases have been removed in advance. Such degassed argon gas can be obtained, for example, by passing a commercially available argon gas in contact with a getter material such as a titanium material heated to about 400 to 500 ° C. Examples of the method of placing the container under an inert atmosphere include a method in which the entire plurality of containers are housed in a sealable external container. That is, the outer container has a structure in which the inside can be replaced with an inert gas such as argon gas and pressurized to a little higher than the atmosphere. Before extracting the molten magnesium chloride from the reduction furnace, accommodate a plurality of containers in the outer container, and replace the outer container and the container with argon gas or dry air to remove moisture as much as possible. It is good to keep.
[0018]
Next, the extracted molten magnesium chloride is solidified in the container to obtain solid anhydrous magnesium chloride. When molten metallic magnesium is mixed in the molten magnesium chloride, the molten magnesium chloride is directly contained in the container from the reduction furnace. It is desirable from the viewpoint that it is possible to remove the metal magnesium after solidification by allowing it to float on the upper part and then removing the metal magnesium after solidification because it is reliable and easy to remove. As a method of floating molten metal magnesium before solidification, there is a method of leaving it for a while without using a forced cooling means.
[0019]
As described above, the molten magnesium chloride extracted from the reduction furnace into the container is preferably cooled and solidified as quickly as possible in terms of shortening the contact time between the molten magnesium chloride and the atmosphere. This can be achieved by using a relatively small container, such as a 200 liter drum, for extracting molten magnesium chloride. In addition, it is also preferable to adopt a mode in which argon gas is injected into the entire molten magnesium chloride container, or a cooling device configuration by so-called forced convection in which argon gas is blown evenly around the container.
[0020]
The solidified magnesium chloride is crushed and then pulverized. In particular, when used as an olefin polymerization catalyst carrier, it is desirable to grind until the average particle size is 100 μm or less. Crushing means that massive anhydrous magnesium chloride is mechanically made into granules or flakes of 1 mm to 10 cm using a hammer mill or a crusher, and pulverization means the granules or flakes. It means that it is powdered by a ball mill or a vibration mill. In addition, when pulverizing, the particle size of magnesium chloride is refined, and the crystal structure of magnesium chloride is broken to make it amorphous. Can be improved. After pulverization, anhydrous magnesium chloride with fewer impurities can be obtained by sieving to remove metallic magnesium, or magnetically separating to remove iron powder mixed during pulverization and pulverization.
[0021]
The anhydrous magnesium chloride of the present invention produced as described above has very few impurities such as ammonia, and is suitable for olefin polymerization catalyst carriers and intermediate materials for pharmaceuticals, especially when used for olefin polymerization catalyst carriers. Thus, it is possible to obtain a catalyst having extremely high catalytic performance such as catalytic activity. The ammonia content in the obtained anhydrous magnesium chloride is 0.01% by weight or less, preferably 0.001% by weight.
It is as follows.
[0022]
Next, an apparatus for extracting molten magnesium chloride according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram of the apparatus for extracting molten magnesium chloride of this example, FIG. 2 is a diagram for explaining a method of cooling molten magnesium chloride in the first container, and FIG. 3 is a container sealing after solidification and before crushing It is a figure which shows the anhydrous magnesium chloride in a state. In FIG. 1, a molten magnesium chloride extraction device 1A includes a reduction furnace 2 for reducing titanium tetrachloride and metallic magnesium, a plurality of containers 3 for extracting and storing molten magnesium chloride generated in the reduction furnace 2, An extraction pipe 4 is provided.
[0023]
The extraction pipe 4 has one end 41 connected to the lower side of the reduction furnace 2 and extending upward, and the other end 42 bent from the upper position of the reduction furnace of the substantially vertical part 4a and extending obliquely downward. It is an inverted V-shaped circular pipe composed of a branched portion 4b arranged in the upper opening 31 of the first container 3a in the uppermost stream. The amount of molten magnesium chloride extracted from the reduction furnace 2 to the first container 3a can be adjusted by pressurizing the inside of the reduction furnace 2 and adjusting the pressure.
[0024]
The plurality of containers 3 are installed such that the downstream container is positioned lower than the nearest upstream container, and are communicated with each other by an overflow pipe. In this example, the plurality of containers 3 includes three containers, a first container 3a in the uppermost stream, a second container 3b in the middle, and a third container 3c in the most downstream, and each container is large. It is a 200 liter drum that has the same shape, and an opening 31a (31b, 31c) in which an extraction pipe or an overflow pipe is arranged is formed at the center of the top plate. And the 1st container 3a which has arranged the tip of extraction piping 4 from reduction furnace 2 is arranged in the highest position, and then the intermediate 2nd container 3b is arranged in a lower position than the 2nd container 3b. The third container 3c is disposed at a low position with a step. The diameter of the opening 31a of the first container 3a is slightly larger than the outer diameter of the branch portion 4b of the extraction pipe 4, so that when the extraction pipe is arranged in the opening 31a, a corner where air flows is formed. It has become. Moreover, the opening part 32a for discharging | emitting molten magnesium chloride from the 1st container 3a to the 2nd container 3b is provided in the side trunk | drum upper part of the 1st container 3a, and the said opening part 32a is provided. The other end of the downwardly inclined overflow pipe 6a having one end communicating with the upper opening 31b of the second container 3b is connected. By arranging in this way, the molten magnesium chloride discharged into the first container 3a is discharged into the second container 3b in a molten state. Moreover, the molten magnesium chloride arrange | positioned from the titanium reduction furnace to the 3rd container 3c can be continuously discharged | emitted from the 2nd container 3b by constructing the same structure in the 2nd container 3b.
[0025]
The third container 3c, that is, the container disposed at the most downstream side is provided with an opening 31c for receiving the molten magnesium chloride discharged from the second container, but the third container 3c is provided with a molten chloride. There is no pipe for discharging magnesium. However, it is preferable that the container arranged at the most downstream is placed on the pedestal 15 containing a load cell or the like in terms of avoiding problems such as overflow. Further, the vertical level of the opening 31a to the second container provided in the first container 3a and the sectional area of the opening are such that the bath level of the molten magnesium chloride discharged into the first container 3a is always the first container. Setting so that it is in a certain state filled with 3a can suppress the contact between the molten magnesium chloride extracted into the first container and the outside air as much as possible, and can further improve the quality. Is preferable.
[0026]
The position of the opening for receiving or discharging molten magnesium chloride in each container and the container structure are not particularly limited, but as long as the molten magnesium chloride is received in the container, the space in the container should be as small as possible. An arrangement or structure that can be discharged so as not to occur is preferable because the opportunity of contact between the atmosphere and molten magnesium chloride can be suppressed and contamination of magnesium chloride can be prevented.
[0027]
Next, a method for producing anhydrous magnesium chloride using the molten magnesium chloride extraction apparatus 1A of the present embodiment will be described. After reducing reaction of titanium tetrachloride and metal magnesium in the reduction furnace 2 to produce metal titanium and magnesium chloride, that is, extracting the magnesium chloride in a molten state as a by-product from the reduction furnace 2 after the reduction reaction is completed. 4 is extracted into the first container 3a. The extracted molten magnesium chloride is once discharged into the first container 3a, the level of the liquid rises, and when it reaches the opening 32a that communicates with the second container 3b, this time the molten magnesium chloride melts into the second container 3b. Magnesium chloride is automatically discharged. Next, similarly, when the liquid level of the second container 3b rises and reaches the opening 32b communicating with the third container 3c, the molten magnesium chloride is automatically discharged to the third container 3c. The
[0028]
The amount of molten magnesium chloride discharged to the container 3c is monitored by a load cell provided in the base 15 of the third container 3c, and when the predetermined value is reached, the extraction amount adjusting valve 7 is operated to stop the extraction. To do. Next, the molten magnesium chloride is solidified. At that time, if metallic magnesium is mixed in the molten magnesium chloride, it can be easily removed after solidification by allowing the molten metallic magnesium mixed before floating for a while to solidify. From the viewpoint that high-purity anhydrous magnesium chloride can be obtained.
[0029]
The solidification method of the molten magnesium chloride is not particularly limited, but as shown in FIG. 2, the cooling gas jet nozzles 10a to 10c are provided around the container 3a (3b, 3c), and argon gas or the like is supplied from there. The method of cooling the molten magnesium chloride by jetting it to the side surface of 3a is preferable in that the molten magnesium chloride can be solidified in a short time. If the time from the molten state to solidification is prolonged, oxygen or moisture in the atmosphere or atmospheric gas reacts with the molten magnesium chloride during that time to promote the generation of impurities, which is not preferable. In addition, once the surface layer portion of the molten magnesium chloride extracted into the container is solidified, the reaction with the atmospheric gas becomes slow, so an inexpensive gas such as nitrogen or air is used instead of the expensive argon gas. You can also. However, since moisture absorbs even solid magnesium chloride, it is preferable to use dehydrated gas if possible.
[0030]
The solidified magnesium chloride is preferably sealed for each container and taken out individually from the viewpoint of improving workability in the subsequent crushing step and crushing step. As a sealing method for each container, for example, the overflow pipes 6a and 6b connected to the opening of each container are cut in the vicinity of the opening, and then the opening is welded and joined with separate lid members 51 and 62. There is a method of sealing with a screw-type stopper or the like (see FIG. 3). Among these, the method of welding and joining is preferable in that air can be reliably prevented from entering the container. Sealing the solidified magnesium chloride is effective in that it can prevent the atmosphere from entering the interior during long-term storage and deterioration of the magnesium chloride due to oxidation or moisture absorption of the magnesium chloride. When sealing the container, it is preferable to use evacuation and argon gas replacement in combination. The solidified magnesium chloride sealed in each container is then crushed and then pulverized, and preferably pulverized to an average particle size of 100 μm or less. At this time, the metal magnesium is removed by further sieving.
[0031]
Next, an apparatus for extracting molten magnesium chloride according to the second embodiment of the present invention will be described with reference to FIG. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. That is, FIG. 4 differs from FIG. 2 in that the entire three containers for extracting molten magnesium chloride are covered with the outer container 8, and the overflow pipe 6a is provided in the opening 31b of the second container 3b. The overflow pipe 6b is arranged in the opening 31c of the third container 3c. An inert gas is supplied to the outer container 8 from the outside into the outer container 8 and an opening 14 for inserting the branch portion 4b of the extraction pipe 4 that guides the molten magnesium chloride extracted from the reduction furnace 2. And an inert gas inlet 13 for the purpose. The opening 14 also functions as a discharge port through which the inert gas is discharged. In addition, it is preferable that the outer container 8 has a split structure that can be accommodated for each container because it is easy to dispose or remove a container for extracting molten magnesium chloride from the outer container. In the molten magnesium chloride extraction apparatus 1B, the installation of the external container 8 is effective in that the extraction atmosphere can be an atmosphere with as little water as possible, such as inert gas or dry air.
[0032]
The apparatus for extracting molten magnesium chloride of the present invention is not limited to the above embodiment, and for example, a circular arrangement structure as shown in FIG. 5 can be adopted as the arrangement of a plurality of containers. That is, the container arrangement structure of FIG. 5 differs from the container arrangement structure of FIG. 1 in that FIG. 1 is a linear arrangement of three containers, whereas FIG. 5 is a circular arrangement of five containers 3a to 3e. This is the point. That is, the molten magnesium chloride extracted from the reduction furnace is sequentially discharged from the first container 3a to the fifth container 3e through the overflow pipes 6a to 6d into a circularly arranged container, and a predetermined amount of molten chloride is obtained. When the magnesium is extracted, the extraction amount adjusting valve 7 is operated to complete the extraction of the molten magnesium chloride. In addition, although each container may be arrange | positioned on the same horizontal surface, as shown in FIG. 1 or FIG. 4, it can extract smoothly molten magnesium chloride by providing a level | step difference in a perpendicular direction. Further, by arranging as shown in FIG. 5, it is possible to proceed with the extraction work in a space-saving manner as compared with FIG. 1 and FIG. 4.
[0033]
Further, in the molten magnesium chloride extraction apparatus of the present invention, the connection form of the plurality of containers may be a parallel connection as shown in FIG. 6 in addition to the serial connection as shown in the above embodiment. That is, the parallel connection in FIG. 6 has a structure in which a manifold 61 having five branch pipes 61a to 61e that can be simultaneously drawn into five containers at the tip of the extraction pipe 4 is provided. By arranging in this way, molten magnesium chloride can be extracted in a relatively short time.
[0034]
In the molten magnesium chloride extraction device of the present invention, it is also preferable that a weighing device such as a load cell is provided at the bottom of all of the plurality of containers. The container is preferably made of a material that can withstand corrosion caused by solid magnesium chloride. For example, stainless steel is preferably used. However, when it is required to maintain higher quality, it is more preferable to use a titanium material in terms of light weight or corrosion resistance.
[0035]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
Example 1
The molten magnesium chloride at about 900 ° C. produced as a by-product by the reaction between titanium tetrachloride and molten magnesium in the titanium reduction furnace was extracted into a container and solidified by cooling. The containers were in the form of drums, and five of these were arranged in series. Further, each container was connected to each other via an overflow pipe, and then the whole was stored in an external container. That is, the apparatus has the structure shown in FIG. 4 except that the number of the three containers is five. While supplying argon gas to the external container, a total of 1500 kg of magnesium chloride was extracted into five containers. Even after extraction, molten magnesium chloride was solidified while circulating argon gas in the external container, and cooled to room temperature. Thereafter, the opening of the container was sealed by welding. Before sealing, anhydrous magnesium chloride extracted from the container was sampled to analyze the impurity components. The results are shown in Table 1.
[0036]
Comparative Example 1
Magnesium chloride discharged from the same titanium reduction furnace as in Example 1 was once extracted into a magnesium chloride container, and then extracted one by one into the same five containers used in Example 1. The extraction weight per container was about 300 kg. The extraction work to the container and the extraction work from the container to the container were performed in the atmosphere. In the same manner as in Example 1, anhydrous magnesium chloride was sampled and analyzed. The results are shown in Table 1.
[0037]
[Table 1]
Figure 0003950390
[0038]
It can be seen that the anhydrous magnesium chloride of Example 1 produced by the method of the present invention is higher in purity than the comparative example 1, and particularly has very little ammonia component.
[0039]
Example 2
Using the anhydrous magnesium chloride obtained in Example 1, an olefin polymerization catalyst was prepared as follows, and propylene polymerization was evaluated.
(Preparation of solid catalyst component)
The massive anhydrous magnesium chloride obtained in Example 1 was crushed and then pulverized in a vibration mill for 2 hours. The thus obtained anhydrous magnesium chloride (30 g), titanium tetrachloride (2.3 ml) and di-n-butyl phthalate (3.0 ml) were filled in a vibration mill sufficiently substituted with nitrogen gas and co-ground for 17 hours to obtain a solid. A catalyst component was prepared.
(Formation of polymerization catalyst and polymerization)
An autoclave with a stirrer having an internal volume of 2.0 liters that was completely replaced with nitrogen gas was charged with 1.32 mmol of triethylaluminum, 0.13 mmol of cyclohexylmethyldimethoxysilane, and 0.0026 mmol of the solid catalyst component as titanium atoms. A polymerization catalyst was formed. Thereafter, 2.0 liters of hydrogen gas and 1.4 liters of liquefied propylene were charged, preliminarily polymerized at 20 ° C. for 5 minutes, then heated, and polymerized at 70 ° C. for 1 hour. Table 2 shows the polymerization activity per gram of the solid catalyst component at this time, the ratio (HI) of boiling n-heptane insoluble matter in the produced polymer, and the melt index value (MFR).
[0040]
The polymerization activity per solid catalyst component used here was calculated by the following equation.
Polymerization activity = produced polymer (g) / solid catalyst component (g)
Moreover, the ratio (HI) of the boiling insoluble n-heptane in the produced polymer is the ratio of the polymer insoluble in n-heptane when the produced polymer is extracted with boiling n-heptane for 6 hours (wt%). ). Further, the melt index value (MFR) of the produced polymer was measured according to ASTM D1238 or JIS K7210, and the bulk specific gravity (BD) was measured according to JIS K6721.
[0041]
Comparative Example 2
The experiment was performed in the same manner as in Example 2 except that anhydrous magnesium chloride produced in Comparative Example 1 was used. The obtained results are shown in Table 2.
[0042]
[Table 2]
Figure 0003950390
[0043]
【The invention's effect】
According to the production method of the present invention, it is possible to obtain anhydrous magnesium chloride having a high purity and particularly an extremely small amount of mixed ammonia, and particularly anhydrous magnesium chloride suitable for an olefin polymerization catalyst carrier. In addition, according to the molten magnesium chloride extraction apparatus of the present invention, the manufacturing method of the present invention can be reliably implemented with a simple structure and no installation place.
[Brief description of the drawings]
FIG. 1 is a schematic view of a molten magnesium chloride extraction apparatus according to a first embodiment.
FIG. 2 is a diagram illustrating a method for cooling molten magnesium chloride in a first container.
FIG. 3 is a diagram for explaining a sealed state in a container after solidification and before crushing.
FIG. 4 is a schematic view of an apparatus for extracting molten magnesium chloride according to a second embodiment.
FIG. 5 is a view showing another arrangement form of a plurality of containers.
FIG. 6 is a view showing another arrangement form of a plurality of containers.
[Explanation of symbols]
1A, 1B Molten magnesium chloride extraction device
2 Reduction furnace
3 Multiple containers
3a-3e container
4 Extraction piping
6a-6e Overflow piping
8 External container
10a to 10c Cooling gas jet nozzle
11 Molten magnesium chloride
12 Titanium metal and magnesium chloride
15 Pedestal in the load cell
16 solidified anhydrous magnesium chloride

Claims (12)

還元炉内で四塩化チタンと金属マグネシウムを還元反応させ金属チタン及び塩化マグネシウムを生成させて該還元反応終了後、該還元炉から溶融状態の該塩化マグネシウムを容器内に直接抜出し、該容器内で固化させることを特徴とする無水塩化マグネシウムの製造方法。Titanium tetrachloride and metallic magnesium in the reduction furnace by the reduction reaction, after reduction reaction ends to produce a metallic titanium and magnesium chloride, extracted directly the salt of magnesium in a molten state into the container from the reducing furnace, said container A method for producing anhydrous magnesium chloride characterized by solidifying with 前記還元炉から抜出される溶融塩化マグネシウム中の溶融金属マグネシウムの量が0.1重量%以下であることを特徴とする請求項1記載の無水塩化マグネシウムの製造方法。The method for producing anhydrous magnesium chloride according to claim 1, wherein the amount of molten metal magnesium in the molten magnesium chloride withdrawn from the reduction furnace is 0.1 wt% or less. 前記容器が2以上の相互に連通された容器であることを特徴とする請求項1又は2記載の無水塩化マグネシウムの製造方法。Claim 1 or 2 method for producing anhydrous magnesium chloride, wherein said container is a container communicating with the two or more mutually. 前記2以上の容器は、下流側の容器が直近の上流側の容器より低い位置にくるように設置され、最上流にある第1の容器に抜出された溶融状態の塩化マグネシウムをオーバーフロー配管により連通された第2以降の容器に順次抜出すことを特徴とする請求項1〜3のいずれか 1 記載の無水塩化マグネシウムの製造方法。The two or more containers are installed such that the downstream container is located at a lower position than the nearest upstream container, and the molten magnesium chloride extracted into the first container in the uppermost stream is discharged by an overflow pipe. the second claim 1-3 any one method for producing anhydrous magnesium chloride according to, characterized in successively withdrawing it after the container is communicated. 該還元炉から溶融状態の該塩化マグネシウムを容器内に直接抜出す際、不活性ガス雰囲気下で行なうことを特徴とする請求項1〜4のいずれか 1 記載の無水塩化マグネシウムの製造方法。When withdrawn directly from the reducing furnace said salt of magnesium in the molten state in a container, according to claim 1-4 any one method for producing anhydrous magnesium chloride according to, characterized in that to carry out in an inert gas atmosphere. 前記還元炉から溶融状態の塩化マグネシウムを容器内に直接抜出した後、固化する前に混在する溶融金属マグネシウムを浮遊させ、固化後に該金属マグネシウムを除去することを特徴とする請求項1〜5のいずれか 1 記載の無水塩化マグネシウムの製造方法。 6. The molten magnesium chloride is directly extracted from the reduction furnace into the container, and then molten metal magnesium mixed before solidification is floated, and the metal magnesium is removed after solidification . The method for producing anhydrous magnesium chloride according to any one of the above. 前記還元炉から溶融状態の塩化マグネシウムを容器内に直接抜出し固化した後、解砕して、次いで粉砕することを特徴とする請求項1〜6のいずれか 1 記載の無水塩化マグネシウムの製造方法。After solidification withdrawn directly magnesium chloride in a molten state into the container from the reduction furnace, and then disintegrated, then production method of anhydrous magnesium chloride in any one of claims 1-6, characterized in that grinding . 前記還元炉から溶融状態の塩化マグネシウムを容器内に直接抜出し固化した後、解砕して、次いで粉砕し平均粒径100μm以下とし、さらに篩別して金属マグネシウムを除去することを特徴とする請求項1〜7のいずれか 1 記載の無水塩化マグネシウムの製造方法。The molten magnesium chloride is directly extracted from the reducing furnace into a container, solidified, crushed, then pulverized to an average particle size of 100 µm or less, and further screened to remove metallic magnesium. any one anhydride method for producing a magnesium chloride according the to 7. 前記無水塩化マグネシウムがオレフィン類重合触媒担体用である請求項1〜8に記載の無水塩化マグネシウムの製造方法。The method for producing anhydrous magnesium chloride according to claim 1, wherein the anhydrous magnesium chloride is for an olefin polymerization catalyst carrier. 四塩化チタンと金属マグネシウムを還元反応させる還元炉と、該還元炉で生成した溶融状態の塩化マグネシウムを抜出し、前記溶融状態の塩化マグネシウムを収容して固化させる複数の容器と、一端が該還元炉に接続され他端が最上流にある第1の容器の上方開口部に配する抜出し配管とを備える装置であって、前記複数の容器は、下流側の容器が直近の上流側の容器より低い位置にくるように設置され、互いがオーバーフロー配管によって連通されることを特徴とする溶融塩化マグネシウムの抜出し装置。A reduction furnace for reducing and reacting titanium tetrachloride and metallic magnesium, a plurality of containers for extracting molten magnesium chloride generated in the reduction furnace, containing the molten magnesium chloride and solidifying, and one end of the reduction furnace Connected to the upper end of the first container having the other end in the uppermost stream, and the plurality of containers are lower in the downstream container than the nearest upstream container It is disposed to come to the position, withdrawal apparatus for molten magnesium chloride, characterized in that each other is communicated by an overflow pipe. 前記複数の容器を収容するものであって、アルゴンガスまたは乾燥空気を導入および排出させるためのノズルを有する外部容器を更に付設することを特徴とする請求項10に記載の溶融塩化マグネシウム抜出し装置。The molten magnesium chloride extraction apparatus according to claim 10 , further comprising an external container that accommodates the plurality of containers and has a nozzle for introducing and discharging argon gas or dry air. 少なくとも最下流にある容器の台座にロードセルを内設させることを特徴とする請求項10又は11に記載の溶融塩化マグネシウムの抜出し装置。The apparatus for extracting molten magnesium chloride according to claim 10 or 11 , wherein a load cell is provided at least on the pedestal of the container at the most downstream side.
JP2002243223A 2002-08-23 2002-08-23 Method for producing anhydrous magnesium chloride and apparatus for extracting molten magnesium chloride Expired - Lifetime JP3950390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002243223A JP3950390B2 (en) 2002-08-23 2002-08-23 Method for producing anhydrous magnesium chloride and apparatus for extracting molten magnesium chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243223A JP3950390B2 (en) 2002-08-23 2002-08-23 Method for producing anhydrous magnesium chloride and apparatus for extracting molten magnesium chloride

Publications (2)

Publication Number Publication Date
JP2004083298A JP2004083298A (en) 2004-03-18
JP3950390B2 true JP3950390B2 (en) 2007-08-01

Family

ID=32052031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243223A Expired - Lifetime JP3950390B2 (en) 2002-08-23 2002-08-23 Method for producing anhydrous magnesium chloride and apparatus for extracting molten magnesium chloride

Country Status (1)

Country Link
JP (1) JP3950390B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100379682C (en) * 2004-11-01 2008-04-09 中信国安盟固利新能源科技有限公司 Method for preparing anhydrous magnesium chloride
JP4906121B2 (en) * 2008-07-02 2012-03-28 株式会社大阪チタニウムテクノロジーズ Sponge titanium manufacturing method
JP2010273718A (en) * 2009-05-26 2010-12-09 Tadashi Murahira Salt melting device

Also Published As

Publication number Publication date
JP2004083298A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
US7264765B2 (en) Method and apparatus for smelting titanium metal
EP1968154B1 (en) Apparatus and method for recovering valuable substance from lithium rechargeable battery
CN1673068A (en) Hydrogen production method and apparatus and engine employing hydrogen production apparatus
US9708676B2 (en) Method for preparing low-cost clean steel
JP3950390B2 (en) Method for producing anhydrous magnesium chloride and apparatus for extracting molten magnesium chloride
US20100330443A1 (en) Hydrogen production method, hydrogen production system, and fuel cell system
CN109850862A (en) A kind of preparation method of battery-grade anhydrous iron phosphate
JP2004052003A (en) Method and apparatus for producing niobium powder or tantalum powder
CN103667836A (en) MoS2 catalyzed high-volume hydrogen-storing alloy and preparation method thereof
KR101196417B1 (en) Apparatus for magnesium ingot obtaining
JP3981601B2 (en) Titanium metal refining method and refining apparatus
CN115094248A (en) Titanium sponge production facility
JPH11314911A (en) Production of polycrystalline silicon ingot
CN201195741Y (en) Production apparatus for hypoxia low-nitrogen titanium sponge
CN211689250U (en) Processing apparatus of nickeliferous waste material that produces in nitrogen trifluoride electrolysis
CN109913672A (en) The method for preparing high-purity rare-earth hydrogen bearing alloy using hydrogen plasma electric arc melting technology
JPH0681051A (en) Production of metal by reduction reaction of metal halide
JP2000327488A (en) Production of silicon substrate for solar battery
CN213591704U (en) Vacuum melting and vacuum ingot casting equipment for clean metal magnesium and alloy thereof
JP2009030161A (en) Apparatus for extracting solution and method for extracting solution
JP4694447B2 (en) Raw material pretreatment crucible
CN218032061U (en) Pressure relief device
US20240055681A1 (en) Process for recovering materials from spent rechargeable lithium batteries
CN103611892A (en) Smelting pouring method for vacuum carbon deoxidized fine-grained steel
CN104711393B (en) Treatment apparatus for molten metal and the method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3950390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term